
A supervised protein complex prediction 
method with network representation learning 
and gene ontology knowledge
Xiaoxu Wang1, Yijia Zhang1*, Peixuan Zhou1 and Xiaoxia Liu2* 

Abstract 

Background:  Protein complexes are essential for biologists to understand cell organi-
zation and function effectively. In recent years, predicting complexes from protein–pro-
tein interaction (PPI) networks through computational methods is one of the current 
research hotspots. Many methods for protein complex prediction have been proposed. 
However, how to use the information of known protein complexes is still a fundamen-
tal problem that needs to be solved urgently in predicting protein complexes.

Results:  To solve these problems, we propose a supervised learning method based on 
network representation learning and gene ontology knowledge, which can fully use 
the information of known protein complexes to predict new protein complexes. This 
method first constructs a weighted PPI network based on gene ontology knowledge 
and topology information, reducing the network’s noise problem. On this basis, the 
topological information of known protein complexes is extracted as features, and the 
supervised learning model SVCC is obtained according to the feature training. At the 
same time, the SVCC model is used to predict candidate protein complexes from the 
protein interaction network. Then, we use the network representation learning method 
to obtain the vector representation of the protein complex and train the random forest 
model. Finally, we use the random forest model to classify the candidate protein com-
plexes to obtain the final predicted protein complexes. We evaluate the performance 
of the proposed method on two publicly PPI data sets.

Conclusions:  Experimental results show that our method can effectively improve the 
performance of protein complex recognition compared with existing methods. In addi-
tion, we also analyze the biological significance of protein complexes predicted by our 
method and other methods. The results show that the protein complexes predicted by 
our method have high biological significance.

Keywords:  Protein complex prediction, Supervised learning, Network representation 
learning, Protein–protein interaction networks
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Introduction
As the material basis of life, protein plays a crucial role in cell life activities and par-
ticipates in almost all life activities. Proteins do not act alone but form complexes with 
other proteins. Therefore, predicting protein complexes is very important to compre-
hensively and deeply understand cell composition and life processes. Many meth-
ods exist to predict protein complexes, such as tandem affinity purification (TAP) and 
mass spectrometry. However, this experimental method costs a lot of human resources. 
Therefore, quickly and efficiently predicting protein complexes from the protein–protein 
interaction network has become a fundamental problem. With the rapid development of 
high-throughput technology, much protein–protein interaction (PPI) data [1] has been 
generated in recent years, which makes it possible to predict protein complexes from 
protein–protein networks by computational methods. PPI network constructed from 
PPI data can be regarded as an undirected graph, in which nodes represent proteins and 
edges illustrate interactions between proteins. Protein complexes usually correspond to 
dense sub-graphs in PPI networks.

Based on the idea of converting large-scale protein–protein interaction data into a net-
work structure, many methods have been proposed to predict protein complexes in the 
PPI network. Bader et al. proposed a protein complex prediction algorithm MCODE [2], 
which weights the nodes according to their neighborhood density. Moreover, the node 
with the most significant weight is selected as the seed node. Then, the seed nodes are 
expanded iteratively to form protein complexes. Liu et al. proposed a protein complex 
prediction algorithm CMC [3] to merge the largest sub-graph. The algorithm searches 
the largest sub-graph from the weighted network and calculates sub-graphs weighted 
density. Then combines the highly overlapped sub-graphs to form protein complexes. 
Similar algorithms such as LCMA [4] and CFinder [5] predict protein complexes by 
searching and merging sub-graphs. In addition, some methods, such as COACH [6] and 
Core [7], have been proposed to predict protein complexes based on the core attach-
ment junction structure. Nepuse et al. proposed a new method ClusterONE [8], to pre-
dict overlapping protein complexes. It designs a new calculation method to measure the 
cohesion of sub-graphs. It selects the node with a higher degree as the seed node. Then, a 
greedy algorithm expands the seed node to make the sub-graphs obtain higher cohesive-
ness until no seed node forms a protein complex. Similar methods include SE-DMTG 
[9] and HGCA [10], based on point expansion methods to predict protein complexes 
from protein interaction networks. Xu et  al. proposed the CPredictor2.0 [11] algo-
rithm, which first grouped proteins with similar functions, clustered each group using 
the Markov clustering algorithm, and merged overlapping protein complexes. Meng 
et  al. proposed the DPC-HCNE [12] algorithm, which first compresses the PPI net-
work into a smaller PPI network through heuristic hierarchical compression. Then apply 
the network representation learning algorithm DeepWalk [13] to construct a weighted 
PPI network. Finally, use the nuclear connection clustering method to predict protein 
complexes. Wang et al. proposed the EWCA [14] algorithm, which uses the structural 
similarity between nodes and their neighborhoods to determine the core. In addition, 
it presents a new method of predicting attachment proteins by adding them to the cor-
responding center to form protein complexes. Xu et al. proposed the GANE [15] algo-
rithm, which uses the clique mining method to generate candidate cores. Then select 
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seed cores from the candidate cores. If the degree of connection between the protein 
and the seed core exceeds the threshold, add the protein to the core to obtain a protein 
complex. The methods mentioned above are all unsupervised learning methods. They 
predict protein complexes based on the topological information of the protein interac-
tion network and cannot use the data of known protein complexes.

Recently, supervised learning methods have been successfully applied in protein com-
plex prediction, which can use the information of known protein complexes to predict 
new protein complexes. Yu et  al. proposed the SLPC [16] method. This method first 
obtains the characteristics of the protein complex from the weighted and unweighted 
network and trains the logistic regression model. Then finds the largest sub-graph from 
the PPI network as the core and uses the model to add auxiliary nodes to the center to 
obtain protein complexes. Zhu [17] et al. proposed a semi-supervised network embed-
ding model. It first selects the key neighborhood node as a vertex attribute and obtains 
the first-order approximation of the vertex. Then it designs a three-layer GCN to calcu-
late the second-order approximation of the vertex and optimizes the first-order approxi-
mation. Finally, the model is obtained by second-order approximation and used to 
identify protein complexes. Faridoon [18] et al. combined the support vector machine 
with the ECOC algorithm. In addition, the physical properties of amino acids and vari-
ous topological information are used as features to predict protein complexes from the 
PPI network. These methods usually extract features from known protein complexes, 
train a classification model based on the features. Then use the trained classification 
model to predict protein complexes from the protein interaction network. However, 
the presence of a large amount of noisy data in the PPI network. In addition to the fact 
that many features exist only in specific networks and are not universal, leads to uncer-
tainty in the classification model. Therefore, obtaining effective features from known 
protein complexes is the key to supervised learning algorithms. In addition, the above-
mentioned unsupervised learning methods and supervised learning methods are only 
explored in the yeast PPI network.

In this paper, we propose a protein complex prediction method based on supervised 
learning, which can fully use the information of known protein complexes. Moreover, to 
reduce the noise problem in the network and mine the biological information contained 
in the protein network, we introduce gene ontology (GO) knowledge [19] to construct a 
weighted PPI network. Furthermore, to further improve the performance of the protein 
complex prediction method, we use network representation learning to obtain the vec-
tor representation of the protein complex. We first use the GO knowledge to weight the 
PPI network and filter out the low-confidence relationship in the PPI network. Secondly, 
we extract the rich topological information of protein complexes as features and con-
struct the training set based on the weighted and unweighted PPI networks. Train the 
supervised learning model SVCC according to the constructed training set, and use the 
SVCC model to predict candidate protein complexes from the PPI network. Then, we 
apply the network representation learning method to obtain the vector representation of 
each node in the PPI network and get the vector representation of the protein complex 
through the protein node representation. Finally, train the random forest model RF [20] 
according to the vector representation of the training set complex, and the candidate 
protein complexes are classified using the RF model. The protein complexes marked as 
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positive examples are the final predicted protein complexes. To verify the performance 
of the proposed method, we conduct experiments on the yeast PPI network DIP [21] 
and the human PPI network HPRD [22]. Experimental results show that our method 
is superior to existing methods in predicting protein complexes in the PPI network. In 
addition, we are considering the particularity of the relationship between human pro-
teins. We also analyzed the biological significance of the protein complexes predicted by 
our method and other methods. Experimental results show that our method can predict 
protein complexes with biological significance.

Methods
We detail our protein complex prediction method in this section. Our method mainly 
includes four parts: (1) weighted PPI network using GO knowledge; (2) generating 
supervised features for protein complex prediction; (3) the first stage of protein complex 
candidate recognition; (4) the second stage of final protein complex classification. Fig-
ure 1 shows the overall workflow of our method.

Weighted PPI network using GO knowledge

A protein interaction network is a basis for using computational methods to predict 
protein complexes. However, due to the limitations of technology and the flow char-
acteristics of the protein interaction network, protein interaction data sets generated 
by high-throughput experiments often contain many a lot of noisy data [23–25]. There 
are two main types of noise relationships in PPI networks: false negatives and false 
positives. A false-negative relationship refers to an interaction relationship between 
two proteins that has not been discovered or documented in a database. A false posi-
tive relationship refers to the absence of an interactive relationship between two pro-
teins, which is incorrectly recorded and stored in the protein interaction database due 

Fig. 1  Overall flow chart of our method
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to experimental error. To solve this problem, researchers found that applying topo-
logical characteristics of protein–protein interaction networks or protein biological 
information such as gene expression data and gene ontology (GO) knowledge can 
improve the accuracy and reliability of protein–protein interaction data.

There are different ways to construct a weighted PPI network. For instance, we can 
calculate the protein similarity according to the topological relationship between pro-
teins to obtain a weighted PPI network. We can also use some biological informa-
tion, such as GO or gene expression, to calculate the credibility between proteins to 
get a weighted PPI network. In this paper, we combine the biological information of 
proteins with the topological information of the protein–protein interaction network 
to measure the degree of trust between proteins. Then construct a weighted protein–
protein relationship network. To calculate the topological similarity between pro-
teins, we introduce the similarity metric HOCN proposed by Wang [14] et al., based 
on the Jaccard,s similarity coefficient. The main idea is to estimate the topological 
similarity metric between nodes based on the high-order public domain of two adja-
cent nodes. Jaccard,s coefficient similarity is a similarity measure proposed by Jaccard 
et  al. The Jaccard,s coefficient similarity between two neighbor proteins v and u is 
defined by Eq. (1):

where N (v) and N (u) represent the set of adjacent points of v and u respectively. 
N (v) ∪ N (u) represents the union set of adjacent points of v and u . CN (v,u) represents 
the set of common adjacency points of v and u , namely N (v) ∩ N (u) . |N (v) ∩ N (u)| and 
|N (v) ∪ N (u)| represent the number of common adjacent points and unions sets of v and 
u , respectively.
HOCN is proposed based on the Jaccard similarity coefficient, and its definition is 

shown in Eq.  (2). The topological similarity between protein v and protein u is deter-
mined by not only the Jaccard similarity coefficient but also the degree of connection 
between their common neighborhood and edge ( v,u ). The degree of connection between 
the common neighborhood and the edge ( v,u ) is defined as CNS , as shown in Eq. (4).

Gene Ontology GO is one of the most comprehensive ontology databases in bioinfor-
matics. GO provides a series of GO terms to describe the characteristics of gene prod-
ucts, mainly including three aspects: biological process (BP), cell component (CC), and 
molecular function (MF). If two proteins have more GO terms in common, the more 
specific information the GO terms describe, and the higher the biological semantic 
similarity between the two proteins. In this paper, we calculate the biological similarity 

(1)JCS(v,u) =
|CN (v,u)|

|N (v) ∪ N (u)|

(2)HOCN (v,u) =
(JCS(v,u)+ CNS(v,u)+ |CN (v,u)|)

(|CN (v,u)| + 1)

(3)JCS∗ = JCS(v,w) ∗ JCS(w,u)

(4)CNS(v,u) =

w∈CN (v,u)

JCS∗
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sim(v,u) between protein v and u according to the number of GO terms and the number 
of annotated proteins in GO terms as follow.

Protein v and u are both annotated by multiple different GO terms. C(v,u) repre-
sents the GO term set in which protein v and u are annotated by the same GO term. 
Si(v,u)(1 ≪ i ≪ n) represents the set of proteins annotated by each GO term in the GO 
terms shared by proteins v and u . Smax represents the maximum number of proteins 
annotated by a GO term among all GO terms.

To calculate the similarity of two proteins v and u , we combine the topological similar-
ity and biological similarity between proteins, and its definition is shown in Eq. (7).

Generating supervised features for protein complex prediction

Extracting key features from protein complexes indicates that protein complexes are 
crucial in our research. So far, a lot of research has been done in this area. We designed 
16 features extracted from weighted and unweighted networks to describe protein com-
plexes. A detailed description of the characteristics is shown below.

1.	 Density: Density is an essential feature in the network and has been widely used in 
protein complex identification. For an unweighted graph, if G = (V ,E) has |E| edges, 
the density is defined as |E| divided by the theoretical maximum possible number 
of edges in the graph |E|max , |E|max = |V | × (|V | − 1)/2 . For a weighted graph, set 
G = (V ,E,W ) , the weight of the edge (v,u) is w(v,u) , and its density is defined as 
shown in formula (8).

2.	 Degree statistics: For unweighted graphs, the node degree is defined as the number 
of neighbor nodes of the node. For weighted graphs, the node degree is defined as the 
sum of the weights between the node and its connected nodes. We choose the maxi-
mum, average and median of the node degree of the weighted graph and unweighted 
graph as the sub-graphs features.

3.	 Edge weight statistics: Edge weight is also an essential feature of weighted networks. 
It is similar to node degree, and both describe the characteristics of edges in the net-
work. We choose the average and variance of all edge weights in the sub-graphs as 
the features of the sub-graphs.

4.	 Degree-related attributes: Degree-related attributes can test the connectivity 
between a node in the sub-graphs and its neighbor nodes. Each node is defined as 
the average number of connections of the nearest neighbor nodes of the node, that 

(5)sim(v,u) = |C(v,u)| × log

(

min|Si(v,u)|

Smax

)2

(6)merge(v,u) = sim(v,u)+HOCN (v,u)

(7)Weight(v,u) =
√

merge(v,u)

(8)dw(G) =

∑

u∈V ,v∈Vw(v,u)

|V | × (|V | − 1)
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is, the average degree. We choose the average and variance of the related attributes of 
the node degree in the sub-graphs as the characteristics of the sub-graphs.

5.	 Modularity: Modularity indicates the tightness of node connections in the sub-
graphs. For a weighted graph G = (V ,E,W ) , any sub-graph SG ∈ G , let the sum 
of the weights of the inner edges of SG be dinw (SG) =

∑

u,v∈SG;(u,v)∈Ew(u, v) . 
The sum of the weights of SG and the external node connecting edge is 
doutw (SG) =

∑

v∈SG;u/∈SG;(u,v)∈Ew(u, v) . Then the SG modularity MSG is defined as 
shown in formula (9).

6.	 Clustering coefficient: For unweighted graphs, the clustering coefficient of node v is 
the ratio of the number of triangles to the number of triangles that may be formed. 
Its definition is shown in the formula (10).

T (v) represents the number of triangles passing through node v . N (v) represent the 
set of adjacent points of node v . We choose the variance of the clustering coefficient in 
the unweighted graph as its clustering coefficient feature. The definition of the clustering 
coefficient in the weighted graph is shown in formula (11).

where kv represents the number of neighbor nodes of node v, and w
(

v, j
)

 represents 
the weight of the edge between nodes v and j . w(v) represents the sum of the weights of 
the edges between node v and all adjacent nodes. We choose the average and maximum 
weighted graph clustering coefficient values as their clustering coefficient characteristics.

The first stage of protein complex candidate recognition

This section proposes a supervised learning method SVCC for identifying protein 
complexes from protein interaction networks. The supervised learning method SVCC 
mainly includes four steps: (1) the first stage recognition model training; (2) sub-graphs 
selection; (3) sub-graphs expansion; (4) sub-graphs filtration. The overall flow chart of 
SVCC is shown in Fig. 2.

The first stage recognition model training

In this study, we apply the support vector machine algorithm SVC [26] to predict protein 
complexes from the protein interaction network. SVC is a support vector machine algo-
rithm mainly used to solve classification problems. The main idea of SVC is to construct 
an optimal decision hyperplane in the feature space to maximize the distance between 
the two types of samples closest to the plane on both sides of the plane. Thus, it provides 

(9)MSG =
dinw (SG)

dinw (SG)+ doutw (SG)

(10)C =
2T (v)

|N (v)| × (|N (v)− 1|)

(11)CCW (v) =

∑

(j,h)∈N (v)w
(

v, j
)

+ w(v, h)

w(v)(kv − 1)

(12)w(v) =
∑

j∈N (v)
w
(

v, j
)
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good generalization ability for the classification problem. Compared with other classifi-
cation methods, SVC requires relatively fewer sample data. Because SVC introduces a 
kernel function, SVC can easily cope with high-dimensional or nonlinear data samples.

We extract 16 topological features of protein complexes in the network from positive 
and negative examples, namely the feature vectors of protein complexes. It combines 
them to obtain the training set. After constructing the training set, we use the train-
ing set as input data to train the SVC model. We conducted parameter tuning tests on 
the main hyperparameters C and Degree in the SVC model. Based on the preliminary 
experimental results, we chose the hyperparameter C and Degree are 3 and 4 in our 
experiments, respectively. The various parameters of the SVC model used in this article 
are shown in Table 1.

Sub‑graphs selection

We use the trained SVC model to predict protein complexes from the protein interac-
tion network. We first use the Clique [27] algorithm to search for the largest sub-graph 
in the protein interaction network. The Clique algorithm is based on the depth-first 
search algorithm for the largest group in the network. We choose the sub-graph with the 
number of proteins greater than or equal to 3 as the initial sub-graph. Since the initial 

Fig. 2  Overall flow chart of SVCC model
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sub-images may overlap, we need to filter the initial sub- graphs. We use the trained 
SVC model to determine the probability that each sub-graph is an actual complex and 
arrange them in descending order of likelihood. For any sub-graph Ci , calculate the 
number of overlapping proteins between it and the sub-graph Ck whose probability is 
lower than it. If the number of overlapping proteins exceeds the given threshold α , the 
sub-graph Ck is filtered out. Repeat the above process to form the final initial set of sub-
graphs. For the filtering threshold α, since the number of proteins in the initial subgraph 
we obtained is greater than or equal to 3, if the threshold α is set to 1, it will lead to 
too many filtered subgraphs. If the threshold α is greater than 2, many subgraphs with a 
protein number of 3 cannot be correctly discriminated. Therefore, we set the threshold 
α = 2. In the sub-graph selection stage, the initial sub-graph structures we obtained by 
the Clique method are usually relatively simple. Many sub-graph structures contain only 
3 proteins. During sub-graph selection, filtering strategy based on the number of pro-
teins in common between the candidate sub-graphs is simple and efficient.

Sub‑graphs expansion

For any sub-graphs Ci , the set of adjacent points is N (Ci) , and any node v in N (Ci) 
is selected to join the subgraph Ci . Then, the trained model is used to determine the 
probability that {Ci ∪ v} is a true compound, and the node v with the highest probabil-
ity increase is selected and added to the subgraph Ci . Repeat the above process until 
there is no node in N (Ci) so that after it joins Ci , the probability that the subgraph Ci an 
actual complex increase. At this point, the subgraph Ci is expanded to form a candidate 
sub-graph.

Sub‑graphs filtration

Candidate sub-graphs may also overlap, so we need to filter the candidate sub-graphs. 
As in the first step, we use the trained model to determine the probability that the can-
didate sub-graphs are an actual complex and arrange them in descending order of like-
lihood. After sub-graph expansion operation, the sub-graph structures become much 
more complex. It is more appropriate to use the overlap ratio at this stage to determine 
whether the sub-graphs overlap. For any candidate sub-graphs Ci , we calculate the over-
lap ratio overlap(Ci,Ck) between it and the candidate subgraph Ck.

Table 1  Model parameter settings

Parameters Value

C 3

Kernel Poly

Degree 4

Gamma scale

Coef0 0

Probability True

Tol 0.001

Cache_size 200
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If the overlap rate exceeds the set overlap threshold β, we merge the two candidate 
subgraphs. Otherwise, the candidate sub-graphs Ck is filtered out. Repeat the above 
process to obtain candidate protein complexes. We test the optimal value of the overlap 
threshold β in the interval 0 to 1. Based on the preliminary experiments, we set β as 0.8 
in this study.

The second stage of the final protein complex classification

We apply the supervised learning method SVCC to predict candidate protein complexes 
from protein interaction networks. However, there are a lot of noisy data in the PPI net-
work, and many complex features only exist in specific networks, which are not univer-
sal. In addition, the insufficient number of known complexes leads to uncertainty in the 
supervised learning model. To solve these problems, we choose the network representa-
tion learning method to obtain the vector representation of the protein. Then calculate 
the protein complex vector based on the protein vector representation as to the feature 
of the protein complex, and train the random forest model RF based on the feature vec-
tor. We use the trained RF model to judge whether the candidate protein complex iden-
tified by SVCC is a natural protein complex. At the same time, classify the candidate 
protein complex to further improve the performance of protein complex recognition.

Network representation learning

The network representation learning method automatically learns the distributed rep-
resentation of nodes based on the adjacency information and network topology. Com-
pared with the traditional method of obtaining the topological characteristics of nodes 
in the network, the network representation learning method can represent the nodes 
in the protein–protein interaction network as a low-dimensional vector. It can extract 
the hidden information in the protein–protein interaction network, including the diver-
sity of the connections between protein nodes. We use node2vec [28] to obtain the vec-
tor representation of nodes in the PPI network. Node2vec can automatically learn the 
vector representation of nodes and maximize network and node structure information 
retention. Node2vec uses a random walk and alias sampling strategy to obtain the struc-
ture information of nodes. In addition, a protein complex is a set of proteins. We calcu-
late the vector of protein complex according to the vector representation of the protein. 
The calculation method is shown in formula (14).

where ϕi(i = 1, 2, . . . ,m) is the vector representation of protein nodes in a protein 
complex Z is the matrix composed of the vector representation ϕi of protein nodes in a 
protein complex, d is the dimension of ϕi , and Z

(

., j
)

 is the j-th column in matrix Z.

Random forest model

The random forest model [20] was used to classify the candidate protein complexes 
obtained by SVCC. Random forest uses multiple classification trees to distinguish and 

(13)overlap(Ci,Ck) =
|Ci ∩ Ck |

|Ci ∪ Ck |

(14)complex(ϕ1,ϕ2, . . . ,ϕm) = avgZ
(

., j
)

0 ≤ j < d
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organize data, and it is a kind of cluster classification model. While classifying the data, 
it can also give a score of the importance of each variable and evaluate the role of each 
variable in the classification. The random forest model uses a random method to build 
a forest. The forest comprises many decision trees, and there is no correlation between 
each decision tree. When new sample data enters, each decision tree in the random for-
est is judged separately. For classification problems, voting is usually used. The category 
with the most votes is used as the final model output. Compared with other classification 
methods, the random forest can handle high-dimensional data without feature selection. 
It has good performance for extensive sample data and can also understand variables 
importance. In addition, the introduction of randomness makes random forests have an 
excellent anti-noise ability.

Candidate protein complex classification

We first obtain the vector representation of the protein in the protein interaction net-
work through the network representation learning method Node2vec. Then calculate 
the average value of the protein vector representation in the protein complex as the vec-
tor of the protein complex. We calculate the vector representation of the protein com-
plex in the positive and negative examples as the feature vector of the protein complex. 
Subsequently, combine the feature vector of the positive and negative samples to obtain 
the training set. After constructing the training set, we use the training set as input data 
to train the RF model. Then, we also use the network representation learning method 
Node2vec to calculate the feature vector of the candidate protein complex identified by 
SVCC as the test set. We use the trained RF model to classify the feature vector of the 
test set. Then, it will be marked as a positive example of the protein the complex is the 
final predicted protein complex.

Datasets and evaluation metrics
Datasets

In this study, we use the human protein interaction network and yeast protein interac-
tion network as experimental data. The human protein interaction network is down-
loaded from the Human Protein Reference Database (HPRD) [22]. The yeast protein 
interaction network comes from the extensive yeast data set DIP [21]. For these two 
kinds of PPI networks, we removed the repetitive and self-connected protein relation-
ships in the network. Finally, we obtained the basic information of the two protein 
interaction networks, as shown in Table 2. The standard human protein complex data 
set we use is also downloaded from HPRD, including 1514 human protein complexes. 
The standard yeast protein complex data set comprises four common yeast standard 

Table 2  Basic information of two protein interaction networks

Dataset Numbers of nodes Number of edges Avg numbers 
of neighbors

DIP 3490 11,189 6.412

HPRD 7307 29,213 7.996
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protein complex data sets: MIPS [29], SGD [30], TAP60 [31], Aloy [32]. It contains 
732 yeast protein complexes.

Our training data contains positive examples and negative examples. The positive 
examples are the standard human protein complex data set and the standard yeast 
protein complex data set described above. In addition, the standard yeast protein 
complex data set comprises four common yeast standard protein complex data sets. 
Therefore, the data set will contain protein molecules that do not exist in the DIP 
network. The protein complexes predicted from the PPI network will not have protein 
molecules present in the protein interaction network. Therefore, when experimenting 
on the DIP network, it is necessary to filter out the protein molecules in the positive 
protein complex that do not belong to the DIP network. Our negative example is gen-
erated by randomly selecting nodes from the PPI network, and its size is consistent 
with the positive sample. In particular, the number of protein molecules contained 
in the protein complex in both the positive and negative examples is greater than or 
equal to 3.

Evaluation metrics

We used four performance evaluation indexes to evaluate the predicted protein com-
plexes: precision,recall, F − score,P − value.

Suppose that B =
{

b1, b2, . . . , bm
}

 and P = {p1, p2, . . . , pn} represent the standard 
protein complex set and the predicted protein complex set, respectively. If selecting 
a real protein complex b ∈ B and a predicted protein complex p ∈ P , we can calculate 
their similarity, namely neighborhood affinity score NA as Eq. (15).

where Vb and Vp represent the collection of protein rmolecules in complexes b and p , 
respectively. 

∣

∣Vb ∩ Vp

∣

∣ represents the number of proteins shared in the two protein 
complexes.

Generally speaking, if NA(b, p)> 0.25, the two protein complexes are considered to 
be matched. Let P and B denote the set of predicted protein complexes and standard 
protein complexes, respectively. Let Ncb denote the number of standard protein com-
plexes that match at least one predicted protein complex. Ncp denote the number of 
predicted protein complexes that match at least one standard protein complex. Then 
the definition of precision and recall are shown as Eq. (16) and (17).

F − score is defined as the harmonic average of precision and recall , that is, a rea-
sonable mixture of precision and recall , and its definition is shown as Eq. (18).

(15)NA(b, p) =

∣

∣Vb ∩ Vp

∣

∣

2

Vb × Vp

(16)precision =
Ncp

|P|

(17)recall =
Ncb

|B|
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In addition, in this article, we also use the biological process annotations in the gene 
ontology to analyze the biometric significance of protein complexes identified by differ-
ent methods. The biological statistical significance of a protein complex can be marked 
by its biological function. Calculated by hypergeometric distribution, the definition is 
shown as Eq. (19).

where |V | represents the number of protein nodes of the corresponding entire species. C 
represents the predicted protein complex, which contains k proteins and is annotated by 
the gene ontology functional group F  . The smaller the P − value of a protein complex is, 
the more likely it is to be annotated with the same function, and the more likely it is to 
be a true complex.

Our proposed method is based on supervised learning. To evaluate our method 
using an independent testing set, we follow the previous work to evaluate the proposed 
method in a five-fold cross-validation experimental setting.

Results and discussion
This section introduces our comparative experiment in detail, mainly composed of three 
parts. In the first part, we compare the performance of our method with several existing 
protein complex prediction methods. The second part analyzes the impact of different 
factors on the experimental performance, including classification models, network rep-
resentation learning methods, and feature sets. In the third part, the biological signifi-
cance of the predicted complexes is evaluated and discussed.

Comparison results with other methods

To validate the effectiveness of our method in predicting protein complexes, we com-
pared our method with MCODE [2], COACH [6], CMC [3], ClusterONE [8], GANE 
[15], EWCA [14], SLPC [16], and SVCC only on two protein interaction networks of 
DIP and HPRD. To compare these methods as fair as possible, we use a five-fold-cross-
validation experimental setting to identify protein complexes. We divided the stand-
ard set of protein complexes for DIP and HPRD into five parts as {C1,C2,C3,C4,C5} . 
In each crossover experiment, we use 4 of them as the training set and train the SVC 
model and the random forest model to recognize the complexes in the network. Since 
the identified complexes may contain the complexes of the training set, we remove the 
complexes that overlap with the training set to obtain R1 , where the overlap threshold 
is set to 0.9, calculated by the formula (13). After five rounds of such experiments, 
we combined the set of five complexes identified as {R1,R2,R3,R4,R5} . And remove 
the complexes in which the overlap ratio is greater than 0.6. The remaining protein 
complexes are then taken as the final result and evaluated using a standard collec-
tion of protein complexes. The MCODE and ClusterONE methods are processed 

(18)F − score =
2× precision× recall

precision+ recall

(19)P − value = 1−

k−1
∑

i=0

(

|F |
i

)(

|V |−|F |
|C|−i

)

(

|V |
|C|

)
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by Cytoscape [33]. The parameters of the other methods are set according to their 
authors’ recommendations. Our method used node2vec to learn the vector represen-
tation of proteins on the protein interaction network. The parameters of node2vec 
set to q = 1, p = 8, dimensions = 64. The comparison results between our method and 
other methods are shown in Table 3.

Table 3 shows the results of our method compared with other methods on the yeast 
PPI network DIP and the human PPI network HPRD. When we use the yeast PPI net-
work DIP as the experimental network, our method achieves the highest F-score of 
0.5539, which is much higher than the unsupervised learning methods. At the same 
time, the F-score obtained by using only the SVCC method is 0.5231, which is slightly 
lower than the F-score of 0.5249 of the supervised learning method SLPC. After using 
the RF model to classify the candidate protein complexes identified by SVCC, the 
experimental performance improved by 3%. Using the human PPI network HPRD as 
the experimental network, our method achieves the highest F-score of 0.6268. Com-
pared with unsupervised learning methods, our method improves by at least 15%, 
except for EWCA. At the same time, it is also an increase of nearly 10% compared 
with EWCA. Compared with the supervised learning method SLPC, our method 
improves by about 8%. When we only use the SVCC.

method, the obtained F-score is 0.5213. After using the RF model to classify the can-
didate protein complexes identified by SVCC, the experimental performance improved 
by about 10%. It can be seen from the above experiment that using a trained RF model 
to classify candidate protein complexes predicted by SVCC can significantly improve the 
performance of the experiment. In summary, our method achieves good performance 
on both the yeast PPI network and the human PPI network. Especially in the human PPI 
network, our method is significantly better than other methods. Therefore, our method 
is superior to the existing protein complex prediction methods.

Table 3  Comparison of experimental results on DIP and HPRD data sets

The highest F-score is in bold

Dataset Method Number Precision Recall F-score

DIP MCODE 72 0.5138 0.1010 0.1689

COACH 747 0.4310 0.4685 0.4490

CMC 709 0.3004 0.4631 0.3644

ClusterONE 363 0.5041 0.3661 0.4241

GANE 326 0.6012 0.4303 0.5016

EWCA​ 1028 0.5642 0.4767 0.5168

SLPC 766 0.6057 0.4631 0.5249

SVCC only 946 0.5898 0.4699 0.5231

Our 514 0.7684 0.4330 0.5539
HPRD COACH 1914 0.3322 0.5805 0.4226

CMC 2399 0.3384 0.7741 0.4710

ClusterONE 875 0.3942 0.3348 0.3621

GANE 755 0.3668 0.3124 0.3374

EWCA​ 1915 0.4976 0.5832 0.5370

SLPC 2431 0.4452 0.6901 0.5412

MCODE 137 0.5182 0.1050 0.1746

SVCC only 2649 0.3812 0.8243 0.5213

Our 1252 0.5559 0.7186 0.6268
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We also note that the precision is much higher than recall on DIP network, but 
vice-versa on HPRD network. This maybe because the scale of HPRD is much larger 
than that of DIP (as seen in Table  2). It makes some methods can identify a large 
number of complexes on HPRD. We have supplemented the number of complexes 
identified in Table 3. From Table 3, we can see that the six methods of COACH, CMC, 
EWCA, SLPC, SVCC and our method can identify more than 1000 protein complexes 
on the HPRD network, which is much higher than the number of standard protein 
complexes, namely |P| ≫ |B| in Eqs. 16 and 17. This leads to the precision is less than 
the recall on HPRD network.

Comparison with other classification models

We use the RF model to classify the candidate protein complexes obtained by the 
SVCC method. The above experiments show that the RF model can significantly 
improve the experimental performance. To further verify the effectiveness of the ran-
dom forest model RF, we also chose to train other supervised learning models to clas-
sify candidate protein complexes.

We trained naive Bayes (Bayes), logistic regression (LR), KNN, XGBoost, AdaBoost, 
and gradient boosted tree GBDT six supervised learning models and compared 
their experimental results with the random forest model RF. We conducted param-
eter tuning experiments on these supervised learning models. We selected the best 
test parameters which are shown in Table 4. The results of comparing the RF model 
and the other six supervised learning models on the yeast PPI network DIP and the 
human PPI network HPRD are shown in Figs. 3 and 4.

It can be seen from Fig. 3 that on the yeast PPI network DIP, the XGBoost model 
achieves the highest F-score of 0.5644. Bayes and RF achieve the second and third 
highest F-scores, 0.5555 and 0.5539, respectively. The XGBoost model is about 1% 
higher than the RF model. It can be seen from Fig. 4 that on the human PPI network 
HPRD, the RF model achieves the highest F-score of 0.6268. The XGBoost model also 
achieved a high F-score of 0.6035. But the Bayes model only achieved an F-score of 
0.5036. In summary, the RF model achieves the best performance on the human PPI 
network HPRD and good performance on the yeast PPI network DIP. Therefore, we 
finally choose the RF model to classify the candidate protein complexes obtained by 
the SVCC method.

Table 4  Parameter settings of six supervised learning models

ID Model Parameters

1 RF n_estimators = 1000

2 LR C = 1.0

3 KNN n_neighbors = 5

4 XGBoost booster = gbtree, learning_rate = 0.3, max_depth = 6, min_child_weight = 1

5 AdaBoost base_estimator = DecisionTreeClassifier, algorithm = SAMME, n_estima-
tors = 350, learning_rate = 0.4

6 GBDT learning_rate = 0.1, n_estimators = 100, max_depth = 2, min_samples_
split = 1.0, min_samples_leaf = 2



Page 16 of 23Wang et al. BMC Bioinformatics          (2022) 23:300 

Influence of different network representation learning methods

In this study, we applied the network representation learning method node2vec to 
obtain the vector representation of the protein. Then, according to the protein vector 
representation, the protein complex vector is calculated as the feature of the protein 
complex. Finally, the candidate protein complexes are classified through the feature vec-
tor training model. To verify the effect of node2vec for our method, we also evaluate 
four other network representation learning methods, including DeepWalk [13], HOPE 
[34], LINE [35], and SDNE [36]. Most of the parameters of these five network represen-
tation learning methods are set to default values, and only a few parameters with sig-
nificant influence are tested (such as dimension, etc.). The specific parameter settings of 
the five network representation learning methods are shown in Table 5. The comparison 
between node2vec and the other four network representation learning methods on the 
yeast PPI network DIP and the human PPI network HPRD is shown in Figs. 5 and 6.

As shown in Figs. 5 and 6, our method achieves higher F-scores than other network 
representaion learning methods on both the yeast PPI network DIP and the human PPI 
network HPRD when using the Node2vec method to obtain the vector representation 
of the protein. It can be seen that on learning methods on both the yeast PPI network 

Fig. 3  Experimental comparison results of supervised models on the DIP network

Fig. 4  Experimental comparison results of superrvised models on the HPRD network
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DIP and the human PPI network HPRD when using the Node2vec method to obtain the 
vector representation of the protein. It can be seen that Node2vec achieves the highest 
F-score on both DIP and HPRD networks. We also note that Deep Walk outperforms 
Node2vec in precision, especially for the HPRD network. DeepWalk randomly and 
uniformly selects nodes in the network during random walks [13]. Node2vec uses two 

Table 5  Parameter settings of five network representation learning methods

ID Method Parameters

1 Node2VEC walk-length = 80, number-walks = 10, p = 8.0, q = 1.0, dimensions = 64

2 DeepWalk walk-length = 80, number-walks = 10, dimensions = 64

3 HOPE dimensions = 64

4 LINE epoch = 5, order = 3, clf-ratio = 0.5, dimensions = 64

5 SDNE alpha = 1e-6, beta = 5, nu1 = 1e-5, nu2 = 1e-4, batch_size = 200, 
epoch = 5, learning_rate = 0.01, dimensions = 64

Fig. 5  The impact of different network representation learning methods on the experimental performance 
of the DIP network

Fig. 6  The impact of different network representation learning methods on the experimental performance 
of the HPRD network
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parameters p and q to control the direction of the sampling during random walks [28]. 
In other words, Node2vec uses a flexible and biased random walk sampling strategy to 
trade off the local and global structure of the network. Compared to DIP network, the 
scale of HPRD network is much larger. From Fig. 6, the results suggest that Deepwalk 
can achieve higher precision on larger networks such as HPRD network. But Node2vec 
can achieve higher recall and F-score than Deepwalk. Overall, Node2vec achieve the 
best performance among the five methods on both DIP and HPRD networks.

The impact between binary and multiple classification models

The training set data we selected when training the SVC model and the RF model is the 
same, including positive and negative examples. The positive data is a standard protein 
complex data set. The negative data is generated by randomly selecting nodes from the 
PPI network according to the ratio of the standard protein complexes. Many research-
ers used multiple classification labels to train supervised learning models in the exist-
ing research on protein complex prediction based on supervised learning. To verify the 
effectiveness of the two-class training set data selected, we also used the three-class 
training set data to train the supervised learning model for experiments on the DIP and 
HPRD protein interaction relationship network. The three-category training set data 
we choose mainly consists of three parts: positive examples, intermediate examples, 
and negative examples. Among them, the positive and negative data are the same as the 
binary classification. For the intermediate data, we chose to use the COACH algorithm 
to identify protein complexes from the PPI network. This is mainly because the possibil-
ity of the complexes identified by COACH being real complexes is higher than that of 
negative sample data but lower than that of positive sample data, which can effectively 
increase the richness of training sample data. And in order to ensure the accuracy of the 
experiment, the protein complexes matching the positive example were filtered out. The 
results of the experimental comparison of the two-class and three-class data on the yeast 
PPI network DIP and the human PPI network HPRD are shown in Table 6.

As shown in Table  6, on the yeast PPI network DIP and the human PPI network 
HPRD, the experimental performance when we train the SVC model with the binary 
training set data is much better than the three-category training set data. Therefore, we 
select the binary classification training set data to train the SVC model. When training 
the RF model on the yeast PPI network DIP, the F-score obtained by selecting the binary 

Table 6  Comparison of experimental results using different classification labels on the DIP and 
HPRD datasets

The highest F-score is in bold

Dataset SVC train set RF train set Precision Recall F-score

DIP Two categories Two categories 0.7684 0.4330 0.5539

Three categories 0.8726 0.4112 0.5589
Three categories Two categories 0.5562 0.4467 0.4955

Three categories 0.5579 0.4494 0.4978

HPRD Two categories Two categories 0.5559 0.7186 0.6268
Three categories 0.7891 0.4966 0.6096

Three categories Two categories 0.4485 0.4299 0.4390

Three categories 0.6472 0.2919 0.4023
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training set data is 0.5539. The F-score obtained from the three-class training set data 
is 0.5589, the difference is less than 1%. When training the RF model on the human PPI 
network HPRD, the F- score obtained from the two-category training set data is 0.6268. 
The F-score obtained from the three-category training set data is 0.6096. The perfor-
mance of the two-category data is about 2% higher than that of the three-category data. 
Therefore, we select the two-category training set data for the RF model. In summary, to 
obtain good experimental performance, we choose the two-class training set data when 
training the SVC and RF models.

The biological significance of predicted protein complexes

In this section we validate the biological significance of protein complexes based on 
Gene Ontology GO. In previous complex identification methods, many researchers used 
P − value to evaluate the biological significance of protein complexes. The P − value 
indicates the possibility of co-occurring proteins having a common function. If the 
identified protein complex has a lower P − value , it indicates that the co-occurrence of 
proteins in the complex is not accidental. The lower the P − value , the higher the bio-
logical significance of the complex, and the more likely it is a significant complex. This 
paper uses GO term enrichment analysis to determine whether members of a predicted 
complex have a likely common function. We used LAGO [37] to calculate P-values for 
protein complexes for functional enrichment analysis and set all parameters in LAGO 
to default values. LAGO is a fast tool improved based on GO Term Finder [37], which 
can find important GO terms in the gene name list and calculate the P − value through 
hypergeometric distribution. Some complexes could have low p-values for multiple dif-
ferent GO terms. In this paper, we chose the best (lowest p-value) GO terms for each 
complex.

Tables 7 and 8 present the ten protein complexes with lower P − value that we iden-
tified on both the DIP and HPRD PPI networks. Moreover, these protein complexes 
have a high degree of matching with standard protein complexes (calculated by the for-
mula (13)), suggesting that those with low P − value are likely to be genuine protein 
complexes.

For these complexes with low P − value and high matches to standard protein com-
plexes, we further analyzed them from a biological perspective. In Tables  7 and 8, 
the proteins that match to standard protein complexes are marked in bold. For exam-
ples, complex No.3 in Table 7 overlaps "RFC3—Subunit of heteropentameric Replica-
tion factor C": {YNL290W, YOL094C, YBR087W, YMR078C, YHR191C, YCL016C, 
YJR068W} by 86%. Complex No.5 in Table  8 highly matches "COP9 signalosome 
complex"[38]: {GPS1, COPS1, COPS2, COPS3, COPS4, COPS5, COPS6, COPS7A, 
COPS7B, COPS8} by 61%. COP9 signalosome complex plays a critical role in the 
DNA double-strand break reaction and an ATM target [38]. It regulates the activity 
of the cullin loop ubiquitin ligase complex by removing ubiquitin proteins from the 
protein "cullin" scaffold. Also, complex No.8 in Table 8 overlaps "Nucleic and Chor-
matin Fanconi complex"[39]: {FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG} 
by 80%. Nucleic and Chormatin Fanconi complex is involved in subcellular localiza-
tion and functions such as cellular rescue, defense, and virality. The analysis of the 
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predicted complexes suggests our method can effectively predict and identify the 
meaningful protein complexes from the PPI network.

We also found that some predicted complexes did not match the standard protein 
complexes, but they still had very low P − value , as shown in Table 9. We also marked 
the proteins that match to standard protein complexes in bold. For example, com-
plex No. 2 on the DIP network in Table 9 overlaps only 25% with “ISWI”: {YBR245C, 
YFR013W}. These complexes are also of high biological interest, because there may 
be some undiscovered true protein complexes. These complexes may help biologists 
looking to identify new protein complexes.

Table 7  Ten predicted complexes with low P − value that match the true complexes on the DIP 
network

ID Complex Match P − value

GO_Process GO_Function GO_Component

1 YLR148W YAL002W YLR396C YPL045W 
YMR231W

1.0 5.73543e-12 7.89663e-08 1.33543e-16

2 YNL262W YDR121W YBR278W YPR175W 0.8 6.51289e-12 4.55447e-14 6.52337e-10

3 YOL094C YBR087W YNL290W YJR068W 
YMR078C YHR191C

0.86 6.7513e-11 4.80533e-15 1.4919e-19

4 YBR123C YOR110W YGR047C YAL001C 
YDR362C

0.83 3.56116e-16 1.33543e-16 3.81553e-17

5 YPR162C YBR060C YNL261W YHR118C 
YML065W YJL194W YLL004W

0.85 2.62478e-19 6.57407e-17 5.95926e-20

6 YJR043C YJR006W YDL102W 1.0 9.13462e-10 2.69145e-09 6.52473e-11

7 YIL033C YJL164C YPL203W YKL166C 1.0 3.00595e-12 6.52473e-11 9.10894e-15

8 YPL210C YDL092W YKL122C YPR088C 
YML105C

0.8 1.29404e-13 1.59353e-12 3.56116e-16

9 YJL074C YFL008W YDL003W YER147C 
YIL026C YDR180W

0.83 2.79506e-14 5.83637e-06 2.0486e-12

10 YPR018W YML102W YBR195C 1.0 5.70914e-10 5.58191e-07 6.52473e-11

Table 8  Ten predicted complexes with low P − value that match the true complexes on the HPRD 
network

ID Complex Match P − value

GO_Process GO_Function GO_Component

1 EDC3 DCP1B DDX6 DCP1A EDC4 0.83 1.16739e-14 3.054e-07 2.53167e-12

2 HDAC1 RELA NCOR2 HDAC3 PML 1.0 1.52359e-07 6.80376e-09 5.39083e-07

3 MED25 MED1 MED9 MED8 MED6 CDK8 0.86 4.48623e-13 1.51728e-07 4.56648e-17

4 POLR2D POLR2H POLR2A POLR2G POLR2C 
POLR2E

0.83 6.12908e-06 7.33099e-11 5.9544e-20

5 COPS8 COPS5 COPS6 COPS4 COPS2 CUL5 
COPS3

0.61 1.74854e-20 1.60322e-06 4.16646e-19

6 JUP BTRC CTNNB1 AXIN1 1.0 2.55384e-08 3.37375e-07 1.2821e-07

7 CASP1 CASP2 NLRP1 NOD1 1.0 2.46197e-10 2.09624e-09 1.83324e-07

8 FANCE FANCG HES1 FANCA FANCF 0.8 7.87032e-11 6.84817e-06 7.78789e-13

9 STX3 VAMP7 SNAP29 0.83 7.34722e-08 5.99134e-09 1.42065e-08

10 EED YY1 HDAC2 1.0 2.7759e-05 2.59935e-05 4.61418e-09
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Conclusions
We proposed a supervised protein complex prediction method with network repre-
sentation and gene ontology knowledge. We weight the PPI network through the GO 
knowledge and topological information. Then we extract the topological information 
of the protein complex according to the weighted PPI network and the unweighted PPI 
network as its features and construct a training set. Through the constructed training 
set, the SVCC model is obtained. The SVCC model is used to predict candidate pro-
tein complexes from the protein interaction relationship network. Finally, we use the 
network representation learning method node2vec to obtain the vector representation 
of the protein complex and train the RF model. The RF model is used to classify the 
candidate protein complexes. The candidate protein complexes marked as positive by 
the RF model are the final predicted protein complexes. We evaluate the experimental 
performance of our method and seven other existing methods on the yeast PPI network 
DIP and the human PPI network HPRD. The experimental results show that our method 
effectively detects protein complexes from the PPI network compared with the existing 
protein complex identification methods. We also analyzed the biological significance 
of protein complexes predicted by different methods. The results show that the protein 
complexes predicted by our method have higher biological significance.

Since GO term simlilarity is used in training SVC model in our method, using GO 
terms to evaluate the predicted complexes has certain limitations. As a future study, we 
will explore another way than GO terms to evaluate the biological significance of protein 
complexs.
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