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Abstract

CRISPR guide RNA libraries have been iteratively improved to provide increasingly
efficient reagents, although their large size is a barrier for many applications. We
design an optimised minimal genome-wide human CRISPR-Cas9 library (MinLibCas9)
by mining existing large-scale gene loss-of-function datasets, resulting in a greater
than 42% reduction in size compared to other CRISPR-Cas9 libraries while preserving
assay sensitivity and specificity. MinLibCas9 provides backward compatibility with
existing datasets, increases the dynamic range of CRISPR-Cas9 screens and extends
their application to complex models and assays.

Keywords: CRISPR-Cas9, Genome-wide, Minimal library, Organoid, KS score

Main text
CRISPR-Cas9 loss-of-function screens have been used in a variety of model organisms,

including human cells [1, 2]. All broadly used Cas9 genome-wide libraries have at least

4 single-guide RNA (sgRNA) per gene and contain over 65,000 sgRNAs [2–13] (Fig. 1a)

(Additional file 2: Table S1). In silico down-sampling analyses have shown that 2

sgRNAs per gene can recover previously defined essential genes, a key quality control

measure [12, 14] (Additional file 1: Fig. S1). Genome-wide CRISPR-Cas9 sgRNA librar-

ies have been iteratively optimised to reduce off-target activity and increase on-target

efficiency [8, 9, 11, 12, 15, 16], mostly using nucleotide sequence-based sgRNA efficacy

prediction algorithms [9, 11, 15, 16]. The recent availability of data from CRISPR-Cas9

knockout screens performed in hundreds of cell lines [13, 17] makes it now possible to

empirically improve library design through selection of sgRNA with strong and con-

sistent biological effects across diverse contexts, incorporating additional factors that

might influence guide efficacy [18, 19]. Smaller genome-wide CRISPR libraries are

more cost-effective and increase feasibility when assaying complex models (e.g. primary

cultures, organoids, co-cultures, in vivo screens), measuring complex phenotypic end-

points (e.g. scRNAseq or perturbations), and when probing genetic interactions using

multiplexed CRISPR-Cas9 libraries. We therefore assembled a standardised resource
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that harnesses large-scale CRISPR-Cas9 screens, together with multiple efficiency met-

rics to evaluate and rank over 300,000 unique sgRNAs originating from the most

broadly adopted libraries. These were used to design an optimised minimal genome-

wide library with two sgRNAs per gene (MinLibCas9) that allows for backward com-

patibility with large resources of CRISPR-Cas9 screens of cancer cell models.

We began by compiling multiple genome-wide CRISPR-Cas9 sgRNA libraries, namely

Project Score (Kosuke Yusa V1.1), Avana, Brunello and TKOv3 [8, 9, 11–13], to pro-

vide standardised annotation for 300,167 unique sgRNAs with a median of 19 sgRNA

per gene (Additional file 3: Table S2). This included updated mapping to GRCh38 and

off-target summaries using the CRISPR genome editing database WGE [20], and where

possible multiple guide efficacy metrics (JACKS [14], Rule Set 2 [9], FORECasT [21]

and scores exported from CRISPOR [22] such as MIT specificity [23] and CrisprScan

[24]). This reference library provides a single standardised resource to select guides

based on multiple user-defined criteria.

We assembled a minimal genome-wide human CRISPR-Cas9 library (MinLib-

Cas9) through multiple iterative design steps (Additional file 1: Fig. S2a and

Additional file 4: Table S3). Preference was given to guides from the Project Score

or Avana libraries, as these have been robustly validated and empirically tested

across hundreds of cancer cell lines. Additionally, we prioritised Project Score

guides [13] to preserve library consistency [25] and to allow in silico down-

sampling benchmarking of MinLibCas9. We first minimised potential sgRNA off-

target activities. Updated sgRNA off-target summaries in the reference library were

used to exclude non-selective guides [20]. In addition, JACKS scores [14] were

used to identify sgRNAs with fitness profiles dissimilar to the mean of all sgRNAs

targeting the same gene, thereby empirically excluding sgRNAs with outlier profiles

suggestive of off-target or reduced on-target activity.

Fig. 1 Genome-wide human CRISPR-Cas9 sgRNA libraries. a Number of sgRNAs in each CRISPR-Cas9 library
since the first reported genome-wide screens, excluding Wang et al. [3] which targets 7114 genes. b Area
under the recall curve of sgRNAs targeting known essential (n = 1469) and non-essential (n = 3251) genes,
and non-targeting guides (n = 997). Recall curves were calculated for each replicate of Project Score [13]
(n = 663) and represented by the cumulative distribution of each sgRNA group across all sgRNAs sorted by
ascending fold-changes. Box-and-whisker plots show 1.5× interquartile ranges and 5–95th percentiles,
centres indicate medians. c Fold-change distribution, based on Project Score data-set of the different
sgRNAs groups. Diagram depicting how the KS scores vary across the CRISPR-screens fold-change range. KS
scores are calculated by testing if the distribution of each sgRNA across cell lines is drawn from that of the
non-targeting sgRNAs using a two-sided Kolmogorov-Smirnov distribution

Gonçalves et al. Genome Biology           (2021) 22:40 Page 2 of 14



We then sought to prioritise guides with maximal on-target activity. Approximately one

third of all human protein-coding genes can induce a cellular loss-of-fitness effect upon

knockout in cancer cell lines [13, 17]; thus, for the remaining two thirds, it is challenging

to distinguish between efficient and non-efficient targeting sgRNAs. The introduction of

CRISPR-Cas9-mediated DNA double-strand breaks induces a weak loss-of-fitness effect

in cells regardless of the targeted site or gene [26–28]. The Project Score library included

997 non-targeting sgRNAs that do not align to any region in the human genome [13].

These non-targeting sgRNAs were positively enriched across all samples, which demon-

strates a detectable relative growth advantage in the absence of a DNA double-stranded

break (Fig. 1b, c). Thus, to empirically identify optimal on-target sgRNAs, we performed a

non-parametric Kolmogorov-Smirnov test (KS score) comparing the distribution of the

fitness fold-changes of every sgRNA to that of the non-targeting guides (Fig. 1c). Guides

with high KS scores (values closer to 1) have strong negative or positive median fold-

changes, whereas those with low KS scores are more likely to have weak or no activity,

similar to non-targeting controls (Additional file 1: Fig. S2b). Thus, the KS score assigns

an emperical estimate of sgRNA efficiency, even for guides that target genes which were

not required for cell fitness. We expanded this approach and estimated KS scores for all

sgRNAs in the Avana library (DepMap19Q2 release) [17, 29, 30].

No strong association between different sgRNA design metrics (i.e. KS, JACKS [14],

Rule Set 2 [9] and FORECasT percentage of in-frame deletions [21]) was observed, sug-

gesting that they inform on different aspects of guide efficiency and provide comple-

mentary information (Additional file 1: Fig. S2b). A strategy combining JACKS to

exclude guides with outlier effects followed by ranking the remaining guides using KS

scores improved recall rates of gene dependencies identified with the original library

(Additional file 1: Fig. S3). Notably, the top 2 selected sgRNAs using this approach per-

formed similarly compared to the complete library, and limited improvement was ob-

served when considering more than 2 guides per gene. Based on these selection

criteria, we designed MinLibCas9 which targets 18,761 genes using 2 optimal sgRNAs

per gene and has a total of 37,522 gene-targeting and 200 non-targeting sgRNAs (Add-

itional file 4: Table S3).

To independently validate our guide selection procedure, we used sgRNA selectivity

(MIT specificity [23]) and efficiency (CrisprScan [24]) metrics from CRISPOR [22] that

were not used for library design. MinLibCas9 outperformed or had similar scores to

existing libraries (Additional file 1: Fig. S4a). Poly-T stretches ≥ 4 were largely absent

from the reference library and T-stretches ≤ 4 displayed minimal to no impact on guide

expression and efficacy (Additional file 1: Fig. S4b). Overall, MinLibCas9 library targets

an additional 964 protein-coding genes compared to the original Project Score library.

Notably, it is 41.7% to 79.9% smaller in size compared to any currently publicly avail-

able genome-wide CRISPR-Cas9 human library, and specifically 62.7% and 66.7%

smaller than Project Score and Avana libraries, respectively (Fig. 1a).

Prioritising the selection of the Project Score library guides ensures that we could in

silico benchmark our MinLibCas9 by subsampling the full set of sgRNAs across 245

cancer cell lines (90.6% of the sgRNAs originated from Project Score library). Overall,

MinLibCas9 preserved the ability to identify known essential genes (Fig. 2a) and recov-

ered the majority of significant dependencies found with the Project Score library, with

an average precision greater than 89.8% in at least 80% of the 245 cancer cell lines
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(Fig. 2b, Additional file 1: Fig. S4c). In the few instances where lower precision was ob-

served, this was associated with lower data quality (Additional file 1: Fig. S4d). The

selected optimal two guides provided gene-level fold-changes largely concordant with

the original library (mean Spearman’s R = 0.77) and a greater fold-change dynamic

range (Additional file 1: Fig. S4e). The cumulative number of significantly dependent

cell lines identified per gene was well correlated (Spearman’s R = 0.88, p value < 0.001)

(Additional file 1: Fig. S4f). Dependencies not identified with MinLibCas9 had on aver-

age weaker fold-changes (two-sided Welch’s t test p value < 0.001) (Additional file 1:

Fig. S4g). A total of 107 genes had discordant significant dependencies, primarily due

to sub-groups of sgRNAs with very distinct fold-change profiles. These guides were

therefore replaced with others from the reference library as a final design step (Add-

itional file 1: Fig. S4f). Different levels of sgRNA coverage (× 25, × 50, × 75, × 100 and

× 500) during screening revealed, for both the minimal and full library, lower coverage

has no impact on identifying essential genes (Additional file 1: Fig. S5a). Replicate cor-

relation at the gene-level was lower with the minimal library and is to be expected

when considering the lower number of sgRNAs per gene (Additional file 1: Fig. S5b).

To further benchmark MinLibCas9, we assessed if it could recapitulate dependencies

in more complex models and assays independent from those used for library design.

We began by analysing CRISPR-Cas9 screens used to identify genes that enhance or

suppress sensitivity to a BRAF inhibitor (dabrafenib) in a partially-sensitive BRAF-

mutant colorectal cancer cell line (HT-29) (Additional file 1: Fig. S6a). Using in silico

Fig. 2 Benchmark of MinLibCas9 library. a Standardised area under the receiver operating characteristic
curve for 245 cell lines at 20% FDR for the essential genes calculated using the minimal and original full
library. b Average Precision (AP) scores to classify significant gene dependencies identified at 1% FDR in
Project Score library using gene fold-changes from MinLibCas9. Recall-Precision curves for all cell lines are
represented in the inset and cell lines with the lowest and highest AP score are highlighted. c, CRISPR-Cas9
screen performed on HT-29 cancer cells using MinLibCas9 library. d Correlation between gene-level fold-
changes obtained with the two libraries. e Recall of essential genes across all replicates for HT-29 performed
with MinLibCas9 and Project Score libraries
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down-sampling analysis, gene fold-changes with both libraries were strongly correlated

(Spearman’s R = 0.72, p value < 0.001) and the time-series profiles of top dependencies

were consistently identified (Additional file 1: Fig. S6b and S6c). We also performed

genome-wide screens in three 3D organoid cultures and confirmed that gene fold-

changes between the Project Score and in silico down-sampled MinLibCas9 were

strongly correlated (average Spearman’s R = 0.70), confirming the minimal library

provides similar replicates correlation and capacity to identify known essential genes

(Additional file 1: Fig. S7).

Finally, we synthesised and cloned the final MinLibCas9 library and re-screened the

HT-29 colorectal cancer cell line (Fig. 2c, Additional file 1: Fig. S8a and S8b). Com-

pared to screens performed with Project Score library [13], we observed good correl-

ation between gene-level fold-changes (Fig. 2d, Additional file 1: Fig. S8c) and similar

recall of essential genes (Fig. 2e, Additional file 1: Fig. S8d). Consistent with the

subsampling analysis, MinLibCas9 showed an increased dynamic range with stronger

overall fold-changes, which improved the identification of previous cancer dependen-

cies for this particular cell line, including MYC copy-number amplification, BRAF

V600E gain-of-function mutation and ERK1/2 (MAPK1/2) sensitivity to drug inhibition

[31–33] (Fig. 2d and Additional file 1: Fig. S8e). Lastly, we confirmed that CRISPR-

Cas9 analytical tools used to correct copy number deleterious biases, CRISPRcleanR

[34] and Crispy [28], and call significant gene dependencies in cells, BAGEL [35], can

be readily utilised to analyse MinLibCas9 screens (Additional file 1: Fig. S9). These re-

sults confirm that MinLibCas9 can identify cancer cell dependencies, provides im-

proved dynamic range for detecting cancer vulnerabilities and is compatible with

existing CRISPR-Cas9 analytical tools and pipelines.

In summary, we designed an optimised minimal genome-wide human CRISPR-

Cas9 library (MinLibCas9) using previously reported experimental data to select

and rank sgRNAs and validated its utility in multiple experimental settings. Min-

LibCas9 is at least 42% smaller than most currently used libraries and preserves

the sensitivity and specificity required to identify gene dependencies. Prioritising

Project Score library sgRNAs ensures backward compatibility to a high quality and

extensively validated library and mitigates library-specific batch effects allowing a

direct integration with hundreds of already performed screens. Furthermore, our

reference guide library, with comprehensive and standardised efficiency metrics for

300,167 unique sgRNA from the most broadly accepted libraries, is a valuable re-

source to support user-defined selection of optimised CRISPR-Cas9 reagents.

Underlining the importance of smaller CRISPR libraries, recent studies have pro-

posed to either exploit large-scale CRISPR-Cas9 datasets to empirically improve

library design [36], build smaller complementary libraries from a single genome-

wide library [12, 37] or by utilising multiplexed Cas9 [38] and Cas12a [39, 40]

systems. Uniquely, MinLibCas9 combines some of these strategies to design a

minimal and optimised sgRNA library, which unlocks the application of Cas9

genome-wide screens to complex models currently limited to the delivery of librar-

ies focused on predefined and small gene sets. Moreover, it provides a data-driven

approach to prioritise the selection of the most effective sgRNAs for assays using

more complex read-outs, e.g. Perturb-seq [41, 42], and to build large-scale genetic

interaction libraries.
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Methods
CRISPR-Cas9 screens analysis

Screen analysis started with the sgRNA read count matrices. Guides with less than 30

counts in the control condition, i.e. plasmid DNA (pDNA), were excluded. Read counts

were normalised to reads per million (G′) within each sample using the following

formula:

G
0
i ¼ Gi=

Xn

j
G j

� �
� 106

where Gi represents the raw counts of sgRNA i. A pseudo count of 1 was added to the

whole matrix and log2 fold-changes were then calculated compared to pDNA. sgRNAs

recall curves are drawn by sorting the guides by fold-change, from the most negative to

the most positive, and then the cumulative distribution is calculated for the different

guide groups (i.e. targeting essential genes, targeting non-essential genes and non-

targeting sgRNAs). Next, the area under the recall curve is calculated, which represents

the enrichment of each group towards negative or positive fold-changes; being an area

of 0.5 the random expectation. sgRNA down-sampling analyses were performed by ran-

domly sampling n sgRNAs without replacement.

Gene-level fold-changes were calculated by grouping all sgRNAs by their targeting

gene and taking the mean of the fold-changes. Similarly, replicates of the same cell line

were mean-averaged. Gene dependencies were defined as significant, on a per-sample

basis, if the gene log2 fold-change was lower than the fold-change threshold at which

essential genes were found at 1% false discovery rate (FDR) from non-essential genes in

the receiver operating characteristic (ROC) curve [6, 30]. Similarly to Allen et al. [14],

the same ROC curve was used to estimate the performance of the sample to recapitu-

late previously defined essential genes by taking the area under the ROC (AROC) curve

at 20% FDR, i.e. standardised partial AUC at maximum 20% false positive rate.

Recall-Precision curves of gene dependencies were drawn for each cell line by taking

the significant gene dependencies (1% FDR) identified with the Project Score library

and using the gene fold-changes obtained with MinLibCas9. Curves were summarised

using average precision (AP) scores, defined as follows:

AP ¼
Xn

j
R j − Rj − 1
� �

P j:

where Pn and Rn are the precision and recall at the nth threshold. AP score is a similar

metric to the area under the Precision-Recall curve.

Copy number correction and significant dependencies analyses

Raw counts for the HT-29 Project Score library screens were downloaded from the

Project Score website (https://score.depmap.sanger.ac.uk/). sgRNAs with less than 30

reads in the plasmid were removed. Read counts were corrected for copy number dele-

terious bias on a per replicate basis using two approaches: (i) unsupervised using CRIS

PRcleanR [34] with default parameters, and (ii) supervised, by providing copy number

segments, using Crispy with the minimum number of sgRNA per segment set to 4. The

CRISPRcleanR corrected fold changes were then processed using BAGELR [13, 35]

with 2000 bootstrap iterations.
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Guide efficacy KS-score

CRISPR-Cas9 sgRNAs Kolmogorov-Smirnov scores (KS scores) is a two-sided test

assessing if the sgRNA fold-changes and the median fold-changes of all non-

targeting sgRNAs are drawn from the same distribution (function ks_2samp from

scipy [43] Python package was used). KS scores range between 0 and 1, and values

closer to 0 represent sgRNAs with a distribution similar to non-targeting sgRNAs,

whereas values closer to 1 represent the most dissimilar sgRNAs. KS scores were

estimated for 100,262 sgRNAs across 663 samples (245 unique cancer cell lines) of

Project Score data-set [13] and for 73,911 sgRNAs across 1257 samples (562

unique cancer cell lines) of the Broad DepMap19Q2 data-set [17, 29] (Add-

itional file 5: Table S4).

Reference master CRISPR-Cas9 library

All the sgRNAs described in the Project Score [13], Avana [9], Brunello [9, 12]

and TKOv3 [11] libraries were assembled into a single reference master library

containing a total of 354,715 sgRNAs with a median of 19 guides per gene (Add-

itional file 3: Table S2). The location of each guide and PAM on the GRCh37 as-

sembly was confirmed for the Project Score, Avana and TKoV3 libraries using

CasOffinder [44], before being lifted-over to the GRCh38 assembly. Unique CRIS

PR_IDs and off-target summaries were extracted from the WGE CRISPR database

[20] for all sgRNAs using the GRCh38 genomic coordinates and confirmed by se-

quence identity, with any inconsistent matches manually verified. Where possible,

guides were complemented with efficiency scores from Rule Set 2 [9, 15], JACKS

[14] and FORECasT in-frame indels [21]. Guides from Avana and Project Score li-

braries were also annotated with KS scores estimated from large-scale screens

available for each library [13, 17, 29]. Additionally, CRISPOR resource [22] was

used to import off-target MIT-specificity scores [23] and on-target efficiency CRIS

PR-scan scores [24]. All CRISPOR scores were extracted from the crisprAllTargets

dataset in the UCSC genome browser using the TableBrowser function. Overlap

between the guides and Pfam protein domains [45] was also determined using

transcript mappings extracted from the ucscGenePfam dataset.

Although ≥ 4 poly-T stretched can act as RNA Polymerase (Pol III) terminators

for the often used U6 promoter [46], we determined that the majority of sgRNAs

containing poly-T stretches of 4 and 5 (no sgRNA in the master library had more

than 5 long T-stretches) are in fact expressed. Most poly-T containing sgRNAs dis-

play consistent effects with other non-poly-T containing sgRNAs targeting the

same gene and have good sgRNA metrics. The effect varies depending on the pos-

ition of the poly-T within the sgRNA, with decreased efficiencies observed closer

to the PAM motif (Additional file 1: Fig. S4b). This is consistent with previous

studies, which specify that full termination is only achieved with a poly-T stretch

≥ 6 [46]. Furthermore, substitution of the first base of the sgRNA to a G is recom-

mended to improve guide expression [16] and therefore reduces the number of 4

T-stretches and no 5 T-stretch is considered in the reference library. Annotation is

provided if a 4 or 5 poly-T stretch is contained within the sgRNA sequence (ex-

cluding PAM motif).
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CRISPR-Cas9 sgRNA coverage

KM-12 colorectal carcinoma cancer cell lines were CRISPR-Cas9 screened with Project

Score library similarly to Behan et al. [13] using × 25, × 50, × 75, × 100 and × 500 library

coverage (Additional file 6: Table S5). Transduction efficiency of KM-12 was main-

tained at ~ 30% while cell numbers were adjusted to achieve different levels of library

coverage. The different library coverage levels were performed in two independent ex-

periments in technical triplicate; experiment A tested × 100 and × 500 coverage and ex-

periment B tested × 25, × 50, × 75 and × 100.

Drug perturbed CRISPR-Cas9 screens

We conducted time-series CRISPR-Cas9 screens, performed similarly to Behan et al.

[13] in technical triplicate, with dabrafenib treatment in HT-29 cancer cell lines (Add-

itional file 7: Table S6). HT-29 cells were transduced at 30% efficiency on day 1.

Following puromycin selection, DNA was extracted on day 8 from a subset of cells

representing the baseline undrugged condition. The remaining cells were treated with

either dabrafenib (0.1 μM) or DMSO on day 8. Subsequently, DNA extraction, sgRNA

amplification and sequencing was performed on day 10, 14, 18 and 21. Read count

matrices were processed as described before and statistical analysis to identify the most

significantly differential essential genes over-time was performed using R package

limma [47] using the F-statistic and respective aggregated p value. P values were ad-

justed for false discovery rates (FDR) using Benjamini-Hochberg false discovery rate

methods. Identical analysis was performed for the original Project Score library and for

the in silico down-sample minimal library and then compared.

Organoid genome-wide CRISPR-Cas9 screens

Genome-wide CRISPR-Cas9 screens were performed in 3 organoids, 1 derived from

colorectal carcinoma patient sample (COLO021, ATCC identifier HCM-SANG-0270-

C20) and 2 organoids derived from oesophageal cancer (CAM277 and CAM338)

(Additional file 8: Table S7). CAM338 was screened in technical duplicate. Organoids

were derived and maintained as previously described [48]. To express Cas9, tumoral

organoids were dissociated into single cells and incubated overnight in suspension and

complete media supplemented with pKLV2-EF1a-BsdCas9-W lentiviral particles and

polybrene (8 μg ml−1). The day after, cells were seeded in matrigel and grown as orga-

noids. Blasticidin selection (20 mg/ml) commenced 48 h after transduction and main-

tained until the end of the experiment. All the organoid lines displayed Cas9 activity

over 75%. The genome-wide sgRNA library transduction was adapted from a previous

protocol recently reported to screen cancer cell lines [13]. Briefly, tumour organoids

were dissociated into single cells and a total of 3.3 × 107 cells were transduced over-

night, in suspension, with an appropriate volume of the lentiviral-packaged whole-

genome sgRNA library to achieve 30% transduction efficiency (× 100 library coverage)

and polybrene (8 μg ml−1). The following day, cells were seeded in Matrigel and grown

as organoids. After 48 h organoids were selected with puromycin (2 mg/ml). After 14

days, approximately 2 × 107 cells were collected as pellets and stored at − 80 °C for

DNA extraction. Genomic DNA was extracted using the Qiagen, Blood & Cell Culture

DNA Maxi Kit, 13362 as per the manufacturer’s instructions. PCR amplification,
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Illumina sequencing (19-bp single-end sequencing with custom primers on the

HiSeq2000 v.4 platform) and sgRNA counting were performed as described previously.

Design of minimal genome-wide CRISPR-Cas9 library

A minimal genome-wide library was assembled from the master reference library by

ranking sgRNAs that minimise off-target and maximise on-target effects. Of the 354,

715 guides, 497 did not match any position in GRCh38 and/or targeted any gene and

thereby were removed. Additionally, 738 sgRNAs with conflicting gene-targeting anno-

tation across different libraries were also discarded.

Three different groups of sgRNAs corresponding to increasingly relaxed selection

stringency levels were defined, termed as green, amber and red. Green represents

guides with a single perfect match to the GRCh38 build and no other alignment with

one sequence mismatch. Additionally, green sgRNAs have either a JACKS scores within

a range between 0 and 2 (Project Score or Avana guides) or a Rule Set 2 score higher

than 0.4 (Brunello guides), with the exception to TKOv3 guides where no filter was

applied. Amber represents sgRNAs with more relaxed off-target constraints, only re-

quiring a single perfect alignment to the genome, and no filter based on JACKS or Rule

Set 2 metrics was used. Lastly, red level sgRNAs can have up to 3 perfect alignments,

similar to Koike-Yusa et al. [16], with no filter based on guide efficacy metric, similar to

amber sgRNAs.

For all protein-coding genes defined in HGNC [49], we tried to identify 2 optimal

sgRNAs within these three different stringency levels. For each gene, guides were

ranked using either KS or Rule Set 2 scores, and selection was performed until 2

sgRNAs successfully passed the defined thresholds: (i) the Project Score library was

queried and the top 2 sgRNAs ranked by KS scores were picked; (ii) the Avana library

was ranked by KS scores and searched to pick the outstanding number of sgRNAs; (iii)

the Brunello library was used to pick the outstanding number of sgRNAs and Rule Set

2 scores were used to rank the guides; and lastly (iv), sgRNAs from the TKOv3 library

were considered. To minimise library-specific biases, we prioritised the use of sgRNAs

originating from the Project Score library.

The assembled minimal library covers 18,761 protein-coding genes with 37,522 sgRNAs

(33,986 Project Score; 1732 Brunello; 1493 Avana and 311 TKOv3) with 36,337 green,

740 amber and 445 red confidence level sgRNAs. An additional set of 200 non-targeting

sgRNAs, chosen by their similarity to the median fold-changes of all non-targeting guides

and with no perfect alignment, no 1nt-mismatch alignment and at most three 2nt-

mismatch alignments to the GRCh38 build were added to allow future benchmarks and

design improvement. For 107 genes, the sgRNA selection was forced to exclude Project

Score library as these generated conflicting gene-level fold-changes (i.e. significant gene

essentiality profiles discordant in more than 100 cell lines between the original and min-

imal library) (Additional file 1: Figure S4c, S4f and S4g).

Plasmid construction for minimal genome-wide CRISPR-Cas9 library

All plasmids (including the Human sgRNA MinLibCas9) are in the process of being de-

posited with Addgene. MinLibCas9 sgRNA sequences can be found in Supplementary

Table 3 (Additional file 4: Table S3) and primer sequences used in the construction of
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the MinLibCas9 sgRNA library can be found in Supplementary Table 9

(Additional file 10: Table S9).

The Human sgRNA MinLibCas9 was constructed as previously described [8]. With the

following exception, a modified version of the vector backbone pKLV2-U6gRNA(BbsI)-

PGKpuro2ABFP-W [8] was used to improve downstream pooled oligonucleotide cloning.

Briefly, the ccdB resistance gene cassette was PCR amplified from pKLV1-fl-

U6gRNA(BbsI)-ccdB-PGKpuro2ABFP (a kindly provided by E. Metzokapian) with the fol-

lowing oligos, Gibson_pKLV2-ccdb_Fwd and Gibson_pKLV2-ccdb_Rev, which included

appended oligonucleotide sequences complementary to the pKLV2-U6gRNA(BbsI)-

PGKpuro2ABFP-W backbone and BbsI restriction enzyme sites. The amplified ccdB gene

product was cloned into the pKLV2-U6gRNA(BbsI)-PGKpuro2ABFP-W plasmid, linear-

ized by BbsI digestion, by Gibson Assembly Cloning (New England Biolabs) to generate

the modified pKLV2-U6gRNA(BbsI)-ccdB-PGKpuro2ABFP-W plasmid vector. This was

subsequently transformed into ccdB Survival E. coli (Invitrogen).

A single-stranded oligonucleotide pool containing all guide RNA sequences was synthe-

sised by TWIST Bioscience. Sequenced oligonucleotides included primer appends for

generating double-stranded oligonucleotides compatible for Gibson assembly into the

pKLV2-U6gRNA(BbsI)-ccdB-PGKpuro2ABFP-W plasmid vector (i.e. Pool_PCR_Fwd and

Pool_PCR_Rev). Pools were amplified using Q5 Hot Start High-Fidelity 2X Master Mix

(New England Biolabs), PCR cycling conditions: 98 °C for 30s, 98 °C for 10s, 67 °C for 10s

and 72 °C for 15 s, for 14 cycles with a final extension of 72 °C for 2min. Amplicons were

PCR-purified using (DNA clean and concentrator kit, Zymo) and cloned into 100 ng of

BbsI linearized pKLV2-U6gRNA(BbsI)-ccdB-PGKpuro2ABFP-W vector by Gibson As-

sembly Cloning (New England Biolabs) following the manufacturer’s instructions.

Multiple Gibson assemblies were pooled, ethanol precipitated and transformed into 200 l

of electrocompetent E. coli (Lucigen Endura™ ElectroCompetent Cells, Lucigen). 4 × 250

ml LB preps (supplemented with 100 μgmL−1 carbenicillin) were inoculated and grown

at 37 °C for 16 h. Plasmid DNA (pDNA) was extracted using a Qiagen maxi prep kit.

Illumina sequencing of sgRNAs and analysis of guide distribution was performed as

follows. PCR amplification, Illumina sequencing (19-bp single-end sequencing with cus-

tom primers on the HiSeq2000 v.4 platform) and sgRNA counting were performed as

described previously. For the plasmid library, total read counts per sgRNA were calcu-

lated using the count_spacers python script [50]. Illumina sequencing of the plasmid li-

brary identified 88.3% of reads were perfect matches when compared to predicted

sgRNA sequences. All guides were detected. The read distribution of each sgRNA was

determined using the Ineq package in R (version 3.5.3) to calculate both the Lorenz-

curve and Gini-coefficient (Additional file 1: Figure S8a and S8b).

Lentiviral vectors and packaging plasmids (psPax2 and pMD2.G, Addgene) were

transfected into 60% confluent HEK293 cells using Lipofectamine LTX (Gibco) at the

following ratio: 7.5 μg lentiviral vector (MinLibCas9 plasmid DNA), 18.5 μg psPax2 and

4 μg pMD2.G per 15 cm dish.

CRISPR-Cas9 MinLibCas9 HT-29 screens

Titrations of the lentiviral packaged sgRNA library were performed to identify the vol-

ume of supernatant to achieve 30% transduction efficiency, cells were analysed for
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stable BFP expression using flow cytometry 72 h post transduction. Using this volume

viral transduction of 12.5 × 106 (× 100 coverage of the sgRNA library, consistent with

what was used for the original Project Score dataset) Cas9 expressing HT-29 cells was

performed in technical triplicate. Seventy-two hours post viral transduction, 30% trans-

duction efficiency was confirmed by flow cytometry and 1 week selection with 2 μg/ml

puromycin started. At 14 days post library transduction cells were harvested and 2.5 ×

107 cells were pelleted; library coverage was also tested by analysis of BFP expression

and found to be 62%. A minimum of 1.9 × 107 cells were maintained throughout the 2-

week screen. Genomic DNA extraction and amplification was performed as per Behan

et al. [13], and sequencing was performed on a HiSeq2500.

Project Score vs MiniLibCas9 BAGEL outcomes comparison

We selected MinLibCas9 library guides that are included in the Project Score library

and used them to compute gene-level Bayesian Factors (BFs) with BAGEL (Hart and

Moffat 2016). We then computed a Pearson correlation coefficient for each cell line

comparing the Project Score BFs and the MinLibCas9 BFs considering only shared

genes between the two libraries. Next, Project Score essential and nonessential genes

(at 5% FDR) from Project Score were derived for each cell line and used as positive/

negative sets to compute the area under the precision-recall curve (AUPRC) obtained

considering the MiniLibCas9 BFs as a rank classifier.

Code availability

All code and results are publically available and distributed are distributed under the

open-source 3-Clause BSD License at https://github.com/EmanuelGoncalves/crispy/

tree/master/notebooks/minlib [51] and https://doi.org/10.5281/zenodo.4313863 [52].

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02268-4.

Additional file 1: Figure S1. Randomised selection of n sgRNAs per gene. ROC curve derived from previously
defined sets of essential and non-essential genes [6]. Standardized partial area under the ROC curve (AROC) calcu-
lated per cell line over the range of maximum false discovery rate of 20%. AROCs are compared between down-
sampled sgRNAs and all sgRNAs available for all the covered genes. 10 random sgRNAs permutations without re-
placement per cell line and per n guides were performed and AROCs mean values are plotted. AROC were calcu-
lated for each replicate of Project Score [13] (n = 663). Figure S2. MinLibCas9 sgRNA rank and selection flowchart
and sgRNA metrics comparison. a, flowchart describing the sgRNA selection procedure. b, efficiency metrics of Pro-
ject Score library sgRNAs - KS metric (Kolmogorov Smirnov test) comparison to non-targeting guides, JACKS scores
[14], Rule Set 2 [9] scores, and FORECasT [21] predicted percentage of in frame deletions produced - plotted to-
gether with guides median fold-changes calculated across 663 samples. Spearman correlation coefficients are re-
ported in the lower triangle of the grid. Plots in the diagonal represent the distribution of the respective metric.
Figure S3. Down-sample analysis of top n sgRNAs ranked using KS and JACKS metrics. Combined score discards
sgRNAs with a JACKS score outside the range of [0, 2] and then selects the top n sgRNAs according to the KS score
(descending order, stronger KS scores and thereby stronger absolute fold-changes). Essential/Non-essential AROCs
are the area under the ROC curve (at 20%FDR) using known essential and non-essential genes. Precision and recall
rates are calculated between the sets of significant gene-level dependencies (at 1% FDR) estimated using the ori-
ginal library and the down-sampled library. Each box-and-whisker plot shows 1.5 x interquartile ranges and 5–95th
percentiles, centres indicate medians (n = 245 cancer cell lines from Project Score [13]). Figure S4. MinLibCas9
benchmarking. a, distributions of CRISPOR sgRNA scores. b,distributions of KS, JACKS and RuleSet2 scores for
sgRNAs from Project Score library that contain T-stretches of 4 and 5. c, significant dependencies identified using
different FDR rates between essential and nonessential genes (1%, 5%, 10%, 15%, 20% and 25%). MinLibCas9 fold-
change thresholds at each FDR rate and the average precision (AP) of the gene dependencies identified in MinLib-
Cas9 that are also found with Project Score library. Error bars represent standard deviation. d, average precision
scores per cell line of established dependencies with MinLibCas9 fold-changes, calculated through downsampling
the original screens, correlated with Project Score data quality as measured by the area under the ROC curve
(AROC) using known essential and non essential genes. e,MinLibCas9 fold-change threshold for each cell line iden-
tified at 1% FDR of essential versus non-essential genes plotted against those identified with Project Score library .
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Colour represents density. f, cumulative number of dependencies (at 1% FDR) identified in 245 cancer cell lines for
each gene with both the full original library and the minimal library. g,scaled fold-changes (median essential genes
fold-change = 1; median non-essential genes fold-change = 0) of dependencies recapitulated (n = 251,387) and
missed (n = 36,996) with the minimal library (two-sided Welch’s t-test p-value < 0.001). Each box-and-whisker plot
shows 1.5 x interquartile ranges and 5–95th percentiles, centres indicate medians. Figure S5. sgRNA library cover-
age analysis in KM-12 cancer cells. a, AROC of essential/non-essential genes at different guide coverage levels. b,
technical replicates correlation. Comparisons are made between the original Project Score library and the in silico
minimal library . c and d, show correlation plots between the different library coverage for Project Score and down-
sampled MinLibCas9 libraries, respectively. A and B represent two independent experiments. Figure S6. CRISPR-
Cas9 dropout screens upon treatment with Dabrafenib. a, diagram of the experimental setup. b, gene fold-changes
averaged across the different time points (day 8, 10, 14, 18 and 21) obtained using Project Score library compared
to the in silico MinLibCas9. Colour represents point density. c, time-series fold-changes of the top significantly es-
sential hits (compared to control experimental arm, DMSO) obtained with Project Score and MinLibCas9 library, the
values of three technical replicates are represented with the mean and by the minimum and maximum values as
error bars. Figure S7. CRISPR-Cas9 loss-of-fitness screens in 3D organoids. a, Comparison of gene fold-changes ob-
tained using the in silico minimal and original library in a colon carcinoma organoid (COLO021) and two
oesophageal adenocarcinoma organoids (CAM277 and CAM338). b, AROC of essential/non-essential genes of each
organoids obtained with both libraries. c, CAM338 technical replicates correlation. Colour coding represents point
density. Figure S8. MinLibCas9 screens in HT-29 cancer cell line. a, Distribution of guides within MinLibCas9 library
plasmid calculated to be comparatively even. Skew ratio of top 10% vs bottom 10% guides = 1.75 (minimum read
count = 30, maximum read count 7698). b, lorenz curve of the MinLibCas9 plasmid library, Gini coefficient = 0.12. c,
correlation of gene level fold-changes of the three technical replicates of MinLibCas9 screens versus the three tech-
nical replicates of HT-29 screens performed in Project Score. Spearman’s Rho correlations are reported on the lower
diagonal, fold-changes distributions are displayed in the diagonal, and upper diagonal shows the scatter plots be-
tween the two samples fold-changes colored by density. d, recall of previously defined essential (upper panel) and
non-essential (lower panel) genes quantified by the area under the recall curve. e,distributions of gene level fold-
changes for each sample. Box-and-whisker plot shows 1.5 x interquartile ranges and 5–95th percentiles, centres in-
dicate medians. Figure S9. Application of common CRISPR-Cas9 analytical pipelines to MinLibCas9. a,sgRNA fold-
change distributions of HT-29 MinLibCas9 screens before (Original) and after copy number bias correction using su-
pervised (Crispy [28]) and unsupervised (CRISPRcleanR [34]) approaches across the different levels of copy number
amplifications. b, distribution of the correlation coefficients between the downsample MinLibCas9 and Project
Score BAGEL bayesian factors across Project Score CRISPR-Cas9 screens (n = 325). c, average precision (AP) scores of
the precision-recall curves of BAGEL significantly essential genes from Project Score (at 5% FDR) obtained consider-
ing MinLibCas9 BAGEL bayesian factors as rank classifier (one point per cell line). Vertical line represents the per-
centage of cell lines with at least 80% AP score. d, distributions of the BAGEL bayesian scores calculated with the
Project Score for the genes found to be non-essential with both Project Score and downsample MinLibCas9 (Agree
Non-essential), essential with both libraries (Agree Essential), and that are essential in only one library (Disagree).

Additional file 2: Table S1. Median number of sgRNAs per gene and library size of currently available human
genome-wide CRISPR-Cas9 libraries.

Additional file 3: Table S2. Reference CRISPR-Cas9 library containing sgRNAs originating from multiple libraries
with standardised genomic annotation and guide efficiency metrics.

Additional file 4: Table S3. Genome-wide minimal human CRISPR-Cas9 library, MinlibCas9.

Additional file 5: Table S4. KS scores estimated for sgRNAs of Project Score and Avana libraries.

Additional file 6: Table S5. Raw counts of the CRISPR-Cas9 screens at different guide coverage performed in
KM-12 cancer cell line.

Additional file 7: Table S6. sgRNA counts of the CRISPR-Cas9 screens followed by drug treatment with
dabrafenib in HT-29 cells.

Additional file 8: Table S7. CRISPR-Cas9 raw counts for three different organoids derived from cancer samples.

Additional file 9: Table S8. MinLibCas9 raw counts for three technical replicates of HT-29.

Additional file 10: Table S9. Oligonucleotide and primer sequences.

Additional file 11. Review history.
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