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Abstract

Background: Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene
transition as a result of climate-induced habitat changes. However, several ungulate species managed to
successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far,
the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here,
we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced
nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North
America.

Results: We found that moose demographic history was greatly influenced by glacial cycles, with demographic
responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support
that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the
Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to
moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent
inbreeding resulting from human-induced population declines.

Conclusions: Taken together, our results highlight the dynamic recent evolutionary history of the moose and
provide an important resource for further genomic studies.
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Background

Glacial and interglacial cycles had a major impact on the
evolution of arctic and boreal species [1]. While many
large mammals from northern latitudes went extinct
toward the end of the Quaternary, several ungulates sur-
vived and subsequently recolonized the Holarctic [2].
For these species, rather than leading to extinction,
glacial cycles induced range shifts and geographical iso-
lation in refugia which resulted in inter-specific diversifi-
cation or allopatric speciation [3].

Ungulates inhabiting high-latitude habitats including
tundra and boreal forests are ideal models to study
biogeographical processes such as vicariance and recol-
onisation associated with these glacial cycles. These hab-
itats experienced important geographical shifts during
glacial cycles [4, 5] and the high mobility of ungulates
allowed them to quickly colonise or recolonise ungla-
ciated areas (e.g. [6—8]). During the last glaciation, many
Eurasian and North American ungulate species persisted
south of the ice sheet or in southern refugia from where
they recolonised areas following northward glacial
retreat [6-9].

The effects of past climate changes induced contrast-
ing responses among boreal and temperate ungulate
species. For example, at the time of the Last Glacial
Maximum (LGM), the range of the cold-adapted rein-
deer (Rangifer tarandus) consisted of both a continuous
and large population, extending from Beringia and far
into Eurasia that expanded during the Weichselian/Wis-
consin glaciation some 115,000 years (115ka) before
present (BP), and of smaller refugial populations south
of the ice sheets in Western Europe and in North Amer-
ica [6, 10]. Conversely, the population history of species
from temperate climates, such as red deer (Cervus ela-
phus), fits a classical expansion-contraction model [1,
11], with contraction in isolated southern glacial refugia
during cold periods followed by northward expansions
during interglacials and in the Holocene [12].

Species inhabiting the taiga, such as moose (Alces
alces), present adaptations typical of both cold-adapted
and temperate species. The taiga is a boreal biome situ-
ated between the tundra and temperate habitats charac-
terised by deciduous forests. Interestingly, variation in
antler morphology of moose suggests phenotypic adapta-
tion to open habitats, such as tundra, and to boreal for-
ests [13]. Therefore, moose may have displayed an
intermediate demographic response to past climatic
changes between that of reindeer and of red deer, per-
haps characterised by less severe demographic
fluctuations.

Modern moose (Alces alces) first appear in the fossil
record some 150-100ka BP [14—16] and there is evi-
dence that moose populations were negatively impacted
by climatic changes at the end of the Pleistocene [17].
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The glacial refugia moose population in Eurasia seems to
have comprised two distinct genetic clades that evolved
before the LGM and diversified afterwards [18]. Radiocar-
bon data further suggest that moose were absent from
large parts of northern Europe during the LGM [19].
However, during that period, the distribution of moose ex-
tended as far south as the Italian Peninsula, the Balkans,
and the Carpathians [17, 18, 20]. During the Holocene,
Central and Eastern Europe were recolonised by moose
from a glacial refugium in Eastern Europe and Scandinavia
was recolonised from the south via a southern land bridge
[20-22].

A northward shift of Eurasian boreal forests at the end
of the LGM not only facilitated the recolonisation of
higher latitudes but also allowed moose to colonize North
America some 15-10ka BP [19, 23-25], prior to the
flooding of the Beringian land bridge some 14—11ka BP
[26]. Consistent with this hypothesis, there is no evidence
of moose south of the Wisconsin glaciation ice sheets
earlier than 15ka BP in the fossil record [27]. However,
the divergence between Yukon and British Columbia
moose was estimated to 25-20 ka BP, and among other
lineages to 17-13ka BP, suggesting that this colonisation
may actually predate the end of the last glaciation [27].

While both European and North American moose
populations display evidence of founder effects and bot-
tlenecks associated with past climate changes, there is
also evidence for recent anthropogenic impact on their
genetic diversity [21, 28]. In Europe, the recent popula-
tion history of the species was marked by a range-wide
bottleneck dating back some 1800-1200 years BP and a
more recent decline in moose numbers was also docu-
mented in the 18th to early 20th century [17]. Popula-
tion declines during the Holocene contributed to
shaping the current pattern of genetic diversity, where
the Scandinavian population shows the lowest genetic
diversity and highest inbreeding [17, 20]. Similarly, the
species experienced a recent bottleneck in North Amer-
ica associated with a human-induced decline in the
1800s [27], which could potentially have exposed them
to the negative effects of inbreeding.

Here, we generate the first de-novo reference genome
for European moose and analyse it together with five
previously published nuclear moose genomes to investi-
gate patterns of genome-wide diversity and inbreeding
and to test for evidence of founder effects, as well as Late
Pleistocene and recent human-driven bottlenecks. We
additionally generate five ancient moose mitogenomes
and analyse them together with 16 previously published
modern mitogenomes to study the phylogenetic relation-
ships and divergence among Eurasian and North
American moose lineages. Because of the differences in
demographic history between European and North
American moose as well as taxonomic uncertainties
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among lineages [28], this study fills an important gap in
our understanding of moose evolution and population
history.

Results

Genome assembly, genomic data and mitogenome
reconstructions

The highest-quality and final de-novo assembly was gen-
erated with ALLPATHS LG with a size of 2.48 Gb. It
comprised 8373 scaffolds with a N50 of 1.7 Mb and had
an average scaffold length of 296,974 bp. From 4104
mammalian single-copy orthologs, BUSCO showed the
assembly to contain 111 (2.8%) missing, 121 (2.9%) frag-
mented, and 42 (1.0%) duplicated complete genes. In
contrast, the assemblies generated with ABySS and
SOAPdenovo had a scaffold N50 of 331.8 Kb and 316.3
Kb, respectively. Furthermore, the BUSCO analysis iden-
tified 164 (4%) and 317 (7.8%) missing, 221 (5.4%) and
256 (6.2%) fragmented, as well as 24 (0.6%) and 17
(0.4%) duplicated complete genes for the assemblies gen-
erated with ABySS and SOAPdenovo, respectively.

We identified 191 X chromosome-linked scaffolds
representing 103 Mb (i.e. ~4.1% of the total assembly
and ~ 67% of the size of the human X chromosome; Fig.
S1). The average genome depth for the five nuclear ge-
nomes ranged from 12 to 20 (average = 16.6; Table S1)
with the Swedish moose showing the highest depth (20-
fold coverage). After filtering for missing and low-quality
data, we obtained 3,204,006 high-quality SNPs segregat-
ing from the reference.

The final mitochondrial alignment was 16,693 bp long
for a total of 21 mitogenomes. The newly sequenced an-
cient mitogenomes (n =5) had a coverage ranging from
16.4 to 454.9 (Table S1).

Population structure, divergence estimates and
demographic history
To examine the population structure of moose, we per-
formed a Principal Component Analysis (PCA) for the
five nuclear genomes and built a phylogeny for the 21
mitogenomes. The PCA based on the autosomal data in-
dicated a clear distinction between Swedish and North
American moose (Fig. 1). Also, the Eastern (A. a. ameri-
cana) and Alaskan moose (A. a. gigas) showed slight
genetic distinction from the other North American sub-
species. Consistent with the PCA, the mitochondrial
phylogeny showed a main European clade which in-
cluded three previously described European sub-clades
and a newly described clade composed of ancient speci-
mens, as well as an Asian/North American clade, divided
into two sub-clades (Fig. 2).

The mtDNA phylogenetic tree supported a divergence
between the European and Asian/North American
lineage dating back to 71ka BP (95% Highest Posterior
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Fig. 1 Principal Component Analysis (PCA) for five complete moose
(Alces alces) genomes. The dataset comprised 3,204,006
high-quality SNPs

Density (HPD): 119-42 ka BP; Fig. 2b). The divergence
between the Asian and North American lineages was es-
timated at 35ka BP (95% HPD: 60-20ka BP), and the
divergence between the four European sub-clades at 25
ka BP (95% HPD: 43-16 ka BP; Fig. 2b). The estimated
posterior substitution rate for the mitogenomes was
6.7 x 10" ® substitutions/site/year (95% HPD: 3.53—
9.84 x 107 %).

We inferred changes in effective population size (N,)
of moose using the Pairwise Sequentially Markovian
Coalescent (PSMC). Our results supported an increase
in N, for all moose populations during the Eemian inter-
glacial, ca. 130-115ka BP, followed by a decline during
the last glacial period ca. 70 ka BP, and a small recovery
at the end of the Pleistocene to a of N, ~ 2000-8000
(Fig. 3, S2). While the PSMC curves indicated a shared
demographic history for all moose until ca. 300 ka BP,
the curve for the Swedish moose deviated from the
North American ones at that time (Fig. 3).

The Bayesian Skyline Plot (BSP) based on 14 European
mitogenomes indicated a constant female effective popu-
lation size (N.g) over the past 30 ka BP with a median of
Ne~ 71,400 assuming a generation time of 7 years (Fig.
S3).

Heterozygosity and inbreeding

To compare genome-wide diversity in the five moose
nuclear genomes, we estimated heterozygosity and in-
breeding coefficients based on the identification of runs
of homozygosity (Fron). The average genome-wide het-
erozygosity for our moose samples was 0.67 heterozy-
gous sites per 1000bp. The Swedish moose showed
higher diversity (0.89) relative to the North American
subspecies (average 0.62; Table 1).

We found low to moderate inbreeding for both
Swedish and North American moose, with Froy ranging
from 8 to 23% of their genome in ROH (0.5 Mb; Fig.
S4; Table 1). When considering only long ROH (=2 Mb),
mainly arising from recent mating among close relatives,
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we found low inbreeding coefficients ranging between
0.6 and 3.7%, with A. a. shirasi showing the highest
values (Fig. S4; Table 1). The maximum ROH length
was 5 Mb (A. a. shirasi 2; Fig. S4).

Discussion

A reference genome for moose

Moose are the largest and heaviest extant cervid species.
They play an important ecological role in the boreal and
temperate circumpolar forests of Eurasia and North
America, with significant impacts on boreal forest regen-
eration and structure [33], soil fertility [34], and predator
abundance (e.g. wolf, Canis lupus [35, 36]). Moose are
also socioculturally and economically important in many
regions [37]. In Fennoscandia for example, it is one of

the most intensely managed species, with up to a third
of its total population killed annually [21]. Here, we gen-
erated a de-novo genome for the species, with a quality
on par to the de-novo genomes of most ruminant ge-
nomes currently available (8373 scaffolds and N50 = 1.7
Mb [31]). This reference genome will be an important
resource for future studies of the species’ evolutionary
history as well as its suite of adaptations to the boreal
environment, but it can also be a relevant tool to fur-
ther refine genetic methods for monitoring and man-
agement of moose to mitigate negative impacts on
boreal forests [33], maintain healthy hunting stocks
[38], and for safeguarding intraspecific diversity in
line with intentions of the Convention on Biological
Diversity (www.cbd.int [39]).
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Moose origins and evolutionary history

Our results indicate a relatively recent divergence be-
tween European and Asian/North American moose line-
ages, dated to between 119 and 42ka BP, based on
modern and ancient complete mitogenomes. These dates
are in agreement with an earlier divergence estimate of
ca. 150-50 ka BP, based on short mtDNA data from 194
ancient radiocarbon dated samples [19], but at odds with
the estimate of ca. 443 ka BP from Swislocka et al. [29]
based on complete mitogenomes. This inconsistency
could be due to the fact that both our dataset and the
one in Meiri et al. [19] included ancient radiocarbon
dated specimens while in Swistocka et al. [29] inferences
are exclusively based on fossil-based calibration of the
mutation rate based on modern data alone. Regardless,
some of these divergence times have large confidence in-
tervals, sometimes exceeding the fossil appearance of the
species. The oldest A. alces remains are dated to 150 ka
BP [15] and the latest fossils of earlier forms of Alces
(i.e. Cervalces latifrons) date to ca. 186ka BP [16, 40].
Therefore, further analysis of ancient nuclear genomes
from A. alces and of its precursors would be needed to
examine the precise timing of appearance of the
European and Asian/North American moose lineages
and of the origin of the species.

Glacial refugia and modern moose lineages

Previous genetic analyses supported the existence of
moose glacial refugia during the LGM in the Alps, the
Caucasus, Carpathians, Balkans and northern Italy as
well as in western Siberia, the Ural Mountains and
Russian plains (see [18] for a review and graphical repre-
sentation). However, while the taiga biome was much re-
duced during the LGM in Eurasia, pollen and
macrofossil data indicate that the taiga was characterised
by a wide yet discontinuous geographical range in the
form of isolated patches further east, in southern
Ukraine and the Urals, Western Siberia, northern
Mongolia and in eastern Siberia over most of the last
glacial period [41, 42], potentially indicating the presence
of several fragmented refugial moose populations
throughout Eurasia. A higher genetic diversity in East
Asia, estimated from ancient mtDNA, is also consistent
with a LGM refugium in Siberia that could have ex-
tended to northern China [19]. Our dataset, combining
ancient and modern mitogenomes, allowed us to identify
one main European moose lineage composed of up to
four clades diverging just before the LGM, ca. 25 ka BP,
including three clades described in Swistocka et al. [29]
and one new, previously unknown clade. Sample MH315
from Tatarstan (1227 years BP) is part of the Eastern

Table 1 Genome-wide heterozygosity and inbreeding estimates (Frop) for five moose genomes

ID Heterozygosity* 0 (95% Cl) Fron > 0.5 Mb Fron > 2 Mb
A. alces Americana (VT, USA) 0.579 (0.559-0.582) 0.171 0.008
A. alces gigas (AK, USA) 0.716 (0.717-0.719) 0.082 0.006
A. alces shirasi 1 (WY, USA) 0.598 (0.599-0.600) 0.195 0.025
A. alces shirasi 2 (ID, USA) 0.586 (0.587-0.589) 0.231 0.037
A. alces (Sweden) 0.894 (0.896-0.897) 0.141 0.019

*Number of heterozygous sites per 1000 bp
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clade together with two samples from Poland. The Cen-
tral clade is represented by three samples from eastern
Poland. The modern Swedish moose belongs to the
Western European clade. Even though limited to one
sample, this supports the hypothesis that contemporary
Scandinavian moose originate from a refugial population
in western/central Europe via a southern colonization
that happened after the last glaciation [43]. In fact, our
oldest ancient moose sample from Germany, Meng37
(10ka BP), is also part of this Western clade, indicating
that this clade was present in central Europe at the onset
of the Holocene. Finally, we describe a new European
clade composed solely of three ancient moose samples
from Germany dated to 1557-810years BP (Meng43,
Meng44, Qh37). While we caution about the accuracy of
these dates, based on a limited number of radiocarbon
dated specimens, it is intriguing that this clade is absent
among modern moose, thereby suggesting that it disap-
peared during the Holocene. Such entire clade dis-
appearance has previously been shown in brown bears
(Ursus arctos [44]). Conversely, this clade indicates that
there could have been more glacial refugia for moose in
central Europe than previously identified.

Based on mtDNA data, we estimate a divergence be-
tween the Asian and North American moose lineages
dating back to ca. 35ka BP. This estimate predates the
colonisation of the North American continent by moose,
inferred from short mtDNA sequences and estimated at
ca. 15 ka BP [28, 45] but it coincides with the divergence
of human lineages in Asia prior to the colonisation of
North America [46-48]. This suggests the existence of
genetic structure in the Asian lineage prior to the North
American colonisation via Beringia, where the first Alces
fossils are dated to 15ka BP [23]. Similar to Meiri et al.
[19], our mitochondrial phylogenetic tree suggests that
all modern North American moose derive from a single
migration event. However, we find some genetic differ-
entiation among North American subspecies in the
PCA, with Eastern moose (A. a. americana) and Alaskan
(A. a. gigas) moose being distinct from the other North
American samples which form a tight cluster. We
hypothesize that this differentiation could be a conse-
quence of the founder effects during the colonisation of
North America. Sequencing of additional ancient and
modern genomes from eastern Siberia, Beringia and
North America will be essential to solve these questions.

Past demography

Our results indicate that the past 150 ka of moose his-
tory was significantly influenced by glacial cycles. Over-
all, changes in N, inferred with the PSMC, indicate that
moose primarily responded to glacial cycles in the same
way as temperate species such as red deer (C. elaphus),
with expansions during interglacials and contractions in
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cryptic and isolated refugia during glacials [12]. For ex-
ample, we found evidence for a demographic expansion
possibly coinciding with the onset of the Eemian inter-
glacial, which was followed by a decline ca. 70ka BP.
Interestingly, the lack of moose fossil remains from Eur-
ope during the LGM is consistent with either a demo-
graphic decline [19] or a shift in geographical
distribution. Thus, it is possible that moose demographic
history largely reflects historical shifts in boreal forests
and the taiga during cold periods, including the last gla-
ciation [19]. Following the decline, moose populations
experienced a slight demographic recovery, some 15-10
ka BP at the Pleistocene/Holocene transition. Import-
antly, Meiri et al.’s [19] observation of a temporal gap in
radiocarbon dates across Asia, but only two base pairs
difference between two pre- and post-LGM moose from
northern Siberia supports the hypothesis of habitat
tracking in response to ice sheet movements. The moose
population may thus have tracked its habitat as it shifted
south during the LGM and then expanded north after
the ice receded, instead of populations in the north go-
ing extinct and subsequently being replaced as climate
conditions improved after the LGM. However, additional
genomic data from diverse Eurasian moose populations
would be required to further test this hypothesis.

There were striking differences between the demo-
graphic trajectories of Swedish and North American
moose. While the Swedish moose experienced a gradual
decline from the Eemian up to the Pleistocene/Holocene
transition, the North American moose genomes showed
signatures of increase in N, during the Eemian and de-
clined later, ca. 50ka BP. The different trajectories be-
tween the two moose could be artefactual. However,
since moose had not colonised North America at the
time [28, 49], this difference could be an indication of
different population histories between the European and
Asian populations. For example, European moose seem
to have experienced a stronger range contraction than
the Asian moose during the last glaciation [19]. We also
found evidence for population expansions in both
European and North American moose at the end of the
LGM, ca. 15 ka BP, which likely reflects the northward
advances as the species tracked its habitat, similar to
previous advances during warming periods, some 59 ka
BP and 14 ka BP, as shown by Hundertmark et al. [28].

We caution that PSMC is known to lack power in esti-
mating N, in very recent times (ie. <10ka BP) due to
fewer coalescent events [50]. We bypassed this limitation
by reconstructing female demographic changes using
Bayesian inference based on the mitogenome data in
European moose. We found a constant N over the past
30 ka BP, which is consistent with previous analyses of
modern European mitochondrial data [18, 20]. There-
fore, our results support a scenario where European
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moose experienced a spatial rather than a demographic
expansion, with only limited founder effects, as they
shifted their range northwards at the end of the LGM.
Finally, while the confidence intervals for the N
estimates were wide, we note a disconnect between a
mitochondrial Nt of ~ 71,000 and a nuclear N, of 2000-
8000. This difference could be due to variance in male
reproductive success in a highly polygynous species such
as moose, with a mating system characterized by intra-
sexual competition, and where successful males maintain
harems [51, 52].

Moose genomic diversity

We found that the majority of ROH were short (< 2 Mb)
in all moose genomes, which indicates that most of the
observed inbreeding is due to background relatedness
[53, 54], potentially resulting from glacial or post-glacial
bottleneck events [17, 20, 28, 43]. For example, the three
American samples showed the highest background in-
breeding and lowest diversity, consistent with a single or
several founder effects when colonizing North America
at the end of the last glaciation [27]. Interestingly, the
Alaskan moose, A. a. gigas, had the lowest inbreeding
and highest diversity of all North American moose
samples. This could indicate that moose colonised
Alaska from a large refugial population, possibly in
Beringia and that they subsequently experienced serial
founder effects in their colonisation of the rest of
North America. In fact, both the Swedish and Alaskan
moose displayed the highest levels of heterozygosity
compared to the other moose specimens, suggesting
the existence of large refugial populations in Europe
and Beringia during the LGM [17, 20, 55].

We only detected low levels of inbreeding arising from
long ROH (22 Mb), commonly caused by recent mating
with relatives during bottlenecks [53, 54]. This result is
at odds with previous studies which identified limited
mitochondrial and nuclear diversity in moose popula-
tions from Europe [21, 28] and North America [27, 56].
Moreover, evidence for a severe reduction in effective
population size to less than 3% of their former size
(down to N, ~400), lasting for hundreds of generations
and possibly dating back as early as the fifteenth century,
has been previously reported in Swedish moose popula-
tions [21]. Similarly, substantial reductions in N, in
moose populations from Lapland and northern Finland
have been associated with 18th century bottlenecks [57].
Interestingly, Norwegian moose populations do not
seem to have experienced such population reductions
[58, 59]. It is thus possible that recent admixture with
some of these populations may have prevented an in-
crease in inbreeding in the Swedish population. Recent
moose sightings in southeastern Germany and the ex-
pansion of populations from Poland further suggest that

Page 7 of 13

the species has potential for long range dispersal [60].
Altogether, our results suggest that the recent demo-
graphic history of European moose may be more com-
plicated than that of a single bottleneck scenario.

While inbreeding was generally low, it is however worth
noting that the two Rocky Mountain moose (A. a. shirasi)
specimens had the largest inbreeding coefficients and the
longest ROH (~4-5Mb). This is consistent with these
southernmost North American populations being founded
from relatively few individuals after the declines of the late
1800s and with low gene flow from northern populations
until the middle of the 20th century [27].

Conclusion

In this study, we present a reference genome for the
European moose, which will serve as an important re-
source for monitoring as well as for future studies on
the evolutionary history and population genomics of the
species. Through analysis of several moose genomes, we
provide a glimpse into the demography and population
history of the species in Europe and North America.
Our results indicate that current moose lineages trace
back their origin to several refugial populations during
the LGM. Throughout their history, moose have experi-
enced similar population demographic fluctuations as
temperate ungulates (e.g. red deer, C. elaphus [12]).
However, their overall spatial response to the Pleisto-
cene/Holocene transition are more consistent with a
range shift, reflecting historical shifts in the taiga.

Methods
Sampling and data collection
We used stored muscle tissue from a young female
moose from Sweden (Province of Gévleborg, Central
Sweden; approximate RT90 coordinates 1570800/
6855900) to generate a de-novo assembly (see below;
Table S1). We also obtained bone samples from five an-
cient moose specimens from Russia (# = 1) and Germany
(n=4; Table S1). Radiocarbon dating of one German
sample (Meng37) was performed at the Curt-Engelhorn-
Centre for Archaeometry gGmbH (CEZA) laboratory at
the Reiss-Engelhorn-Museen in Mannheim (sample
identifiers starting with “MAMS”) using a MICADAS
AMS system [61]. Conventional *C ages were calibrated
to calendar ages with the IntCall3 data set [62] and the
SwissCal software (L. Wacker, ETH Zurich). Radiocar-
bon dating for the Russian sample (MH315) was per-
formed at the Oxford Radiocarbon Accelerator Unit
(sample identifiers starting with “OxA”). The AMS-date
was turned into calendar years using the IntCall3 cali-
bration curve in Oxcal v4.2 [63].

We then supplemented our newly generated data with
published nuclear and mitochondrial genome data for
four North American moose (ENA project number:
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PRJNA325061; Table S1) and 11 mitogenomes for
Eurasian and North American moose (Table S1). We
therefore used two different datasets: a genomic dataset
comprising the nuclear genomes from five modern moose
samples (one newly sequenced), and a mitogenomic data-
set composed of 21 samples in total - 16 modern and five
ancient ones (six newly sequenced; Fig. 2a, Table S1).

DNA extraction and sequencing

In order to generate a de-novo assembly, we extracted
total DNA from muscle tissue from the female moose
using a Thermo Scientific KingFisher Duo magnetic par-
ticle processor (ThermoFisher Scientific) with the King-
Fisher Cell and Tissue DNA Kit. We then prepared two
paired-end libraries with 180 bp inserts using a TruSeq
DNA kit (Illumina, CA, USA) according to the manufac-
turer’s specification, but automated on an Agilent NGS
workstation (Agilent, CA, USA). We also constructed
two mate-pair libraries according to the Nextera gel-plus
protocol (Illumina, CA, USA) using a Blue Pippin (Sage
Science Inc., MA, USA) for size selecting target frag-
ments: one 2.5—4.5 kb mate-pair library (MPS) and one
5-7 kb mate-pair library (MPL) using the 0.75% 1-10 kb
Gel Cassette with Marker S1. All libraries were indexed
to enable de-multiplexing after sequencing. These librar-
ies were sequenced on an Illumina HiSeqX v.2.5 instru-
ment (HiSeq Control Software 3.3.76/RTA 2.7.6) with a
2x150bp setup, where the 180bp library was se-
quenced on 1.5 lanes. The mate-pair libraries were mul-
tiplexed in equimolar ratios and sequenced on 0.5 lanes
(in total) at SciLifeLab (Stockholm, Sweden). BCL to
FASTQ conversion was performed using BCL2FASTQ
v1.8.3 from the CASAVA software suite.

DNA from the ancient sample from Russia (MH315;
Table S1) was extracted using the silica-column protocol
described in Yang et al. [64] and modified in Gamba
et al. [65]. A USER treated genomic library [66] was then
built following Meyer & Kircher [67] and subjected to
mitogenome capture as described in Maricic et al. [68],
using deer-specific baits and as described in Heino et al.
[69]. The resulting library was purified, quantified on a
2100 Bioanalyzer (Agilent) and sequenced on a HiSeq
lane with paired-end 2 x 126 bp setup.

DNA was extracted from the petrous bones of four
additional ancient samples from Germany (Meng37,
Meng43, Meng44, Qh37; Table S1) following Dabney
et al. [70]. Single stranded libraries were prepared ac-
cording to Gansauge et al. [71] and pre-treated with
0.5 ul of USER enzyme (New England Biolabs, Ipswich,
MA, USA) for 15 min at 37 °C to remove uracil residues
resulting from post-mortem damage (modified from
Meyer et al. [72]). The resulting libraries were then amp-
lified and indexed using two double-unique p5-p7 tailed
primers to generate dual-indexed library molecules. The
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number of PCR cycles was determined in advance from
qPCR results, as described in Gansauge & Meyer [73].
Amplified libraries were then pooled in equimolar
amounts according to their concentration and length
distribution determined using Qubit 2.0 and 2200
TapeStation (Agilent Technologies), respectively. Finally,
libraries were sequenced on an Illumina NovaSeq6000
S4 platform using 2 x 100 bp paired-end setup at SciLife-
Lab (Stockholm, Sweden).

De-novo reference genome assembly

The raw sequencing reads were processed using Trim-
momatic v0.32 [74] to remove low quality sequences
and adaptor read-through. Trimmed reads were assem-
bled using three different methods: ALLPATHS-LG
r.52488 [75] with the option “HAPLOIDIFY = True”,
ABySS v1.3.5 [76] and SOAPdenovo 2.04-r240 [77]. For
assembly evaluation we used QUAST v4.5.4 [78] and
BUSCO v3.0.2 [79] with the “mammalia_odb9” dataset.
The assembly showing the highest contiguity and best
BUSCO scores (Genbank project number PRINA668262;
Table S1) was used for mapping of resequenced data
and downstream analyses.

We used the genomic dataset to identify the X
chromosome-linked scaffolds of the moose reference
genome using their relative genomic coverage as in
Malde et al. [80]. Briefly, we estimated which scaffolds
larger than 10kb displayed ca. half of the coverage than
the genomic average in the three male moose samples
but ca. the average in the two female samples (Fig. S1).

Bioinformatic procedures

In order to generate complete nuclear moose genomes,
we mapped paired-end short read data for the newly
generated (ENA Project number: PRJNA40679; Table
S1) and the four downloaded moose samples (ENA Pro-
ject number: PRJNA325061; Table S1) to our de-novo
moose assembly. To avoid biases, we processed both the
newly generated and downloaded data using the same
bioinformatic pipeline. Briefly, forward and reverse reads
were trimmed to remove Illumina adapter sequences
using Trimmomatic v0.32 with default settings [74] and
then mapped to the reference genome using BWA mem
v0.7.13 [81]. We then used SAMtools v1.8 [82] for coord-
inate sorting, indexing, and removing duplicates from the
alignments. Next, we re-aligned reads around indels using
GATK IndelRealigner v3.4.0 [83]. For all downstream ana-
lyses, we only retained reads with mapping quality >30.
We estimated the depth of coverage for the five genomes
using Qualimap v2.2.1 [84].

Next, we used bcftools v1.8 [82, 85] to call variants for
each moose genome. We retained SNPs with a mini-
mum depth of coverage of 1/3 of the average coverage
and maximum depth of 10 times the average coverage of
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each individual genome. We also retained SNPs with base
quality >30 and excluded those within 5 bp of indels. For
all downstream analyses, we excluded all scaffolds (n =
191) identified as linked to X chromosomes. We also hard
masked all repeat regions across the genome using BED-
tools v2.27.1 [86]. Finally, we merged all five individuals
into one single vcf file keeping only those positions geno-
typed in all samples using PLINK v1.9 [87].

For the mitochondrial dataset, we mapped the raw se-
quencing data from the ancient moose specimens se-
quenced here (Table S1) to the mitogenome of an
Eurasian moose (Genbank accession  number:
MF784604.1). We used BWA aln v0.7.8 [81] with set-
tings adjusted for ancient DNA studies as described in
Pecnerovd et al. [88]. After removing PCR duplicates
with a python script which takes into account both the
start and end of the alignments (github.com/pontussk/
samremovedup), we generated consensus sequences
from the BAM files in ANGSD v0.921 [89] using the
majority rule (-doFasta 2) and a minimum depth
threshold of 3. To avoid biases, in the four ancient
moose samples subjected to partial USER treatment
(Meng37, Meng43, Meng44, Qh37), which leaves post-
mortem damage at the fragments termini, we trimmed
1 bp from both sides of each sequence before mapping.

The mitogenomes from the five modern moose for
which shotgun sequencing data was available (newly se-
quenced and downloaded) were generated as above, but
with the following modifications: mapping was per-
formed with BWA mem, PCR duplicates were excluded
using SAMtools, and the minimum depth threshold was
set to 100. The final mitochondrial alignment of modern
and ancient newly sequenced samples and downloaded
sequences (n = 21) was generated in MAFFT v7.407 [90].

Population structure and phylogenetic analyses
We first used the R package SNPRelate [91] to perform
a Principal Component Analysis (PCA) based on the
genetic covariance matrix estimated from the genotypes
using our filtered SNP genomic dataset.

Secondly, we used BEAUti/BEAST v1.8.4 [92] to build
a phylogeny for the 21 mitogenomes. In order to esti-
mate the molecular age of three undated samples
(Meng43, Meng44 and Qh37), we created a ‘taxa’ parti-
tion of these undated samples. We set the median value
of the dates for the two radiocarbon dated samples as
calibrated tip dates (Table S1) and used the ‘sampling
with individual priors’ for the undated samples partition
(Meng43, Meng44, Qh37). We determined the best fit-
ting evolutionary model for the mitogenome dataset
with jModelTest v2.1.9 [93] and selected a model of
HKY + G using the Bayesian Inference Criterion as pre-
viously used by DeCesare et al. [27]. We used a constant
size model with a strict molecular clock and set the

Page 9 of 13

clock rate to a normal distribution with a mean value at
9x 107 substitutions/site/year based on Zurano et al.
[94] and a standard deviation of 0.01. The ages of the
three ancient samples without radiocarbon dates were
determined using a uniform prior ranging from 0 to 100
ka BP. We then ran all models using BEAST v1.8.4 for
50 million generations with sampling every 1000 genera-
tions. To ensure that convergence had occurred, we vi-
sualized all output log files in Tracer v1.7.1 [95] and
then combined all trees in a single tree with LogCombi-
ner v1.8.4. We used TreeAnnotator v1.10.4 [96] to re-
move the first 10% of runs as burn-in from the tree files.
Finally, we visualised and built the phylogenies in Figtree
v1.4.4 (github.com/rambaut/figtree).

Demography and divergence estimates

To reconstruct past changes in effective population size
(N.) of moose, we used the Pairwise Sequentially
Markovian Coalescent (PSMC v0.6.5 [50]) model and
applied it to the five moose nuclear genomes. This
model identifies historical recombination events across a
diploid genome and infers the time to the most recent
common ancestor (TMRCA) between independent seg-
ments of the genome. Assuming that pairwise sequence
divergence is proportional to the time of the coalescent
event, regions of low heterozygosity correspond to
recent coalescent events while regions of high
heterozygosity correspond to more ancient coalescent
events. Because the rate of coalescence is inversely pro-
portional to N,, it can then be used to estimate temporal
changes in N..

After excluding all sites in the scaffolds (n = 191) iden-
tified as linked to the X chromosome, we generated con-
sensus sequences for all autosomes of the five modern
genomes using the SAMtools mpileup [82] command
and the vcf2fq command from vcfutils.pl. We then ex-
cluded sites with base quality and mapping quality below
30, and depth below 1/3 of the average coverage, which
was estimated for each genome independently. Since
PSMC’s model is highly sensitive to false heterozygous
sites, for this analysis we used a more strict threshold of
maximum depth excluding positions with more than two
times the average coverage estimated for each genome.
We set N (the number of iterations) = 25, t (Tmax) = 15
and p (atomic time interval) = 64 (4 + 25*2 + 4 + 6, for each
of which parameters are estimated with 28 free interval
parameters) for the inference of TMRCA between each
chromosome from each individual genome. We scaled
population parameters assuming a generation time of 7
years [32] and a substitution rate of 0.7 x 10”8 substitu-
tions/site/generation, inferred from a rate of 1 x 10~ sub-
stitutions/site/year from Chen et al. [31].

Given that PSMC results are less accurate at times
more recent than 10ka BP [50], we also estimated


http://github.com/pontussk/samremovedup
http://github.com/pontussk/samremovedup
http://github.com/rambaut/figtree

Dussex et al. BMC Genomics (2020) 21:854

fluctuations in female effective population size (Neg)
using the mitogenomes from 14 European moose using
BEAUtI/BEAST v1.8.4 [92]. We used the same parame-
ters as described above for the phylogenetic tree but
used a Bayesian Skyline Plot (BSP) model. We then
visualised all output log files with Tracer v1.7.1 [95] to
ensure that convergence had occurred and to generate
the BSP.

Heterozygosity and inbreeding

In order to estimate the individual genomic diversity we
used mlRho v2.7 [97]. mIRho allows to estimate the
population mutation rate (0), which approximates the
per-site expected heterozygosity under the infinite sites
model [97]. We excluded bases with quality below 30,
reads with mapping quality below 30 and positions with
root-mean-squared mapping quality below 30 from
modern bam files and excluded all scaffolds identified as
linked to X chromosomes. We also filtered out sites with
depth lower than 1/3 of and higher than 10 times the
average coverage. This allowed us to avoid biases associ-
ated with erroneous mapping to the reference genome
and with false heterozygous sites caused by variable
coverage across the genome which can result from
structural variation.

We then quantified individual inbreeding coefficients
by estimating the number and lengths of runs of homo-
zygosity (ROH). ROH are long genomic tracts without
heterozygous sites that can be used to inform about past
and recent inbreeding levels [53, 54]. We first converted
the filtered multi-individual vcf file comprising the five
nuclear genomes into a ped file and identified all ROH
in autosomal scaffolds. We then used PLINK v1.9 [87]
to identify ROH with the following settings: a sliding
window size of 1000 SNPs (homozyg-window-snp 1000);
a maximum of 3 heterozygous sites per window (homo-
zyg-window-het 3); a minimum of 5% of overlapping
windows that must be called homozygous to define any
given SNP as ‘in a homozygous segment’ (homozyg-win-
dow-threshold 0.05); a minimum of 10 SNP per window
(homozyg-snp 10); a minimum of 500kb coverage
(homozyg-kb 500); a minimum SNP density of one SNP
per 50 kb (homozyg-density 50); a maximum distance be-
tween two neighbouring SNPs of 1000 kb (homozyg-gap
1000); a maximum of 999 heterozygous sites within
ROH of 999 (homozyg-het 999). Finally, we calculated
individual inbreeding coefficients (Fron) as the overall
proportion of their genome contained in ROH by
summing the size of all ROH per individual divided
by the total genome size (i.e. autosomes only). We
considered two ROH size cut-offs at >0.5 Mb and >2
Mb, representing background relatedness from mat-
ings between distant relatives and recent inbreeding
events, respectively [53, 54].
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Additional file 1.

Additional file 2: Figure S1. Identification of scaffolds linked to
chromosome X using sequencing coverage and scaffold length. Green
dots correspond to scaffolds assigned as linked to chromosome X. The
red lines indicate the median coverage for all scaffolds. The blue lines
represent half the median coverage which corresponds to the coverage
of scaffolds linked to chromosome X. Figure S2. Past demography for
moose (Alces alces) using PSMC. Thin lines represent 100 bootstrap runs.
The x-axis corresponds to time before present in years on a log scale, as-
suming an estimated substitution rate of 0.7 x 10~ ® substitutions/site/
generation [30] and a generation time of 7 years [31]. The y-axis corre-
sponds to the effective population size N.. Figure S3. Past demography
for moose (Alces alces) using a Bayesian Skyline Plot (BSP). Demographic
reconstruction was inferred in BEAST using 14 European 16,693 bp mito-
genomes. Timing of events was estimated assuming a mean rate of 9 x
10~ ? substitutions/site/year based on Zurano et al. [93] and a standard
deviation of 0.01. The x axis is in calendar years before present and y
axis represents changes in effective population size (shown as the prod-
uct of Ner and generation time T). The black line corresponds to the me-
dian estimate and the blue lines show the 95% highest posterior density
intervals. Figure S4. Distribution of runs of homozygosity (ROH) in
moose (Alces alces). ROH =500 kb are shown.
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