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Background
Understanding how the human brain works is a major challenge for neuroscientists 
and especially computational neuroscientists. The cerebral cortex has been intensively 
proven to be modularly organized, and different modules have been gradually identi-
fied with boundaries that are related to different cognitive functions using functional 
magnetic resonance imaging [1–4]. Together with interactions between the modules 
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mediated by numerous pathways within the cerebral architecture, scientists have basi-
cally accepted the concept that the human brain works as a whole-brain network. DTI 
and fMRI permit the analysis of cortical structural and functional networks at relatively 
high spatial and temporal resolution [5, 6]. Consistent with graph theory, many organi-
zational principles of cerebral cortex architecture, such as the existence of network hubs 
and small worldness, have been proposed [7]. However, these data-driven empirical 
observations did not abstract a simple and quantitative characterization of brain net-
work organizational principles until Ercsey-Ravasz et  al. [8] testified that anatomical 
distance between cortical regions played an important role in macaque brain network 
organization. These researchers reported that connection weights exponentially decay 
with the interareal distance, and a single-parameter random graph model based on this 
rule successfully predicted numerous features of the cortical network.

Coincidentally, physical distance has also been shown to be an influential factor in 
human brain architecture using traditional resting-state fMRI techniques. The material 
and metabolic cost of long distances results in decreased internode associations, and 
this distance-dependent functional profile has been proposed and tested for approxi-
mately one decade. Salvador et al. [9] summarized an inverse square law describing the 
dependence of functional connectivity on anatomical distance. These distance-depend-
ent observations in human brain functional architecture added evidence to Ercsey-
Ravasz’s model and inspired our current studies on distance-based functional criticality 
of the human brain. In addition, numerous studies have addressed different roles of local 
and distant functional connectivity discriminated by anatomical distance in healthy and 
unhealthy brain functional organization: local and distant functional interactions have 
been proven to indicate cortical hierarchical organization [10]; different distributions of 
long and short connectivity are key neuropathologies of multiple neuropsychiatric dis-
eases [11–14]. Although local and distant connectivity play important roles in human 
brain function, no study has integrated them into a single theoretical framework to study 
human brain functional organization.

Network theory has been shown to be useful in characterizing human brain functional 
organization rules. The human brain requires the coordination of neural activity across 
many spatial and temporal scales, ranging from neurons and circuits to large-scale net-
works. Criticality is scale free and could accommodate this multiscale phenomenon in 
the human brain. Additionally, studies have demonstrated that the human brain works 
near criticality to accomplish the transitions of task states [15–17]. By deriving the non-
linear dynamics of human brain equations and the neighborhood hypothesis, we pre-
viously proposed vertexwise functional criticality to study criticality in healthy brains 
and Alzheimer’s Disease (AD) progression [18–20]. Now that distance was a key fac-
tor in human brain network organization, in this study, we proposed the distance-based 
vertexwise Index of Functional Criticality (D-vIFC) instead of the neighborhood-based 
index. Our new algorithm not only originated from critical theory in nonlinear dynam-
ics but also took distance into account and integrated both local and distant connectivity 
in the human brain architecture.

Intelligence could predict one’s overall level of career achievement and quality of life. It 
is a very integrated concept and generally involves verbal, performance and social intelli-
gence [21]. Hence, narrowly speaking, intelligence and emotional intelligence dissociate 
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humans from other animals, and they are the two most well-known traits for personal 
achievements. Many brain imaging studies have confirmed the importance of the fron-
toparietal network for intelligence [22, 23]. Compared with intelligence, emotional intel-
ligence has been more debate on its construct with less evidence of brain mechanisms. 
Emotional intelligence is similar to social cognition [24] and largely associated with the 
amygdala. Jausovec and Jausovec [21] also reported that intelligence (verbal and per-
formance) and emotional intelligence were related to different electrophysiological sig-
nals. However, no fMRI studies have addressed intelligence and emotional intelligence 
together. Given that the prefrontal cortex was proposed to interplay between emotion 
and cognition [25, 26], does cognitive intelligence overlap with emotional intelligence in 
the context of brain mechanisms? Do brain mechanisms of intelligence and emotional 
intelligence interact with age? Are these mechanisms encoded by functional criticalities 
of different spatial scales within human brain functional architecture?

In this study, we proposed a new algorithm of rfMRI-derived human brain functional 
criticality based on interareal distance, D-vIFC. This algorithm used a distance-depend-
ent definition of the boundary of the dominant cluster in human brain functional archi-
tecture, combining both local and distant functional connectivity of the human brain. 
Using 60 datasets, including rfMRI, intelligence and emotional intelligence scores, we 
aimed to study whether associations exist between functional criticality D-vIFC and 
behaviors as well as age-related interactions. Additionally, we defined a new measure-
ment of brain connectivity, namely, connectivity distance, aiming to validate the dis-
tance-dependent D-vIFC associations of intelligence and emotional intelligence and to 
provide a quantitative characterization for individual behaviors in psychology.

Methods
Participants

Sixty-seven healthy subjects (32 males, aged 18.6–64.3) were recruited from the local 
community or universities by advertisements. All the participants were invited for a 
detailed mental health interview using the Mini-International Neuro-Psychiatric Inter-
view. Individuals with a history of major neuropsychiatric illness, head injury, alcohol 
and drug abuse were excluded. Participants were assessed with the Wechsler Adult Intel-
ligence Scale-4th Edition (in Chinese, WAIS-IV), Schutte Self-Report Emotional Intelli-
gence Scale in Chinese Version (SSEIS), State-Trait Anxiety Inventory, Mental Health 
Continuum-Short Form, Emotion Regulation Questionnaire, Chinese Perceived Stress 
Scale, Achievement Motivation Scale, and Self-Control Scale. The institutional review 
board of the Institute of Psychology Chinese Academy of Sciences approved this study, 
and written informed consent was obtained from individual participants prior to data 
acquisition.

Behaviour measures

The WAIS-IV was used to measure cognitive intelligence. The full-scale intelligence quo-
tient (FSIQ) is a composite score obtained from 10 subtests measuring two components 
of cognitive abilities: general ability and cognitive proficiency. The general ability index 
(GAI) comprises two subindices: the verbal comprehension index (VCI) and perceptual 
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reasoning index (PRI). The cognitive proficiency index (CPI) comprises two subindices: 
the working memory index (WMI) and processing speed index (PSI).

The SSEIS was applied to measure emotional intelligence. It is a valid assessment 
developed by Schutte et al. [27] and originates from the emotional intelligence model of 
Salovey and Mayer [28]. The Chinese version of the SSEIS exhibits high reliability and 
validity and consists of 33 items that are assessed using a 5-point Likert scale to meas-
ure four dimensions, including emotion perception, emotion management of the self, 
emotion management of others, and emotion utilization [29]. Participants were asked 
to respond to each item: ‘1’ represented ‘not true of me’ and ‘5’ represented ‘very true 
of me’. Finally, the average score of all items was just the total score of emotional intel-
ligence. The Cronbach’s α in the present study was 0.90.

MRI imaging

All the MRI images were collected on the 3.0  T GE scanner Discovery MR750 at the 
Institute of Psychology Chinese Academy of Sciences. All the participants completed 
a T1-weighted structural MRI scan (eyes closed) with an ABI1_t1iso_fspgr sequence 
(TR = 6.652  ms; TE = 2.928  ms; FA = 12°; matrix = 256 × 256; slice thickness = 1  mm) 
and an 8-min resting-state fMRI scan (eyes open with a fixation cross) using a gradient 
echo EPI sequence ABI1_bold_bw_rest (TR = 2000 ms; TE = 30 ms; FA = 90°; number of 
slices = 33 (interleaved); slice thickness = 3.5 mm; gap = 0.7 mm; and matrix = 64 × 64).

Imaging data preprocessing

All the images were preprocessed using the Connectome Computation System (CCS), 
which was formulated by our lab using FSL, AFNI and FreeSurfer [30]. Its distinc-
tive characteristic is that it focuses on surface-based analysis compared to other rest-
ing-state fMRI data analysis pipelines. The system combines anatomical, structural 
and functional information to provide a computational platform for brain connec-
tome analysis with multimodal neuroimaging data [31]. Preprocessing is composed 
of structural image preprocessing and functional image preprocessing, and the main 
purposes of the preprocessing stage are (1) to remove irrelevant brain tissues, includ-
ing the skull, cerebrospinal fluid, and white matter; (2) to reduce the noise of the MRI 
images and (3) to facilitate registration across all the participants for the final group 
analysis. Structural image preprocessing was conducted surrounding cortical surface 
reconstruction [32, 33], which included (1) T1 image noise removal and brain extrac-
tion using the volBrain automated volumetry system (https​://www.volbr​ain.upv.es) 
[34]; (2) segmentation of cerebrospinal fluid (CSF), white matter (WM) and gray mat-
ter (GM), construction of the GM-WM (white surface) and GM-CSF interface (pial 
surface), and (3) spatial registration by matching of the cortical folding patterns across 
subjects by recon-all in FreeSurfer. The functional image preprocessing involved more 
procedures: the first 5 EPI volumes (10 s) are removed to allow for signal equilibra-
tion, removal and interpolation of temporal spikes, slice timing correction, align-
ment of each volume to a ‘base’ volume (the first EPI), normalization of the 4D global 
mean intensity into 10,000, motion-artifact removal using ICA-AROMA, correction 
of WM/CSF signals and the Friston-24 motion parameters [35, 36], bandpass (0.01–
0.1  Hz)  filtering, removal of both linear and quadratic trends, and alignment of the 

https://www.volbrain.upv.es
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individual functional image to the anatomical image with a GM-WM boundary-based 
registration algorithm [37]. Finally, individual preprocessed 4D rfMRI time series 
were projected onto the fsaverage5 standard cortical surface with 10,242 vertices per 
hemisphere and an average spacing of approximately 4  mm [38]. Figure  1 shows a 
simplified pipeline for the data analysis strategy we used in this study.

Quality control

Quality control plays key roles in making data analysis solid. Here, we considered 
the following steps for quality control: (1) brain extraction, (2) pial and white sur-
face reconstruction, (3) boundary-based functional image registration, and (4) head 
motion correction. For the first three procedures, we acquired screenshots and 
checked their qualities by visual assessment. Quantitative controls of boundary-based 
functional image registration (mcBBR ≤ 0.65) and head motion (meanFD < 0.3  mm) 
were also used. One participant did not complete MRI scanning, and one participant 
did not pass the mental health interview. Five participants were excluded because 
their mcBBR was greater than 0.65. One participant underwent only the emotional 
intelligence test but did not undergo the intelligence test. Therefore, 59 participants 
were included in the intelligence analysis, and 60 participants were included in the 
emotional intelligence analysis. Considering the wide age range of our participants, 
we divided all the participants into two groups: the young adult group (aged 19.5–
32.8) and the middle-aged group (aged 36.6–64.3 for intelligence and aged 35.9–64.3 
for emotional intelligence). Detailed participant information and behavioral measure-
ments are summarized in Tables 1 and 2.

Fig. 1  Pipelines for the data analysis strategies used in this study. All the data included structural MRI, 
functional MRI and behaviors. The data analysis comprised MRI data preprocessing, the vIFC algorithm (the 
flowchart), GLM statistics and connectivity distance
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D‑vIFC algorithm

vIFC has been proposed based on nonlinear dynamical theory as an efficient neu-
roimaging marker that indicates probabilities that a critical transition occurs in the 
absence of knowledge of the details of realistic network connections [18]. In more 
detail, vIFC was designed to integrate three properties of the center manifold (subnet-
work or a group of variables) in the abstract phase space of the complicated human 
brain network: increased within-group (dominant cluster) correlations, increased 
temporal variations and decreased between-group correlations. The neighborhood-
based vIFC algorithm has been successfully used in normal and abnormal popula-
tions [19, 20]. In this study, we used inter-areal distance instead of neighborhood to 

Table 1  Participant information. For  the  young adults, the  same participants (17 males 
and 14 females) were assessed for intelligence and emotional intelligence. For the middle-
aged adults, 28 participants were included in  the  intelligence assessment, and  29 
participants were included in the emotional intelligence assessment

a  meanFD is the average of the framewise displacement for in-scanner head motion
b  mcBBR is the minimal cost of the intrasubject coregistration with the boundary-based registration

Intelligence Emotional intelligence

Young adults

Age (years) 26.8 ± 4.3 (19.5–32.8) 26.8 ± 4.3 (19.5–32.8)

Sex (M/F) 17/14 17/14

Edu (years) 16.7 ± 2.5 (9–22) 16.7 ± 2.5 (9–22)

meanFD 0.09 ± 0.03 (0.05–0.15) 0.09 ± 0.03 (0.05–0.15)

errBBR 0.58 ± 0.03 (0.51–0.64) 0.58 ± 0.03 (0.51–0.64)

Middle-aged

Age (years) 50.1 ± 7.6 (36.6–64.3) 49.6 ± 7.9 (35.9–64.3)

Sex (M/F) 14/14 14/15

Edu (years) 14.1 ± 3.3 (8–22) 14.2 ± 3.2 (8–22)

meanFDa 0.13 ± 0.06 (0.06–0.29) 0.13 ± 0.06 (0.06–0.29)

errBBRb 0.56 ± 0.04 (0.48–0.62) 0.56 ± 0.04 (0.48–0.62)

Table 2  Behavioral measurements of all the participants (N = 60)

Measurements Average ± STD (Min–Max)

Full-scale IQ 122.83 ± 11.05 (97–142)

General ability index 122.71 ± 11.79 (101–146)

Cognitive proficiency index 119.05 ± 10.95 (92–147)

Verbal comprehension index 123.17 ± 9.92 (107–149)

Perceptual reasoning index 116.71 ± 14.11 (84–144)

Working memory index 115.53 ± 11.89 (89–148)

Processing speed index 117.98 ± 12.57 (92–145)

Emotional intelligence 3.96 ± 0.40 (3.12–4.73)

Emotional perception 3.55 ± 0.46 (2.33–4.50)

Self-emotion management 4.12 ± 0.40 (3.25–5)

Others’ emotion management 4.22 ± 0.54 (2.83–5)

Emotion utilization 4.27 ± 0.56 (2.86–5)
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define the boundary of the dominant cluster within the entire network architecture. 
The mathematical formula was the same as the original vIFC and is provided below:

As illustrated in Eq. 1, there are three types of vertices, i.e., {i}, 
{

j ∈ I
}

 , and 
{

k /∈ I
}

 . We 
chose four distance thresholds (D1 = 14 mm, vIFC1; D2 = 28 mm, vIFC2; D3 = 42 mm, 
vIFC3; D4 = 56  mm, vIFC4) to explore the associations between vIFC and behaviors 
at different spatial scales of brain connectivity. Figure  1 depicts D1 (vIFC1) and D2 
(vIFC2) as examples. Considering that Sepulcre et  al. [10] used 0.25 as a threshold of 
different distance-based functional connectivity networks, we calculated a Pearson cor-
relation connectivity network for each vertex i using connectivity thresholds p1 = 0.15, 
p2 = 0.2, p3 = 0.25 and p4 = 0.3. Then, for given vertex i, I represents all the vertices that 
have shorter distances (connecting to i) than the distance threshold, j represents ver-
tices within I, and k represents all the vertices that have longer distances (connecting 
to i) than the distance threshold within the entire connectivity network. According to 
the flowchart in Fig. 1, ‘in’ and ‘out’ represent the vertices inside and outside the sphere, 
respectively, with the radius of the distance threshold. N is the number of fMRI BOLD 
time points. xi(tn) stands for the fMRI BOLD value of the vertex i at time tn; PCC stands 
for the inter-vertex Pearson correlation coefficient across time; STD stands for the 
standard deviation of the BOLD time series; and <> in the ‘PCC’ means averaging across 
vertices. The calculation was repeated for each vertex, and we then obtained a D-vIFC 
map on the fsaverage5 surface of each participant. Considering that the distance thresh-
olds were 14 mm, 28 mm, 42 mm and 56 mm, the vIFC maps were spatially smoothed 
with Gaussian kernels of 10 mm, 14 mm and 18 mm on fsaverage5.

Statistics

We performed statistical analysis to study the associations between vIFC maps (vIFC1, 
vIFC2, vIFC3, vIFC4) and behavioral measurements (intelligence and emotional intel-
ligence) as shown in Fig.  1. We employed FreeSurfer Group Descriptor (FSGD) files 
to generate a general linear model that considered age, sex, and years of education as 
covariates with DODS (different offset and different slope) settings. For emotional intel-
ligence, we used two different statistical models for its total score (Eq. 2) and subscale 
scores (Eq. 3):

Similarly, for cognitive intelligence, we used three different models for full-scale intel-
ligence (Eq. 4), two subscales (Eq. 5) and four subscales (Eq. 6) as follows:

(1)vIFC(i) =
STD(i)PCCin

PCCout
=

√

∑N
n=1 (xi(tn)− �xi(tn)�)

2 ·
〈

PCCij

(

j ∈ I
)〉

〈

PCCik(k /∈ I)
〉

(2)vIFC = r1age + r2sex + r3edu+ r4EI + e

(3)vIFC = r1age + r2sex + r3edu+ r4EP + r5SEM + r6OEM + r7EU + e

(4)vIFC = r1age + r2sex + r3edu+ r4fIQ + e

(5)vIFC = r1age + r2sex + r3edu+ r4GAI + r5CPI + r6e
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Finally, the vertex-wise significance values for each contrast of group comparisons 
were corrected with the false discovery rate (FDR) method (FDR α = 0.05/2, corrected 
p = 0.05/2). After acquiring the clusters with significant vIFC-behavior correlations, we 
also plotted scatters for the residues of the average vIFC within the cluster and behavio-
ral measurements (EI and fIQ) after controlling for age, sex, and years of education.

Connectivity distance

Distance has been conceived in the algorithm of D-vIFC. Intelligence and emotional 
intelligence could be related to the functional criticality of different spatial scales. 
Here, we defined another new measurement called connectivity distance to validate 
our D-vIFC analysis and further characterize the spatial scales of individual behaviors 
(Fig. 1). First, we designated clusters with significant correlations between D-vIFC and 
intelligence (or emotional intelligence) as sigCluster. Then, we calculated whole-brain 
functional connectivity by taking sigCluster as the seed region for each participant. 
After Bonferroni multiple comparison correction, we obtained some vertices with signif-
icant functional connectivity with sigCluster. Connectivity distance for each participant 
was defined as the average distance between sigCluster and those vertices with signifi-
cant functional connectivity. Finally, we obtained the connectivity distance of vIFCi-IQ 
(i = 1–4, or vIFCi-EI) by averaging the distances of all the sigClusters corresponding to 
vIFCi versus IQ (EI).

Results
In this study, we used four smoothing sizes and four thresholds of connectivity (included 
in the definition of vIFC), and there were 16 sets of results for each statistical analy-
sis. The effects of both smoothing and the threshold of connectivity on the final results 
were both small and gradually changed from one to one, and this type of consistency 
indirectly demonstrated the reliability of our algorithm and the analysis used in this 
study. The threshold of connectivity p4 produced pronounced correlations in almost all 
the analyses in addition to the correlation between vIFC1 and CPI in middle-aged indi-
viduals (p1). Here, we report the most pronounced results based on p4, 14 mm of spa-
tial smoothing for emotional intelligence and 10 mm of spatial smoothing for cognitive 
intelligence. Apart from FDR multiple comparison correction of vertex-wise significance 
and Bonferroni correction for the two hemispheres, we also excluded the results with 
cluster sizes smaller than 5 vertices.

To provide an intuitive illustration of vIFC variations and a comparison with our pre-
vious neighborhood-based N-vIFC, we show the N-vIFC and D-vIFC of four different 
distance thresholds of one participant aged 25.6  years in the entire cortical mantle in 
Fig. 2. D-vIFC1, D-vIFC2, D-vIFC3 and D-vIFC4 exhibited very similar profiles. Similar 
to the original neighborhood-based functional criticality N-vIFC, the inferior parietal 
and precuneus exhibited large D-vIFCs. The normplots of the D-vIFC values showed 
that both the left end and the middle of the distribution followed a normal distribu-
tion, but only the middle part of N-vIFC followed a normal distribution. This conclusion 
was verified across all the participants. Our previous algorithm (N-vIFC) was based on 

(6)vIFC = r1age + r2sex + r3edu+ r4VCI + r5PRI + r6WMI + r7PSI + r8e
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a neighborhood in the definition of the ‘within-group’ cluster. The neighborhood only 
detected very local regions in the cortex, but distance-based vIFC (D-vIFC) could inte-
grate more information at different spatial scales in terms of ‘distance’. D-vIFC values 
were more similar to a normal distribution and would better characterize individual dif-
ferences in human brain and behaviors.

Intelligence and emotional intelligence were related to the functional criticality of separate 

brain regions for young adults

Figure 3 illustrates vertexwise significant positive correlations between vIFC and emo-
tional intelligence after FDR corrections. Emotion utilization in emotional intelligence 
increased with vIFC1-4 in the right superior frontal gyrus for young adults. In contrast, 
intelligence was associated with all four vIFCs. Specifically, intelligence decreased with 
vIFC1, vIFC2, vIFC3 and vIFC4 in the left occipital-temporal sulcus for young adults, 
as shown in Fig. 4. Hence, intelligence and emotional intelligence mapped to separate 
brain regions and did not share any circuits in terms of brain mechanisms. For an intui-
tive illustration of vIFC at different spatial scales, intelligence and emotional intelligence 
scores, we also plotted partial correlation scatters for each significant finding as shown 

Fig. 2  The N-vIFC and D-vIFC of one participant aged 25.6 years across the cortical mantle and their 
normplots

Fig. 3  Vertexwise significant positive correlations between vIFC and emotional intelligence across the entire 
cortical mantle in young adults. Emotion utilization in emotional intelligence increased with vIFC1, vIFC2, 
vIFC3 and vIFC4 in the right superior frontal gyrus for young adults
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in Figs. 3 and 4. Note that we excluded nonsignificant partial correlation clusters in Fig. 3 
(the right precentral sulcus) and Fig. 4 (the left orbital gyrus).

Age‑related interactions in brain mechanisms of intelligence and emotional intelligence

Using two groups of different ages, we observed significant age-related interactions 
in brain mechanisms of intelligence and emotional intelligence. For young adults, we 
observed significant negative brain-intelligence correlations in the left occipital-tempo-
ral sulcus. For middle-aged adults, we observed significant positive brain-intelligence 
correlations in the right insular gyrus (Fig. 5, the middle frontal sulcus). Additionally, we 
only observed significant associations of the brain with emotional intelligence in young 
adults. Such different brain correlates of intelligence and emotional intelligence at dif-
ferent ages indicate different developmental trajectories of intelligence and emotional 
intelligence.

Intelligence was associated with a wider distance range than emotional intelligence

Figure  6 shows the average connectivity distance for each significant brain-behavior 
association and provides a more direct validation of the differences between intelli-
gence and emotional intelligence. Blue and red represent negative and positive corre-
lations of vIFC and behaviors, respectively. Both emotional intelligence and cognitive 
intelligence were associated with all distances of functional criticality, vIFC1, vIFC2, 
vIFC3 and vIFC4, demonstrating that both intelligences were related to multiple spatial 
scales of brain functional organization. Additionally, when we assessed the clusters with 

Fig. 4  Vertexwise significant negative correlations between vIFC and intelligence across the entire 
cortical mantle in young adults. Intelligence decreased with vIFC1, vIFC2, vIFC3 and vIFC4 in the left 
occipital-temporal sulcus in young adults
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significant vIFC-behavioral correlations in the context of the Yeo-7 network, the right 
superior frontal gyrus resided in the default mode network. However, the left occipital-
temporal sulcus belonged to the visual network, and the right insular gyrus was a part 
of the ventral attention network. Consequently, intelligence was related not only to a 
wider distance range but also to more widespread functional hierarchies compared with 
emotional intelligence. We used two stars to represent significant differences at p < 0.001 
in the two-sample t-test of connectivity distances. Different thresholds (vIFC1, vIFC2, 

Fig. 5  Vertexwise significant positive correlations between vIFC and intelligence across the entire cortical 
mantle in middle-aged individuals. Cognitive proficiency decreased with vIFC1 in the right insula in 
middle-aged individuals

Fig. 6  The average connectivity distance for each significant brain-behavior association. Blue and red 
represent negative and positive correlations of vIFC and behaviors, respectively. We used two stars to 
represent significant differences at p < 0.001 in the two-sample t-test of connectivity distances. Middle-aged 
participants exhibited shorter connectivity distances of functional criticality compared with young adults
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vIFC3 and vIFC4) contributed to similar connectivity distances; middle-aged partici-
pants showed shorter connectivity distances than young adults. When we compared 
connectivity distances of emotional intelligence with cognitive intelligence, we found 
that cognitive intelligence had a longer connectivity distance (p = 0.002).

Discussion
Using distance-based functional criticality of the human brain, our study confirmed 
significant correlations of functional criticality with intelligence as well as emotional 
intelligence. For young adults, emotional intelligence was positively associated with all 
distances of functional criticality, and cognitive intelligence was negatively associated 
with all distances of functional criticality. For middle-aged adults, we observed signifi-
cantly positive correlations of intelligence with short distance functional criticality. Such 
different brain correlates of intelligence and emotional intelligence at different ages may 
indicate different developmental trajectories of intelligence and emotional intelligence. 
From the perspective of connectivity distance, intelligence was related to a wider dis-
tance range than emotional intelligence.

Intelligence and emotional intelligence were related to distance‑based functional 

criticality of separate brain regions for young adults

In this study, we observed significant correlations of distance-based functional criticality 
with intelligence and emotional intelligence in separate brain regions. This observation 
not only demonstrated that both intelligence and emotional intelligence were related to 
critical transitions of human brain dynamics, again verifying vIFC as an efficient neu-
roimaging marker [19, 20], but also implied possible interactions of intelligence and 
emotional intelligence in terms of their brain mechanisms. First, intelligence was a hot 
topic even 100 years ago, and it has been related to brain size [39, 40], brain morphology 
[41, 42], brain functional measurements [43–45], and network topology of brain mor-
phology and function, such as network efficiency and the small world [46, 47]. Although 
the concept of emotional intelligence is not completely accepted, it could represent a 
good supplement to cognitive intelligence. However, there have been few studies on the 
associations of intelligence/emotional intelligence with brain dynamics. Compared with 
neuronal avalanches mediated by structural heterogeneity of networks [48], functional 
criticality measures the probability of critical transitions of human brain dynamics at the 
spatial–temporal scale of millimeters and seconds acquired from fMRI. The correlations 
of intelligence/emotional intelligence with such abrupt changes in human brain dynam-
ics may underlie the contributions of large amounts of neurons spiking to cognition and 
emotion. In addition, neighborhood-based vIFC has been successfully used to verify 
MCI as a transition state during AD progression [19] as well as associations with behav-
ioral and physiological measurements [20]. Integrating important topological infor-
mation distance and eliminating the limit of the neighborhood hypothesis, this study 
again confirmed functional criticality as an efficient and sensitive neuroimaging marker, 
thereby promoting its application in future studies on normal and abnormal populations. 
Second, for the young adult group, intelligence was related to the left occipital-temporal 
sulcus, and emotional intelligence was related to the right superior frontal gyrus. The 
occipital-temporal area was sensitive to the face [49], body [50], written Chinese [51], 
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sustained visual attention [52] and multisensory integration [53]. These findings may be 
related to the comprehension capability of words and figures in intelligence tests. The 
frontal gyrus is part of the default mode network and is related to task switching [54] 
and cognitive control [55]. These were all higher-order cognitions and could be used to 
explain the comprehensive competence in the emotional intelligence test. If there were 
some overlapping brain regions for intelligence and emotional intelligence, the interac-
tions between them could be explained. Previous studies have demonstrated some inter-
actions between cognition and emotion [25, 26, 56]. However, our results did not show 
any overlapping regions here. The following reasons may explain these findings. There 
may indeed be very limited direct interactions between intelligence and emotional intel-
ligence in terms of functional criticality. In addition, our sample size was too small and 
the number of participants should be increased to deduce more conclusions.

Age‑related interactions in brain mechanisms of intelligence

First, we observed significant age-related interactions in the associations of functional 
criticality with intelligence. For young adults, intelligence was significantly negatively 
correlated with functional criticality in the left occipital-temporal sulcus. For middle-
aged adults, intelligence was significantly positively correlated with functional criti-
cality in the right insular gyrus. The inverse correlations of functional criticality with 
intelligence at different ages may be explained as follows. Young adults need fewer large 
changes in brain activity or metabolic cost to achieve cognitive intelligence; however, 
middle-aged adults require more large changes in brain activity or metabolic cost to 
achieve cognitive intelligence. Additionally, the occipital-temporal sulcus is more related 
to visual function [49–52], and the insular gyrus is more related to limbic and higher-
order hierarchy across the entire cortex [57, 58]. These findings consistently indicated 
that the intelligence of middle-aged adults recruited more resources and higher hierar-
chy regions compared with young adults, and this conclusion was consistent with the 
developmental theory of the human brain: the more complicated brain regions, such as 
the prefrontal cortex, mature the latter [59]. Second, for young adults, intelligence was 
significantly correlated with all distance-based vIFCs. However, for middle-aged adults, 
intelligence was significantly correlated with short distance-based vIFCs. Such different 
distance dependence at different ages was consistent with previous human brain func-
tional development studies that demonstrated that long-range connectivity was more 
sensitive to aging [60, 61]. Third, there were studies addressing age-related interactions 
in the associations of amygdala-frontal connectivity with emotional face processing [62]; 
there were also studies reporting age interactions in the associations of intelligence with 
electrical signals of the human brain [63] and reinforcing age correlations of intelligence 
with human brain morphology [64] and human brain functional connectivity [65]. How-
ever, no intelligence-related study has demonstrated inverse associations of intelligence 
with the human brain at different ages. Our study is the first to show a transition from a 
negative to a positive association of the human brain with intelligence. Actually, not only 
the development of intelligence and emotional intelligence [66] but also the associations 
of intelligence with the human brain are dynamic. Our study promotes the use of more 
specific age bins and gives full consideration to age effects in future human brain studies.
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Intelligence was related to a wider distance range than emotional intelligence

Our study showed that intelligence was related to all distance-based vIFCs in young 
adults and short-distance vIFC1s in middle-aged adults, but emotional intelligence 
was only related to all distance-based vIFCs in young adults. Actually, there were 
only a few studies integrating intelligence and emotional intelligence together [21, 
67, 68], and they only involved behavioral measurements but no brain mechanisms. 
Intelligence is a widely accepted and widely used construct in scientific research, 
whereas the concept of emotional intelligence is not widely accepted in the academic 
field. Intelligence comprised reason, plan, solve problem, think abstractly, compre-
hend complex ideas, learn quickly and learn from experience. Hence, intelligence is 
a very complicated and complex concept. In contrast, emotional intelligence refers 
to social intelligence, and the notion of social intelligence as a dark intelligence [69], 
its dimensional structure [70], and its ability to moderate the relationship between 
stress and mental health have been assessed [71]. Given the definitions of intelligence 
and emotional intelligence, intelligence should be the basis of emotional intelligence. 
Therefore, intelligence was related to wider distance vIFC compared to emotional 
intelligence.

Furthermore, our study was the first to associate intelligence and emotional intel-
ligence with distance, a quantitative measurement of human brain functional archi-
tecture. Intelligence was related to all distance-based functional criticality. This 
finding is consistent with findings from previous studies indicating that intelligence 
was associated with shorter characteristic path length [47] together with increased 
local information processing[72], long-distance theta coherence between frontal 
and parieto-occipital areas [73], and phase locking between short-distance regions 
of the frontal cortex [74]. However, there was no distance-related demonstration of 
emotional intelligence. Given that distance is a key factor in human brain functional 
organization, different distance dependences may characterize different psychological 
measurements, such as intelligence and emotional intelligence. Our study may pro-
mote distance as a quantitative marker for future psychological behavioral studies.

There were also some limitations in this study. The sample size has become increas-
ingly important in fMRI studies, and our sample size was not large. Sample size may 
affect our results here, and in the future, big data should be used to verify the asso-
ciations of distance-dependent vIFC with intelligence and emotional intelligence. 
Additionally, considering that criticality is a dynamic characteristic close to phase 
transition, measuring human brain criticality during the performance of tasks rather 
than resting-state fMRI would be very promising in future studies.

Conclusions
Our study confirmed that both emotional and cognitive intelligence were associ-
ated with functional criticality. For young adults, emotional intelligence was posi-
tively associated with all distances of functional criticality, and cognitive intelligence 
was negatively associated with all distances of functional criticality. For middle-
aged adults, only cognitive intelligence was positively correlated with short distance 
functional criticality. For different age groups, our findings not only revealed an 
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association between intelligence/emotional intelligence and functional criticality but 
also quantitatively characterized individual behaviors in terms of anatomical distance.
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