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Abstract

Background: Gene set enrichment analysis (GSEA) uses gene-level univariate
associations to identify gene set-phenotype associations for hypothesis generation and
interpretation. We propose that GSEA can be adapted to incorporate SNP and
gene-level interactions. To this end, gene scores are derived by Relief-based feature
importance algorithms that efficiently detect both univariate and interaction effects
(MultiSURF) or exclusively interaction effects (MultiSURF*). We compare these
interaction-sensitive GSEA approaches to traditional χ2 rankings in simulated
genome-wide array data, and in a target and replication cohort of congenital heart
disease patients with conotruncal defects (CTDs).

Results: In the simulation study and for both CTD datasets, both Relief-based
approaches to GSEA captured more relevant and significant gene ontology terms
compared to the univariate GSEA. Key terms and themes of interest include cell
adhesion, migration, and signaling. A leading edge analysis highlighted semaphorins
and their receptors, the Slit-Robo pathway, and other genes with roles in the secondary
heart field and outflow tract development.
Conclusions: Our results indicate that interaction-sensitive approaches to enrichment
analysis can improve upon traditional univariate GSEA. This approach replicated
univariate findings and identified additional and more robust support for the role of the
secondary heart field and cardiac neural crest cell migration in the development of
CTDs.
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Introduction
Gene set enrichment analysis (GSEA) has emerged as a useful approach to hypothesis
generation. While not a deterministic strategy for identifying associations, GSEA is often
applied to pursue interpretation of the functional significance of genetic data and to prior-
itize signals for downstream analysis [1]. GSEAwas originally developed for use with gene
expression data,[1] but many extensions to the method allow for use of SNP-level data,
and in some cases, GWAS summary statistics [2]. Genes are assigned to gene sets using
annotation databases such as the Kyoto Encyclopedia of Genes and Genomes [3] and the
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Gene Ontology (GO) resource [4, 5]. Enrichment analyses are typically conducted using
either self-contained or competitive hypothesis testing [6]. The latter of the two tests the
magnitude of phenotype association of genes in a gene set in contrast to the rest of the
genes in the genome. This study focuses on competitive testing.
In the context of the ‘common-disease common variant hypothesis’ and the small effect

sizes for most individual variants [7], GSEA is powered to detect genetic risk factors via
consideration of the collective effect of multiple variants within the same gene set. GSEA
may also be particularly useful in the presence of genetic heterogeneity where more than
one genetic mechanism results in the same, or similar, phenotype/disease [8]. However,
standard GSEA approaches preclude the consideration of complex gene-gene interac-
tions (i.e. epistasis). Modern perspectives regarding complex human disease often note
the importance of complex genetic architectures including both genetic heterogeneity
and epistasis [9–12]. Others have shown that it is important to consider the potential
impact of these complicating phenomena and to develop and adopt methodologies capa-
ble of taking them into account [13]. Thus, substantial information could be gained by
capturing interactions in addition to univariate effects prior to GSEA.
Despite their potential importance, epistatic interactions can be notoriously difficult

and computationally expensive to search for and detect [14]. Some successful meth-
ods rely on exhaustive examination of candidate variable pairs or sets, (e.g. Multifactor
Dimensionality Reduction [15]). This can be computationally prohibitive as (1) the size
of the feature space, i.e. the number of variants, genes, or other variables becomes very
large, or (2) higher order interactions are sought, e.g. 3-way, 4-way, etc.
Relief-based algorithms (RBAs) are a family of filter-based feature importance estima-

tion methods that are unique in their ability to detect epistatic interactions without an
exhaustive search of every p2 (two-way) or higher-order interaction [16]. RBAs achieve
this through a feature scoring heuristic operating on pairs of samples that are maximally
similar to one another. These algorithms scale linearly with the number of features but
quadratically with the number of samples [16]. This has made them popular in genomic
analyses which are often characterized by large feature spaces but relatively small sam-
ple sizes [17, 18]. The first RBA was proposed by Kira and Rendell in 1992 [19] and has
since spawnedmany algorithmic variants as reviewed in [16]. Recent research using simu-
lated data introduced and identified MultiSURF to be the most effective and flexible RBA
(to date) for detecting simple univariate effects as well as both pure 2 or 3-way epistatic
interactions [20]. That same study demonstrated that MultiSURF* [21] was somewhat
more effective at detecting epistatic interactions, however this was at the expense of being
able to detect univariate associations. This makes MultiSURF* an effective approach to
exclusively search for features that contribute to interaction effects.
In the present study we compared traditional univariate metrics and statistics with

RBA feature importance scores for gene ranking prior to GSEA. We hypothesized that
conducting GSEA with a gene ranking that takes epistatic interactions into account
will improve the identification of relevant biological themes/pathways and lead to novel
hypotheses. We first test this hypothesis in a smaller simulated dataset that included mul-
tiple pairwise interactions. We demonstrate the efficacy of using RBA feature scores for
ranking in real-world data by comparing (1) univariate analysis ranking, (2) MultiSURF
ranking, and (3) MultiSURF* ranking, in concert with GSEA using genome-wide geno-
type data from two cohorts with congenital heart disease (CHD) as the target disease
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phenotype. Future work will also seek to demonstrate generalizability of the approach to
other complex diseases and data types.
CHD is a genetically heterogeneous disease and the most common birth defect in

infants, with a prevalence of approximately 8 per 1000 live births and is among the leading
causes of infant mortality [22, 23]. In non-syndromic CHD, a variety of single nucleotide
and copy number variants and environmental factors are associated with disease risk [24].
However, in the majority of cases, the exact cause remains unknown [25]. Conotrun-
cal defects (CTDs) are a highly heritable and common subgroup of CHD that affect the
cardiac outflow tract (OFT) and include tetrology of Fallot, d-transposition of the great
arteries, and other malformations [26]. Development of the OFT during cardiogenesis
is well characterized [27–29]; involving complex, time-dependent, and interacting pro-
cesses. A better understanding of the genes and pathways influencing progenitor cell
behavior would improve our understanding of CTD etiology. A few studies have directly
interrogated epistasis in the folate metabolism pathway as a risk factor for CTD [30], how-
ever to our knowledge, no CTD studies have performed a more comprehensive analysis
of interaction across many genetic variants, genes, or pathways.

Methods
In this section we describe how the simulated data were created and how the CHD data
were utilized and pre-processed. We also provide a detailed overview of the analysis
pipeline in which enrichment analysis is preceded by either traditional univariate analy-
sis or interaction-sensitive RBA analysis for both the simulation study and the CHD data.
The steps in this analysis pipeline are outlined in Fig. 1.

Simulated data

Simulated genome-wide array data were created using GAMETES v2.2, [31] with indi-
vidual genotypes coded 0/1/2. To generate SNPs with no effect, we first randomized the
genotypes for 1000 SNPs using the CHD array data from 405 cases and 405 controls. Next,
we generated 8-feature additive 2-way epistasis, corresponding to four pairs of interact-
ing SNPs that contribute additively to the outcome, i.e., each pair contributes one-fourth
of the effect. All SNPs in the epistatic pairs had minor allele frequency (MAF) of 0.2 and
heritability of 0.4. SNPs with no effect were randomly assigned a subset of rsIDs from
the CHD data. The pairs of epistatic SNPs were assigned rsIDs from 8 genes in the GO
category negative regulation of mRNA splicing; PTBP1, U2AF2, SRSF9, SFSWAP, PCBP4,
NPM1, C1QBP, and SAP18. The SNPs were ranked using the chi-square statistic obtained
from the comparison of the genotype distributions in cases and controls, MultiSURF, and
MultiSURF* and assigned to genes (steps outlined below).

Congenital heart disease data

This project utilized de-identified array and imputed genotype data from two indepen-
dent cohorts recruited under identical protocols at The Cardiac Center at the Children’s
Hospital of Philadelphia: (1) a discovery cohort of 406 CTD cases and 2,976 controls
(Cohort 1)and (2) a replication cohort of 317 CTD case-parent trios (Cohort 2). All
samples were array genotyped using Illumnia arrays [32]. Full details on recruitment,
including inclusion and exclusion criteria and patient characteristics have been previously
described [32].
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Fig. 1 Flowchart of the univariate and Relief-based methods applied to the case-control and trio data

Data quality control

Standard quality control procedures had been implemented in PLINK v1.06 for both
study cohorts, as previously described [32]. Briefly, for both datasets, SNPs with a minor
allele frequency < 1% or genotyping rate < 90%, and cases/trios with a Mendelian error
rate >1% or pairwise identity-by-descent >0.6 were excluded. Genotypes were imputed
using Impute 2 v2.3.0, and poorly imputed or rare (MAF < 5%) variants were removed
post-imputation.

Cohort 1

To reduce both class bias and the computational requirements to run the RBA algorithms
(which scale quadratically with the number of samples) [16], we used an equal number
of cases and randomly selected controls. One case was removed after a pairwise identity-
by-decent analysis suggested a second-degree familial relationship, resulting in 405 cases
and 405 controls. Further, as high LD can result in increased bias [33, 34], we used a
strict LD pruning threshold of r2 = 0.2 (window size of 50 and step of 5) to reduce the
4.7M genotyped and imputed SNPs (Fig. 1, step 1.). A total of 184,526 SNPs were carried
forward for feature ranking.

Cohort 2

Our replication dataset consisted of 337 case-parent trios. With 2.2M SNPs in the origi-
nal dataset, LD pruning was performed in the same manner as above, resulting in 193,354
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SNPs (Fig. 1, step 1).We used the “–tucc” command, implemented in PLINK v1.09, to cre-
ate pseudo-controls based on the parental alleles that were not transmitted to the affected
case (Fig. 2) [35]. The RBA feature ranking algorithms used in this analysis require the
outcome to be in a binary (case-control) format.

Data formatting

PLINK binary files for both datasets were re-coded to produce a single text file with addi-
tive SNP genotypes coded in the standard 0/1/2 format for the number of variant alleles.
Columns were filtered to keep only the rsIDs, and binary phenotype value.

Feature ranking

We compared univariate and Relief-based approaches for SNP-level feature ranking in
preparation for GSEA. The following steps were performed for both the discovery and
replication cohorts (Fig. 1, steps 3-8).

RBA ranking

After creating 10-fold cross-validation datasets, we used the skrebate package in scikit-
learn (Python v3.7.1) to implement two RBAs, MultiSURF and MultiSURF*, to generate
feature importance scores for each SNP (Fig. 1, step 3). Both algorithms score features
by comparing instance pairs with feature values that are maximally similar or dissimilar.
Features with different values between a given instance pair have their scores positively or
negatively updated based on whether the outcomes are respectively different or the same.
Collective feature scores derived over the entire set of samples are normalized to fall in the
range [-1,1], with higher scores indicating greater importance in predicting outcome. This
scoring approach allows RBAs to indirectly detect interactions between features without
the need for an exhaustive search. Neither algorithm requires hyperparameter tuning or
optimization. The SNP feature scores from the 10 cross-validation sets were averaged to
produce a single score for each SNP. Of note, RBAs are typically used for feature selection
prior to modeling [20], however, this project used the feature weights for ranking rather
than selection. Additionally, RBAs do not perform a large number of independent tests in
the same manner as the χ2 approach, and thus are not subject to the burden of multiple
testing corrections.

Fig. 2 Example case and pseudo-control generated from a case-parent trio
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Comparative approach: univariate ranking

We performed a standard case-control association analysis in PLINK, generating chi-
square statistics for each SNP to be used for ranking (Fig. 1, step 3). We compared the
results of the univariate GSEA with the interaction-sensitive RBA approach.

SNP-to-gene annotation and score assignment

The R (v4.0.1) package snpGeneSets [36] was used to annotate SNPs to genes using
GRCh37/hg19 assembly. SNPs were assigned to genes using 10kb windows upstream and
downstream. Each gene has n SNPs, and a summary score or statistic Si where i = 1...n,
must be chosen for each gene. Similar to the approach by [37], for both the RBA and
univariate approaches, the summary score or statistic for a given gene is the maximum Si.

Gene set enrichment analysis

The ranked list from each approach was loaded into GSEA Pre-ranked (MIT/Broad Insti-
tute) software v4.0.2 [1, 38]. The pre-ranked analysis used the ranked list to calculate
enrichment scores using a running sum statistic [1]. Permutations to account for multiple
testing were done by gene set. All available gene sets with 20 - 200 genes from the most
recent MSigDB release [1, 39], v7.1 corresponding to Gene Ontology (GO) [4] terms were
used for this competitive enrichment analysis. To evaluate the overlap between leading
edge subsets of the top GO terms, we used the Leading Edge Analysis tool within GSEA.
Leading edge genes are a subset of the genes in a particular category that appear prior to
the peak score and contribute the most to the enrichment score.

Results
Primary results from the simulation analysis include the top 10 GO terms and leading
edge gene, illustrated in Fig. 3. For the CHD data, we include the top 15 GO terms iden-
tified by the pre-ranked GSEA for each of the three analysis strategies, i.e., univariate,
MultiSURF and MultiSURF*, applied to both cohorts (Fig. 1, step 6). A full list of all
false-discovery rate significant (FDR adj. P < 0.05) GO terms can be found in the supple-
mentary material (Supplementary Table 1). Results from leading edge analyses of the top
10 GO terms for each of the six analyses further contextualize these significant GO terms
(Fig. 6). We highlight common themes within and across the two datasets, in addition
to similarities and key differences between the univariate and RBA analyses. We specif-
ically discuss the evidence for interaction and main effects given by the MultiSURF and
MultiSURF* results.

Simulation results

Among the simulated data, only the interaction-sensitive GSEA approaches using Multi-
SURF and MultiSURF* were able to identify related pathways and the genes assigned to
the pairwise interactions. Figure 3 shows the results of a leading edge analysis, highlight-
ing the genes enriched in the top 10 GO terms from each analysis. The first six genes in
Fig. 3 (top left) were part of the simulated interactions. Of the four epistatic pairs from the
simulated data, MultiSURF and MultiSURF* captured two pairs and one gene each from
the other two pairs. Further, the top 10 GO categories from the MultiSURF approach and
the top nine from the MultiSURF* met the FDR significance threshold (adj. p < 0.05).
Among the top categories were rna binding, rna processing, and negative regulation of
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Fig. 3 Heatmap of leading edge genes from the top 10 GO terms for each analysis of the simulated data.
Hierarchical clustering was applied to both the rows and columns
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Table 1 Spearman’s rank-order correlation coefficients (ρ) for gene ranks between analyses

Data χ2 & MultiSURF χ2 & MultiSURF* MultiSURF &MultiSURF*

Cohort 1 0.479 0.293 0.644

Cohort 2 0.543 0.325 0.737

gene expression, which shared genes in common with the pathway used for the simula-
tion, GO category negative regulation of mRNA splicing. None of the χ2 results met the
FDR threshold.

Correlation analysis

For the CHD data, we evaluated the overall correlation between the gene ranks for each
analysis in both cohorts, all of which were highly significant (p < 0.001, Table 1). As
expected, the univariate andMultiSURF results (Fig. 4a) were more highly correlated than
the univariate andMultiSURF* results (Fig. 4b), given thatMultiSURF captures bothmain
effects and interactions and MultiSURF* captures interactions only. We also compared
gene ranks from MultiSURF and MultiSURF*, and found a high level of agreement in
both cohorts (Fig. 4c). This is suggestive of a greater contribution from interaction effects
over univariate effects given that the highest gene rank correlation was found between the
algorithm that can only detect interactions and the one that detects both univariate and
interaction effects.

Univariate analyses

Figure 5e details the top gene sets from the univariate analysis, where the top 15 GO
terms from Cohort 1 (C1) met the FDR significance threshold (adj. p < 0.05). Two of

Fig. 4 Density plots depicting the correlation between the gene ranks across the three analyses in Cohort 1.
Spearman’s rank-order correlation coefficient (ρ) is given for each comparison
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Fig. 5 For each analysis, the bar plot illustrates the percentage of genes in each category that appeared on
the leading edge. Numbers to the right of each bar are the number of genes on the leading edge for that
category

these GO terms, regulation of mesenchymal cell proliferation (adj.p = 0.018) and posi-
tive regulation of mesenchymal cell proliferation (adj. p = 0.02) may reflect the role of
the epithelial to mesenchymal transition[40] during OFT development. Two GO terms
related to cardiac valve development, heart valve development (adj. p = 0.047) and atri-
oventricular valve development (adj. p = 0.051) also were among the top univariate
results. Other pathways of interest outside of the FDR significance but within the top
40 GO terms include multiple GO terms related to neuronal development and migra-
tion and neural/vascular branching are suggestive of main effects, and also overlap with
key themes in the RBA results. These pathways include central nervous system projection
neuron axonogenesis and branching involved in blood vessel morphogenesis. To evaluate
the robustness of our initial results, we repeated the univariate GSEA using cases and
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pseudo-controls generated from the case-parent trios (Cohort 2, C2). While none of the
GO terms from the trio univariate GSEA met the FDR significance threshold, nominally
significant (p < 0.05) pathways suggest some overlap with Cohort 1 results, including
neuron recognition, cerebral cortex cell migration and axonal fasciculation and GO terms
related to.

RBA results

All of the top 15 GO terms from the RBA analyses met the FDR threshold (Fig. 5a-d,
Supplementary Table 1). Multiple GO terms overlapped between the RBA analyses; for
example, among the Cohort 1 results, 4 terms exactly overlapped with theMultiSURF (M)
and MultiSURF* (M*) analyses: Negative chemotaxis (adj. p = 0.005, M-C1, 0.001 (M*-
C1)), neuron recognition (adj. p = 0.009 (M-C1), 0.008 (M*-C1)), regulation of NDMA
receptor activity (adj. p = 0.009 (M-C1)), 0.001 (M*-C1)), uronic acid metabolic process
(adj. p = 0.009, M-C1), 0.004 (M*-C1)) (Fig. 5). As discussed further below, themes that
appear in both M and M* results most likely represent interactions that may play a role
in contributing to CTDs. Further, replication of themes across datasets offers supporting
evidence that the significant GO terms reflect valid findings. Three GO terms replicated
between the MultiSURF case-control and trio analyses: excitatory synapse, cell-cell sig-
naling involved in cardiac conduction, and negative chemotaxis. One GO category and
multiple GO themes replicated in the twoM* analyses, including negative chemotaxis and
calcium/cation channel complex and activity. Chemotaxis pathways have been previously
captured in copy-number variant studies of CHD, [41, 42] notably playing a role in the
development of the secondary heart field (SHF) [43].
GO terms related to synapse and neuron development appeared among the top 15

GO terms across all of the RBA GSEA, including intrinsic component of synaptic mem-
brane (adj. p = 0.01 (M-C1)), excitatory synapse (adj. p = 0.006 (M-C1), 0.014 (M-C2)),
main axon (adj. p = 0.028 (M*-C2), 0.004 (M-C1)), and neuron recognition (adj. p = 0.009
(M-C1), 0.008 (M*-C1)). This may reflect a number of shared factors that control the pat-
terning of both the nervous and vascular systems, namely the semaphorin, netrin, and slit
families and their receptors [44, 45]. These genes mediate axonal guidance [44] and the
migration of neural crest cells via chemoattractive or repellent activity [46] [45]. Addition-
ally, mouse models of plexin mutants (a semaphorin receptor) demonstrate OFT defects
[47], as do avian SEMA3C mutants [48]. Many of these genes are also represented in the
negative chemotaxis category, which was highly significant across all four RBA GSEAs.
Other significant gene ontology themes common between the four RBA analyses

include cell-cell adhesion and cell signaling. Alpha actinin binding (adj. p = 0.005, M-C1)
is implicated in cardiomyopathy,[49] and related genes have been also been reported in
CHD [50]. Genes involved in Rho protein signaling, captured in both RBA analyses in
Cohort 2, have been shown to impact cardiac looping and chamber maturation in mam-
malian systems[51], in addition to cell adhesion between cardiomyocytes and cardiac
neural crest cell migration during embryogenesis [52, 53]. Other genes from cell adhe-
sion pathways influence early cardiac development, including cadherins, mediated by the
Wnt/β-catenin signaling during embryonic gastrulation [54], integrins, [55] and nexins
[42, 56]. GO terms related to the synthesis of heparan sulfate were significant in multi-
ple analyses: heparan sulfate proteoglycan metabolic process, (adj. p = 0.009, M-C1), and
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uronic acid metabolic process (adj. p = 0.009 (M-C1), 0.001 (M*-C1), 0.021 (M*-C2)). Hep-
aran sulfate plays a role in cell polarity andmigration, [57] and studies in mice have shown
that heparan sulfate biosynthesis can affect OFT development via downregulation of
EXT1 influencing the OFT progenitors (SHF and CNCCs) and disrupted Wnt/β-catenin
and FGF signaling [58–60]. Alongside FGF8, Notch signaling is known for its role in the
SHF [61] and as a regulator of neurogenesis, [62] a similar theme among the top pathways
and genes discovered in this analysis [44]. NOTCH1, NOTCH2, FGF8, TGFB2 and TBX1
are represented among the FDR significant GO terms in the case-control data including
outflow tract septum morphogenesis (adj. p = 0.019 (M-C1), 0.044 (M*-C1)), pulmonary
valve development (adj. p = 0.032, M-C1), positive regulation of heart growth (adj. p =
0.042 (M*-C2) aortic valve development (adj. p = 0.033, M-C1), and notch binding (adj. p
= 0.038, M*-C1) [63].

Leading edge analysis

Using a leading edge analysis, we were able to better understand which genes from these
top GO terms may be most relevant in cardiac development, and which genes from these
most significant GO terms replicate across analyses and in both datasets. The two uni-
variate analyses shared one leading edge gene in common from the top 10 GO terms,
SHH, a gene known for its role in guiding atrial septation in the SHF. [64, 65]. Other stud-
ies on CHD have also captured the hedgehog pathway [66] and demonstrated its necessity
in cardiac neural crest cells during OFT development [67].
Leading edge genes from the top 10 MultiSURF and MultiSURF* gene sets for both

Cohort 1 and Cohort 2 are shown in Fig. 6. The figure is restricted to leading edge
genes replicated across all four analyses. (A full list of leading edge genes from the
top 10 gene sets from the RBA analyses can be found in Supplementary Table 2).
Twenty-six genes (Fig. 6, Supplementary Table 3) replicated across all four RBA anal-
yses, many of which have been implicated in cardiac development and CHD. They
include SEMA3C, SEMA3E, SEMA6A; semaphorin receptorsNRP2 and PLXN4A; SLIT2,
SLIT3, ROBO1 and ROBO2 from the Slit-Robo pathway, and Integrin-αV. Overall, the
RBA analyses showed higher leading edge signals (Fig. 5. Across the top 15 terms,
there were an average of 55% of the genes on the leading edge in the RBA analyses
and 11% in the univariate analyses. This likely reflects the overall lack of significant
SNPs (and thus genes) from the univariate association analysis compared to the RBA
analyses.

Discussion and conclusions
We have described a novel, interaction-sensitive approach to GSEA using Relief-based
algorithms (RBAs). RBAs offer a computationally efficient approach to ranking features
involved with underlying epistatic interactions. We evaluated our proposed methodol-
ogy utilizing simulated data and genome-wide SNP data from patients with CTDs, a
genetically heterogeneous group of congenital heart defects. In both the simulated and
real-world data, we demonstrated the utility of this new methodological approach in
capturing significantly enriched and biologically relevant GO terms and genes in con-
trast with traditional univariate GSEA. Further, we generated cases and pseudo-controls
from trios for a replication dataset and saw similar themes of cell signaling, cell adhe-
sion, and axon/neuron development and extension replicated across analyses. These GO
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Fig. 6 Heatmap of leading edge genes captured in all four of the Relief-based methods applied to the
case-control and trio data. Hierarchical clustering was applied to both the rows and columns

terms highlight the common factors that guide neural and vascular patterning. Leading
edge analyses further confirmed the enrichment of genes related to the SHF and CNCC
migration in OFT development. The role of these cells in causing OFT developmental
defects has been studied in mouse and avian models, but less extensively in humans.
Non-syndromic cases of CTD present an opportunity to further investigate the genetic
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drivers of impaired development and migration of these progenitors [68]. Our approach
to GSEA included a consideration of interaction at the SNP level, accounting for genetic
interaction within or between genes. We speculate that the significant terms related to
CNCC migration and progenitor behavior in the SHF captured by the Relief-based anal-
yses reflect interactions between key signaling genes, such as those documented between
interactions between NOTCH and VEGFR, [62] and TBX1 and FGF8 [69] that play a role
in the development of CTDs.
The limitations of this approach are consistent with those from traditional univariate

analysis basedGSEA. First, we utilized LD pruning to produce a computationally tractable
number of SNPs, but othermethods such as using exon/coding regions could also be used.
However, using exon/coding regions also has limitations, as it could leave out key inter-
genic regulatory regions. Secondly, SNP-based GSEA has the potential to be affected by
gene size bias, whereby larger genes with more SNPs are more likely to have significant
SNPs by chance alone. Additionally, our interaction-sensitive RBA approach to ranking
SNPs does not specify which SNPs are involved in an interaction. Instead this needs to be
inferred by examining differences in findings between MultiSURF* (which only detects
interaction effects) and findings from univariate or MultiSURF based analyses. Determi-
nation of which pairs or sets of SNPs are interacting would require additional downstream
analysis with statistical or machine learning modeling. There are known limitations in the
ability of RBAs to detect pure interactions (i.e. no information can be gained by looking
at informative features on their own) in very large feature spaces (e.g. over 100K features)
[20]. However RBA wrapper algorithms such as TuRF [70] have been developed to help
address this issue. Future efforts will examine the use of these RBA wrapper methods
to determine the scalabilty of this interaction-sensitive GSEA approach in whole exome
sequencing and whole genome sequencing data where feature spaces can greatly exceed
100K features.
These results suggest that interaction-sensitive GSEA offers the potential for generat-

ing new hypotheses and future research directions. Specifically, this approach can be used
to prioritize genes or pathways for rare variant analyses or functional validation experi-
ments. Future work will aim to replicate these findings in other independent CHD cohorts
and apply this approach to other complex diseases.
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