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Abstract

Background: Associations of low lung function with features of poor cardio-metabolic health have been reported.
It is, however, unclear whether these co-morbidities reflect causal associations, shared genetic heritability or are
confounded by environmental factors.

Methods: We performed three analyses: (1) cardio-metabolic health to lung function association tests in Northern
Finland Birth cohort 1966, (2) cross-trait linkage disequilibrium score regression (LDSC) to compare genetic
backgrounds and (3) Mendelian randomisation (MR) analysis to assess the causal effect of cardio-metabolic traits
and disease on lung function, and vice versa (bidirectional MR). Genetic associations were obtained from the UK
Biobank data or published large-scale genome-wide association studies (N > 82,000).

Results: We observed a negative genetic correlation between lung function and cardio-metabolic traits and diseases.
In Mendelian Randomisation analysis (MR), we found associations between type 2 diabetes (T2D) instruments and
forced vital capacity (FVC) as well as FEV1/FVC. Body mass index (BMI) instruments were associated to all lung function
traits and C-reactive protein (CRP) instruments to FVC. These genetic associations provide evidence for a causal effect
of cardio-metabolic traits on lung function. Multivariable MR suggested independence of these causal effects from
other tested cardio-metabolic traits and diseases. Analysis of lung function specific SNPs revealed a potential causal
effect of FEV1/FVC on blood pressure.

Conclusions: The present study overcomes many limitations of observational studies by using Mendelian
Randomisation. We provide evidence for an independent causal effect of T2D, CRP and BMI on lung function
with some of the T2D effect on lung function being attributed to inflammatory mechanisms. Furthermore,
this analysis suggests a potential causal effect of FEV1/FVC on blood pressure. Our detailed analysis of the
interplay between cardio-metabolic traits and impaired lung function provides the opportunity to improve the
quality of existing intervention strategies.
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Background

Obesity and cardio-metabolic traits have become an in-
creasing public health problem in most parts of the world.
By 2025, global obesity prevalence is predicted to reach
18% in men and 21% in women [1]. The associations of
obesity with chronic non-communicable diseases such as
type 2 diabetes, cardiovascular disease and cancers are
well described. Meanwhile, there is a growing literature on
the association of obesity with lung function and chronic
lung disease, although the underlying pathways and po-
tential mediators are not well understood.

Several observational studies have reported an associ-
ation between low lung function and cardio-metabolic
traits, including obesity [2—5]. In this report, we replicated
these associations using data from a population-based co-
hort, the Northern Finland Birth Cohort (NFBC1966).
However, it is not possible to infer whether associations
such as those seen in NFBC1966, and in the other studies,
are causal as most studies were not able to control for all
known potential confounders or residual confounding by
unknown factors.

In this study, we assess associations between eleven
cardio-metabolic traits representing wider range of traits
than usually accounted in pure metabolic syndrome def-
inition [6, 7] body mass index (BMI) [8], type 2 diabetes

(T2D) [9], C-reactive protein (CRP) [10], high-density
lipoprotein (HDL), low-density lipoprotein (LDL), total
cholesterol (TC), triglycerides (TG) [11], diastolic blood
pressure (DBP), systolic blood pressure (SBP), pulse
pressure (PP) [12], coronary artery disease (CAD) [13],
and three lung function outcomes (first second forced
expiratory volume (FEV1), forced vital capacity (FVC)
and a ratio of both FEV1/FVC). We examine whether
these metabolic traits and lung function are genetically
correlated using a cross-trait linkage disequilibrium (LD)
score regression and then go on to determine whether
the associations are likely to be causal, using Mendelian
Randomisation (MR). MR is a method to estimate causal
effects by using genetic variants with known effects on
the risk factor of interest as a proxy (ie. instrumental
variable) [14] and, as long as underlying assumptions are
not violated [15, 16], MR is not susceptible to classical
confounding (as seen in observational studies) or reverse
causation (Fig. 1a).

Mendelian randomisation has been used to estimate
the causal effect of body mass index (BMI) on two lung
function parameters (forced expiratory volume in 1 s,
FEV1, and forced vital capacity, FVC) [17]. However, it
did not account for potential shared genetic instruments
(in this case whether the genetic instruments modify
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Fig. 1 Flow chart of study design. A Cardio-metabolic traits were body mass index (BMI), type 2 diabetes (T2D), C-reactive protein (CRP), lipoprotein
(HDL-C), low-density lipoprotein (LDL-C), total cholesterol (TC), triglycerides (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse
pressure (PP) and coronary artery disease (CAD). Tested lung function traits were first second forced expiratory capacity (FEV1), forced vital capacity
(FVQ) and a ratio of both FEV1/FVC. B Graphical relationship diagrams in a classical MR and mediation analysis. Upper panel gives overview of MR
analysis, indicating the use of genetic instruments instead of the actual exposure. Arrow labelled with C in upper panel refers to the causal estimate as
well as the C-path in mediation analysis setting. Lower panel gives an overview of the mediation analysis following Baron-Kenney approach. For
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lung function through factors other than BMI). To over-
come this problem, we used a wide range of MR
methods, amongst others a recently developed extension
of MR, multivariable MR (MMR) [18], which models the
effects of pleiotropy, estimating the independent causal
effects of each risk factor simultaneously. This analysis
setting allowed us to take advantage of horizontal plei-
otropy and to gain insights into the interplay between
cardio-metabolic traits through the comparison of MMR
estimates and univariable MR estimates of each risk fac-
tor (mediation analysis). Moreover, former papers did
not test for potential causal effects in the opposite direc-
tion as we do here by conducting a bidirectional MR
(Fig. 1B).

Methods

Studied traits

In this study, we assessed associations between eleven
cardio-metabolic traits and three lung function outcomes
forced expiratory volume in 1 s (FEV1), forced vital cap-
acity (FVC) and the ratio (FEV1/FVC) [19] (Table 1).
Cardio-metabolic traits are body mass index (BMI) [8],
type 2 diabetes (T2D) [9], C-reactive protein (CRP) [10],
four blood lipid levels outcomes (high-density lipoprotein
(HDL-C), low-density lipoprotein (LDL-C), total choles-
terol (TC), and triglycerides (TG) [11], three blood pres-
sure outcomes (diastolic blood pressure (DBP), systolic
blood pressure (SBP), and pulse pressure (PP)) [12], cor-
onary artery disease (CAD) [13], and three lung function
outcomes (FEV1, FVC and the ratio of FEV1/FVC). Sensi-
tivity analysis was preformed using data from Liu et al. for
alcohol and tobacco addiction [20], alongside with Wood
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et al. [21] and Shungin et al. [22] for height and waist to
hip ratio.

Observational associations with lung function in
NFBC1966

The Northern Finland Birth Cohort 1966 (NFBC1966),
described in detail previously [23, 24], targeted all preg-
nant women, residing in the two northernmost prov-
inces of Finland with expected dates of delivery between
January 1 and December 31, 1966. Over 96% of eligible
women participated in the study, giving birth to 12,058
live born children. In 2012, at offspring age of 46 years,
all cohort participants with known addresses and living
in Northern Finland or Helsinki area were invited to a
clinical examination, which included blood sampling.
Clinical data and blood was collected from 5,861 partici-
pants. Lung function was assessed with a Vitalograph P
spirometer (Vitalograph Ltd., Maids Moreton, UK). The
present analysis is based on the best (highest) available
lung function measure from participants who performed
at least three acceptable blows, with the difference be-
tween two maximal readings of FEV1 or FVC less than
4% [25]. Associations of lung function (FEV1, FVC,
FEV1/FVC) with cardio-metabolic traits were investi-
gated in linear regression models adjusted for sex (male/
female), age (years), height (cm), smoking status
(current, former and never smokers) and pack-years
(Additional file 1, Table S1).

Type 2 diabetes in NFBC1966 was defined as either
prescription of metformin (Finnish register for reim-
bursed medication; ATC code A10B, available from year
1997 and 2016), diagnosed by a physician (Finnish out-
patient register; ACD9 or 10), or screen-detected by

Table 1 Data used for the Mendelian randomization analysis. For CAD and T2D participant numbers were split into cases and
controls. *Reproducibility of spirometry measurement using ERS/ATS criteria; **European ancestry; ***Stage 1 meta-analysis

Trait Source Year Imputation panel N Trait transformation

FEV1 UKBB & Wain et al. [19] 2017 HRC 270381* Raw, in liter

FvVC UKBB & Wain et al. [19] 2017  HRC 270381* Raw, in liter

FEV1/FVC  UKBB & Wain et al. [19] 2017  HRC 270381% Raw, in liter

BMI Locke et al. [8] 2015 HapMap2 322154%* Rank inverse normal transformed (BMl~age + age/\2 + sex)
T2D Scott et al. [9] 2017 1kG 26676 (132532)  Case control

CRP Dehghan et al. [10] 2011 HapMap2 82725 In(hsCRP)

HDL Willer et al. [11] 2013 HapMap2 188577 Rank inverse normal transformation (HDL~age+age2+sex)
LDL Willer et al. [11] 2013 HapMap2 188577 Rank inverse normal transformation (LDL~age+age2-+sex)
TC Willer et al. [11] 2013 HapMap2 188577 Rank inverse normal transformation (TC~age+age2+sex)
TG Willer et al. [11] 2013 HapMap2 188577 Rank inverse normal transformation (TG~age+age2+sex)
SBP Wain et al. [12] 2017  1kG 150134%** Residuals of (SBP~sex + age + age/A2 + BM)I)

DBP Wain et al. [12] 2017 1kG 150134%** Residulas of (DBP~sex + age + age/2 + BMI)

PP Wain et al. [12] 2017 1kG 150134%** Residuals of (PP~sex + age + age/2 + BMI)

CAD Nikpay et al. [13] 2015 1kG 60801 (123504)  Case control
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OGTT at the age of 46 years (NFBC1966 clinical follow-
up in 2012). Coronary heart disease was defined based
on participants answer to the following questions: ‘Do
you now or have you had following the doctor diagnosed
or treated the symptoms, diseases or injuries: Congenital
heart disease’.

For spirometry measurements, we used a MasterSc-
reen Pneumo Spirometer (Vitalograph Ltd., Bucking-
ham, UK), with a volumetric accuracy of +2% or +50 mL
whichever was greater. The machines were calibrated
every day the medical examination took place. The spi-
rometric manoeuvre was performed three times in an
upright sitting position while wearing a nose clip, but re-
peated if the coefficient of variation between two max-
imal readings was >4%.

Associations of SNPs with cardio-metabolic traits

We extracted the effect estimates for SNPs associated
(P< 5x107®) with the cardio-metabolic traits from the
most recent published GWAS including 82,000 up to
322,000 individuals (Table 1, Additional File 1: Table S2,
Additional File 2: Table S3) [8-11, 13, 19]. We identified
a set of non-overlapping independent variants for each
risk factor via LD-pruning r* < 0.2 within a window of
1MB using unrelated white European 1000 genomes v3
samples as reference. Clumping was performed using
plink v1.9. An overview of LD correlation between ex-
posure SNPs is given in table S4 in additional file 2.

Associations of SNPs with lung function

We obtained effect estimates of the selected cardio-
metabolic SNPs on lung function (FEV1, FVC and
FEV1/FVC) from the UK Biobank (UKB; Application
Number 19136) using BOLT-LMM adjusted for assess-
ment centre, sex, age, height, current smoking status
and pack-years (See Additional File 1: Table S5 for UKB
characteristics).

Cross-trait LD score regression

We assessed the genetic correlation between each meta-
bolic trait and each lung function parameter using the
recommended settings in the software package LDSC
(v1.0.0) [26]. Briefly, this method generates a score
reflecting whether the GWAS test statistic of a biologic-
ally relevant variant correlates with nearby variants in
high linkage disequilibrium. The z statistic for the gen-
etic association of each variant with trait 1 are multiplied
with the z statistic for the genetic association with trait
2, followed by regression of this product of statistics
against the LD scores. The slope (coefficient) represents
genetic correlation. When large, the same genetic vari-
ants impact both the traits.
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Mendelian randomisation (MR)

We performed a 2-sample Mendelian randomisation,
using the CRAN package Mendelianrandomization, un-
less stated otherwise (Fig. 1B). We excluded palindromic
SNPs and instruments having a direct effect on the out-
come (P<5xE-08). We estimated the causal effect of a
single risk factor on lung function using the widely used
fixed-effect inverse variance weighted (IVW) MR. We
performed sensitivity analyses using weighted median,
mode based and MR Egger methods to rule out potential
pleiotropy. To further assess the stability of our results,
we used penalised MR approaches and reproduced the
results using altered sets on input SNPs. We achieved
this via exclusion of critical variants as suggested by
MR-PRESSO [27] and contamination mixture method
[28] (Additional File 1: Supplementary methods, Add-
itional File 2: Table S6). Throughout the paper, we
present raw P values. The Bonferroni threshold correct-
ing for 9 tests would be 5.5 x 107, Supplemental Figure
S4 gives an overview of the correlation structure within
cardiometabolic traits and a principal component ana-
lysis of 11 cardio-metabolic traits in NFBC1966. This
analysis suggests that the first 3 principal components of
the 11 cardio-metabolic explain 99% of the variance.
Thus, we calculated, using a similar approach as meta-
bolic profiling studies [29, 30], 3 outcomes (FEV1, FVC
and FEV1/FVC) times 3 risk factors (first 3 principal
components).

Multivariable MR (MMR)

To assess the independent effects of each cardio-
metabolic trait, while accounting for the effects of the
others, we used multivariable MR [18] (Additional File 1:
Supplementary methods, Additional File 2: Table S7).
We regressed the coefficients for the SNP-outcome asso-
ciation against all risk factors separately and then simul-
taneously for each risk factor. The residuals of these
regressions were used as the outcome to estimate the
causal effect. We used a weighted regression-based ap-
proach to achieve this. To examine whether our findings
were influenced by alcohol or tobacco use, height as well
as waist to hip-related pleiotropic effects, we extended
our analysis and included anthropometric traits in multi-
variable MR analysis (Additional File 1, Fig. S4).

Effect attenuation and mediation analysis

Traits were interpreted as mediators when they were
consistently significantly (p<0.05) associated with lung
function in the univariable MR (B—path), and we could
find evidence for a causal effect of the exposure on the
mediator (A-path). These assumptions were fulfilled for
the CRP-mediated effect of BMI on lung function. For
this trait, we compared the direct effect estimates (IVW
MR of risk factor) with the total effect estimate (MMR
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estimate of risk factor plus mediator) [31](Fig. 1B). Dif-
ferences in effect sizes caused by all other traits were
interpreted as effect attenuation.

Bidirectional MMR

We repeated the MR analysis in the opposite direction
to determine possible causal effects of lung function on
cardio-metabolic traits (Fig. 1B). For this, we used a set
of validated SNPs described by Wain et al. [19] as instru-
ments for lung function (Additional File 1: Supplemen-
tary methods, Additional File 1: Table S5).

Results

Cardio-metabolic traits are closely related and correl-
ation across traits could generate horizontal pleiotropy.
For example, if an instrument for trait A is also associ-
ated with trait B (e.g. variants in FTO for BMI and
CRP), it would be challenging to find out whether the
association with outcome (e.g. lung function) is reflect-
ing the causal effects of traits A or B. This is a major
challenge in this study as 17% of the variants we used as
instruments in this MR are associated with more than
one cardio-metabolic trait (Additional File 2: Table S3).
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To address this, we use outlier robust methods such as
weighted median MR and mode-based estimation (Fig.
3), and also we performed sensitivity analysis on altered
sets variants for each exposure (Additional File 1: Sup-
plementary methods, Additional File 2: Table S6). Fi-
nally, by adding every risk factor to our MR model
separately (MMR), we evaluate the independence of the
tested effect as well as the attenuation as mediated frac-
tion of the added risk factor on the outcome (Fig. 4).

In the following, we present results of the three ana-
lyses for each cardio-metabolic trait (Fig. 1):

1) Observational analyses of the association between
traits, using the data from the NFBC1966 study
(Additional File 1: Table S1, S8).

2) Evidence for genetic correlation using cross-trait LD
score regression (Fig. 2, Additional File 1: Table S9).

3) Evidence for causal associations from Mendelian
randomisation analysis of cardio-metabolic traits on
lung function, and vice-versa (Fig. 3, Additional File
1: Fig. S8-S13, Additional File 2: Table S6). Robust
associations between instruments of the risk factors
and outcomes were followed-up by multivariable
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MR (Fig. 4). This allowed us to draw conclusions if
any potential causal effects were independent from
other tested risk factors (horizontal pleiotropy) and
if we can find certain proportions of the effect being
mediated by other cardio-metabolic traits.

BMI

We found negative associations of BMI with FEV1 and
FVC, and positive associations with FEV1/FVC ratio in
the observational analyses in NFBC1966. Consistent with
this, cross-trait LD score regression showed the same
direction of effects (FEV1/FVC P=1.8xE-13, FEV1 P=
8xE-04, FVC P=9.9xE-18; Fig. 2). For Mendelian ran-
domisation analysis, we used BMI-specific SNPs de-
scribed in Locke et al. [8]. F-statistic of variants was 27
or higher (Additional File 2: Table S3). We note that 12
SNPs deployed as BMI instruments also reach genome-
wide significance for one or more of the tested cardio-
metabolic traits (Additional File 2: Table S3). Evaluation
of several MR approaches suggests a causal effect of
BMI on all lung function parameters (Fig. 3A). Effect
sizes derived from the IVW MR analysis in the UK Bio-
bank data showed a decrease of 24ml in FVC and 12ml
of FEV1 per unit (kg/m?) change in BMI Low P values
obtained from multivariable MR (MMR) suggest that the
effects of BMI on lung function are independent from
other tested risk factors (Fig. 4). However, we observed
some attenuation of BMI effects on FVC and FEV1/FVC
when adding genetic instruments for diastolic blood
pressure, triglycerides or HDL-C to multivariable MR
model (Additional File 2: Table S10, Fig. 4). Similarly,
we found some effect attenuation when adjusting the
multivariable MR model for smoking and alcohol con-
sumption. Other anthropometric traits such as height
and waist to hip ratio had only small effects on BMI lung
function associations (Additional File 1: Fig. S4). Multivar-
iable MR also suggests that 2% of the BMI effect on re-
strictive lung patterns (indicated by lower FVC values) is
mediated by CRP. We observed a doubling in effect sizes
when comparing associations between BMI instruments
and female FEV1 or FVC values to male lung function.
There was no sex-specific difference in effect sizes for
BMI FEV1/FVC association (Additional File 1 Fig. S14).

Type 2 diabetes

As seen for BMI, T2D was negatively associated with
FEV1 and FVC and positively associated with FEV1/FVC
lung patterns in NFBC1966 (Additional File 1: Table S8).
Cross-trait LD score regression showed a negative gen-
etic correlation with both FVC (P=9.2xE-13) and FEV1
(P=3.1xE-10) and a positive but less pronounced genetic
correlation with FEV1/FVC (P=0.015, Fig. 2). We used
genetic instruments for T2D described in Scott et al. [9]
(Table 1). All variants had an F statistic above 30
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(Additional File 2: Table S3). Eleven T2D instruments
were associated to one or more of the other tested risk
factors in this study. Applying several MR techniques,
we found a consistent association between T2D-specific
SNPs and FVC and FEV1/FVC (Fig. 3). Effect sizes de-
rived from the IVW MR analysis suggested a decrease of
65 ml in FVC and 108 ml of FEV1 with the presence of
T2D. P values obtained from multivariable MR indicate
the effect of T2D on impaired lung function is inde-
pendent from most tested risk factors. We observed
strong attenuation of the T2D effect on FVC when add-
ing instruments for SBP or PP (Fig. 4) to multivariable
regression model. Adding genetic instruments for CRP
to the model shows 4.9% of the T2D effect on FVC can
be attributed to CRP. We observed some effect attenu-
ation of the T2D effect on FEV1/FVC when adding
smoking as covariate (Additional File 1: Fig. S4). There
was no significant effect attenuation when adding BMI
or other anthropometric traits to the regression model
(Fig. 4, Additional File 1: Fig. S4).

CRP

Within NFBC, we found a strong negative association
between blood CRP levels and all three lung function pa-
rameters (Additional File 1: Table S8). There was strong
evidence of a genetic correlation between lung function
and blood CRP levels (FEV1/FVC P=0.0528, FEV1 P=
4.29E-06, FVC P=1.15E-11; Additional File 1: Table S9,
Fig. 2). We used CRP instruments described in Dehghan
et al. (Table 1) [10]. We note that seven out of the 18
CRP instruments were associated with one or more
cardio-metabolic trait (Additional File 2: Table S3). Gen-
etic instruments for CRP were significantly associated
with FVC, suggesting a causal effect of CRP on restrict-
ive lung patterns (Fig. 3). We observed a decrease of
14ml in FVC per log change in serum CRP level. MMR
analysis supports a causal effect of CRP on FVC with
strong attenuation of the effect when adding total chol-
esterol, LDL-C or HDL-C, CRP or smoking to the model
(Fig. 4, Additional File 1: Fig. S4).

Lipid levels

HDL cholesterol and triglyceride levels were associated
with lung function in NFBC1966 (Fig. 3). There was a
negative genetic correlation of triglycerides with FVC (P=
0.029) but a positive correlation with FEV1/FVC (P=
0.012), with the opposite for HDL cholesterol (positive
correlation with FVC, P=3.8xE-03; negative correlation
with FEV1/FVC, P=4.5xE-04, Additional File 1: Table S9).
For LDL-C and total cholesterol, no significant associa-
tions were seen in the observational data nor was there
evidence of genetic correlation. We did not see consistent
associations between any lipid trait and lung function in
the MR analyses (Additional File 1: Fig. S8-S13).
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Fig. 3 Forest plot of Mendelian randomisation result. Blue square represents causal estimate. Blue line is 95% confidence interval. Every line represents
one approach to estimate the potential causal effect (Additional File 1: Supplementary methods). Section A represents effects of tested risk factors on
impaired lung function. Section B is the inverse direction. Impaired lung function as exposure for blood pressure. If causal effect estimates were not
nominal significant with at least two different approaches and did not have a consistent direction of effect they are given in Fig. S8-S13 in Additional
File 1

Blood pressure

We observed a negative association of both DBP and
SBP with FEV1 and FVC and a positive association with
FEV1/FVC (Additional File 1: Table S8, Fig. 3) in
NFBC1966, but no associations with PP. LD score re-
gression showed negative genetic correlation between
FEV1 and PP (P=1.8xE-03, Fig. 2, Additional File 1:
Table S9) only. We did not observe consistent associa-
tions between any blood pressure trait and lung function
in MR analyses (Additional File 1: Fig. S8-S10)

Coronary artery disease

A diagnosis of CAD was not associated with lung
function in NFBC1966 (Additional file 1: Table S8).
Cross-trait LD score regression showed a negative

correlation with FEV1 and FVC, but a positive correl-
ation with FEV1/FVC (FEV1/FVC P=8.2xE-03, FEV1
P=2xE-03, FVC P=3.1xE-06, Fig. 2). MR suggested
these correlations were not causal. (Additional File 1:
Fig. $8-S10).

Causal effect of lung function on cardio-metabolic traits
We used variants described by Wain et al. [19] as instru-
ments (Table 1) to test for possible causal effects of lung
function on cardio-metabolic traits. We discovered con-
sistent associations between FEV1/FVC-specific SNPs
and DBP, SBP as well as PP suggesting a causal effect of
FEV1/FVC on blood pressure (Fig. 3B, Additional File 1:
Fig. S10-S13).
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Multivariable MR: BMI vs FEV1

Multivariable MR: CRP vs FVC

Multivariable MR: BMI vs FVC

Model P-value Model P-value
VW no Covariates ~ —=— | 3.19e-19  I\WnoCovariates —e—  178e-38
IVW CRP adjusted — 1.01e-12 IVW CRP adjusted —=— 7.98e-29
IVW DBP adjusted —— 4.71e-20 IVW DBP adjusted =~ —=— 7.58e-34
IVW SBP adjusted e 8.36e-20 IVW SBP adjusted =~ —=— 6.46e-37
IVW PP adjusted —— 2.69e-19 IVW PP adjusted et 6.49e-39
IVW TG adjusted s 5.81e-13 IVW TG adjusted ——— 3.74e-21
IVW TC adjusted —— 6.90e-19 IVW TC adjusted —— 8.47¢-38
IVW LDL adjusted i 3.42e-19 IVW LDL adjusted ~ —=— 2.13e-38
IVW HDL adjusted — 9.88e-14 IVW HDL adjusted — 3.87e-24
IVW full medel — 3.28e-05 IVW full model —_— 1.25e-06
-0.1 -0.06 -0.02 -0.12 -0.08 -0.04

Multivariable MR: T2D vs FVC

Multivariable MR: BMI vs FEV1pFVC

Model P-valu

VW no Covariates —=— 533000
IVW CRP adjusted ——— 1.81e-07
IVW DBP adjusted ——— 2.70e-06
IVW SBP adjusted —— 1.05e-07
IVW PP adjusted e 3.86e-09
IVW TG adjusted ———— 2.40e-04
IVW TC adjusted ———  7.90e-09
IVW LDL adjusted Wit 5.62e-09
IVW HDL adjusted e 2.73e-05
IVW full model R 1.08e-01

0.0010.003 0.0050.007

Multivariable MR: T2D vs FEV1pFVC

and the outcome

Model P-value Model P-value Model P-value
VW no Covariates —— & | 8.43e.04 IVW no Covariates 2.06e-03 VW no Covariates —— 9.95¢-04
IVW BMI adjusted - gt 2.29-03 IVW BMI adjusted =~ ———=—— 186e-03 VW BMI adjusted T 9.88e-04
IVW DBP adjusted ~——=——— 7.50e-04 IVW CRP adjusted 1.51e-02 IVW CRP adjusted —_— 6.53e-05
IVW SBP adjusted 1.320-03 IVW DBP adjusted —_— 6.73e-03 IVW DBP adjusted —_— 6.93e-04
IVW PP adjusted e ) §818.03 IVW SBP adjusted —_——t- 8.57e-02 IVW SBP adjusted _ 6.33e-04

IVW PP adjusted —————  1.34e-01 IVW PP adjusted e 5.28e-04
v Toadistes 291804 IVW TG adjusted =~ ———— 258e-03 VW TG adjusted ——— 9.97e-04
IVWTC adjusied e b eeste IVW TC adjusted =~ ——s— 208e-03 VW TC adjusted ——H— 8.73e-04
NN LDladsied| 3 ===t =] "2b2e-02 IVW LDL adjusted ~———=—— 2.35e-03 VW LDL adjusted TR 6.35¢-04
IVW HDL adjusted —_— 6.42e-03 IVW HDL adjusted —_— 1.68e-02 IVW HDL adjusted —— 1.54e-03
IVW full model ——s———— 70702 IVW full model +————————  566e-01 IVW full model T————— " 2386e01

T i T T T
0.025 -0.015 -0.005 0.015-0.01 -0.004 6e-04 0.0015

Fig. 4 Multivariable MR and mediation analysis. First entry in each plot is the inverse variance-weighted causal estimate as given in Fig. 3. This
estimate represents the direct effect of the risk factor on the outcome. Subsequent lines are adjusted for one risk factor each representing the
total effect. Full model has all risk factors as covariate in the model. Differences in effect sizes resulting from attenuation can be interpreted as
mediated by the exposure added to the model, if there is a causal connection between the mediator and the exposure as well as the mediator

Discussion

In summary, our findings suggest that lung function pa-
rameters are genetically correlated with multiple cardio-
metabolic traits (BMI, T2D, CRP, HDL-C, LDL-C, TC,
TG, SBP, DBP, PP, CAD). Furthermore, we found evi-
dence for causal effect of some cardio-metabolic traits
(BMI, T2D, CRP) on lung function measures and a pos-
sible causal effect of FEV1/FVC on blood pressure. As
the assessed cardio-metabolic traits were highly corre-
lated, we used multivariable Mendelian randomisation
(MMR) to validate the findings from univariable MR
and investigate the interplay between cardio-metabolic
traits as the method simultaneously accounts for mul-
tiple causal factors (Figs. 1B and 4).

We have used the state-of-the-art statistical methods
for assessing genetic correlation, using publicly available
summary statistics of genetic associations. This method
has been previously used to assess genetic correlations
for example between 24 traits (including cardio-
metabolic traits, mental health disorders, inflammatory
bowel disease and educational attainment but not re-
spiratory conditions) [26], between thirteen growth and

eleven immune phenotypes (including asthma) [32], and
between six cancers (including lung) and 14 non-cancer
diseases (not respiratory conditions) [33]. To our know-
ledge, this method has not been used to report genetic
correlations between cardio-metabolic traits and lung
function measures as shown here. One study has re-
ported nominally significant genetic correlation with
COPD for resting heart rate and hypertension (consid-
ered as a binary measure), with no correlation seen be-
tween COPD and stroke and other blood pressure traits
[34].

We went on to determine whether the observed corre-
lations could reflect causal associations using MR. LD
score regression is not the same as Mendelian random-
isation as it uses information from the whole genome
and thus does not model one trait as a function of the
other. Also, it makes no assumption of the causal direc-
tion of association (whereas MR tests the effect of one
factor on the other). We show through MR that higher
BMI is causally associated with lower FEV1 and FVC,
with greater effects on the latter, explaining its positive
effect on the derived parameter FEV1/FVC. This is
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consistent with previous reports from multiple large-
scale population-based epidemiological studies [35], as
well as, with observational results from our analyses in
the NFBC1966. Our Mendelian randomisation confirms
these associations are very unlikely to be related to con-
founding by lifestyle factors related to BMI and lung
function measures. Some have hypothesised that these
associations could reflect reverse causation e.g. people
with reduced lung function may be less likely to engage
into physically activity and may subsequently gain
weight. However, our bidirectional MR did not support
this hypothesis.

Body mass index

Our analysis showed stronger effects of increased BMI
on restrictive ventilation patterns than on airway ob-
struction. The mechanisms for how BMI affects lung
function remain elusive although it is likely that fat ac-
cumulation between the muscles around the lungs and
in the abdomen may have mechanical effects on the dia-
phragm and impede full inspiration as well as decreasing
chest wall compliance [2]. Obesity is also associated with
increased levels of circulating pro-inflammatory markers
such as CRP, IL6, TNFalpha and other cytokines [36].
Systemic inflammation may explain some of the associa-
tions of obesity with impaired lung function. We indeed
found that a small proportion (2%) of the effect of BMI
on FVC was mediated by CRP, and 8.8% of the BMI ef-
fect on FEV1 was explained by inflammatory mecha-
nisms (Figs. 1B and 4) suggesting indirect effects of BMI
on airway obstruction through systemic inflammation.

Type 2 diabetes
Cross-sectional and longitudinal studies have shown that
middle-aged adults with T2D have worse lung function
and slightly increased lung function decline [37]. The
proposed mechanisms are glycosylation of collagen
within the lung, decreased muscle strength, impacts on
surfactant proteins and low grade inflammation [5]. Our
MR supports the epidemiological observations confirm-
ing that T2D causally affects lung function (Fig. 3A), in-
dependent of associations with BMI. We also observed
low-grade inflammation playing a key role in T2D lung
function relationship as 14.9% of the T2D effect on FVC
can be attributed to inflammatory mechanisms (Fig. 4).

Similar to BMI, we observed the causal effect of T2D
having restrictive effects on the lung rather than ob-
structive (Fig. 3). These associations persist when ac-
counting for other cardio-metabolic traits. However, we
do see an attenuation of the T2D effect on FVC when
adding systolic blood pressure or pulse pressure to the
MMR model.

Some longitudinal observational studies have reported
that low lung function is an independent predictor of
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incident T2D [37, 38], and there is evidence that even in
non-diabetics, higher fasting glucose is associated with
lower lung function [39]. We found no evidence of
causal associations of lung function on T2D, but the
presence of low lung function in ‘prediabetics’ has been
postulated to be related to lifestyle or environmental fac-
tors in utero, early childhood or adolescence that predis-
pose individual to increased risks of diabetes and low
lung function in the future [39]. Our analysis is unable
to address this hypothesis further.

Inflammatory mechanisms and blood lipid levels

Our proxy for systemic inflammation in this study is
serum CRP. In this context, we acknowledge that altered
serum CRP levels may be affected by factors not dis-
cussed in this study such as infection or immune disease.
We observed statistically significant effects of CRP on
FVC (Fig. 3). These associations were attenuated, but
remained significant, after adjustment for BMI, pulse
pressure or total cholesterol (Fig. 4). This implies that
CRP may contribute to impaired lung function as shown
by many epidemiological studies [3, 4, 40].

Observational studies of associations of lipid levels and
the presence of COPD have been inconsistent and a re-
cent meta-analysis found no evidence for associations of
COPD with serum levels of HDL-C, LDL-C, TC and TG
[41]. In cross-sectional studies, any association may be
masked by lipid-lowering treatments—and there may be
underlying associations of COPD with high triglyceride
levels [41]. A large population-based cross-sectional
study in France showed strong associations of restrictive
lung function deficits with cardio-metabolic, reporting
associations with lipid profile [2]. Our analysis does not
support a causal effect of total cholesterol and triglycer-
ides on lung function (Additional File 1: Fig. S8-S10).

Coronary artery disease and blood pressure

Association between lung function and CAD, suggesting
an effect of lung function on CAD, have not been stable
across sensitivity analysis (Additional File 1: Fig. S12,
S13); however, they are in line with a recent study by
Marouli et al. [42] suggesting that lung function may be
a mediator of the effect of standing height on CAD.
These observations make an association of lung function
with blood pressure more likely, however still difficult to
interpret, mirroring the inconsistency that has been seen
in large observational studies. Overall, our MR seems to
suggest a causal effect of FEV1/FVC on blood pressure
(Fig. 3B, Additional File 1: Fig. $10-S13). ‘High blood
pressure’ (systolic greater than 130mmHg or diastolic
greater than 85mm Hg) has been associated with lower
FEV1 and FVC in NHANES III [43], systolic blood pres-
sure has been associated with lower FVC in the 2001
Korean National Health and Nutrition Survey (KNHNYS)
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[44] and with COPD (defined by smoking status and air-
way obstruction) in the later fifth KNHNS V [45]. One
report suggests associations may be explained by the use
of antihypertensive medication [46]. Our analysis sup-
ports a genetic correlation between pulse pressure and
FEV1, but none with diastolic or systolic pressure; while
MR analysis shows a causal effect of FEV1/FVC on
blood pressure (Fig. 3) [46]. More studies are needed to
confirm and understand these associations.

Impact on public health

We hope that the presented findings will increase aware-
ness of the relationship between lung function and car-
diometabolic disease amongst clinicians, particularly
general practitioners, and encourage clinicians to regu-
larly conduct spirometry on their patients even amongst
those without symptoms of lung disease. Furthermore,
this work highlights the notion that efforts to reduce
obesity and T2D will also improve lung function and
lung health. Thus, measures taken to reduce obesity in
the general population can also be viewed as measures
to improve lung health. Finally, this study also suggests
weight loss as a measure to improve respiratory health.

Mendelian randomisation

Mendelian randomisation analysis are a great tool to use
large-scale GWAS results to gain public health relevant
insights; however, one of the major limitations in MR is
weak instrument bias, meaning the variant explains little
variation of the exposure. To overcome this source of
bias, we selected variants from large-scale GWAS (Table
1) in combination with an a priori defined threshold of
5x107® (Additional File 2: Table S3). Additionally, we
performed a power analysis, which showed that this MR
analysis was sufficiently powered (Additional File 1: Fig.
S15).

Another major challenge in this MR study is plei-
otropy, the potential for a SNP used as instrument for a
risk factor to affect more than one phenotype. Due to
this complexity in the present MR study, we relied on
consistency of results of multiple MR methods with dif-
ferent assumptions as well as results from multivariable
MR. [18] We used very common IVW MR method to
create a precise reference estimate which, however, is
vulnerable to pleiotropy and extreme values. As second
more robust method (Fig. 3), we used weighted median-
based method, which is robust to outliers and works
even if up to 50% of variants are invalid. Third method
in use was mode-based estimation (MBE) which is an-
other consensus-based method (Additional File 1: Sup-
plementary methods) with similar properties as weighted
median method. MBE relies on the so-called Zero Modal
Pleiotropy Assumption [47]. That means that even if the
group of valid instruments is only 40%, those will make
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the largest group of estimates within the distribution of
ratio estimates and thus be driving the causal estimate.
Our fourth estimate (Fig. 3) originates from robust MR
Egger method (Fig. 3) and is very common in MR litera-
ture [14, 48, 49]. It attempts to model pleiotropy under
the InSIDE (instrument strength independent of direct
effect) [50], which assumes that pleiotropic effects need
to be uncorrelated with each other—an assumption that
may not be met by all traits in our analysis. Additionally,
we performed sensitivity analysis applying outlier robust
approaches and excluding potentially pleiotropic and/or
invalid instruments from the analysis. These recently de-
veloped methods MR-PRESSO [27] and CONMIX [28]
attempt to model pleiotropy in MR analysis and provide
a measure of pleiotropy for each SNP. We excluded
SNPs flagged by these methods re-analysed the data and
observed generally lower P values for the associations
presented in the study (Additional File 1: Fig. S16-S21,
Additional File 2: Table S3).

Conclusions

In conclusion, we provide evidence for genetic correla-
tions between BMI, CRP, T2D and coronary artery dis-
ease with FEV;, FVC and their ratio. These correlations
reflect causal associations for the effects of BMI on all
lung parameters and for T2D on FVC and FEV1/FVC.
These associations are broadly independent from each
other and of other metabolic traits with a small propor-
tion of the effect of T2D and BMI on impaired lung
function being mediated by serum CRP. There was evi-
dence that FEV1/FVC ratio have a causal effect on blood
pressure but not on the other tested cardio-metabolic
traits. Our results strongly support efforts to reduce
obesity and T2D as measures to improve lung function
and lung health in the general population.
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