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Abstract

Background: Data-driven cell classification is becoming common and is now being implemented on a massive
scale by projects such as the Human Cell Atlas. The scale of these efforts poses a challenge. How can the results be
made searchable and accessible to biologists in general? How can they be related back to the rich classical
knowledge of cell-types, anatomy and development? How will data from the various types of single cell analysis be
made cross-searchable? Structured annotation with ontology terms provides a potential solution to these problems.
In turn, there is great potential for using the outputs of data-driven cell classification to structure ontologies and

integrate them with data-driven cell query systems.

Results: Focusing on examples from the mouse retina and Drosophila olfactory system, | present worked examples
illustrating how formalization of cell ontologies can enhance querying of data-driven cell-classifications and how
ontologies can be extended by integrating the outputs of data-driven cell classifications.

Conclusions: Annotation with ontology terms can play an important role in making data driven classifications
searchable and query-able, but fulfilling this potential requires standardized formal patterns for structuring
ontologies and annotations and for linking ontologies to the outputs of data-driven classification.
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Background

Data-driven classification of cell types

Data driven classification of cell types via unsupervised or
semi-supervised clustering is becoming common. Exam-
ples include classifications derived from transcriptomic
profiles from single cell RNAseq [1] and seqFISH [2], from
neuronal morphology [3] and neurophysiology [4]. Other
methods are likely to follow with the collection of other
large datasets profiling single cells including single cell
metabolomic data [5] and complete connectomic profiles
of cells [6, 7]. Classification from transcriptomic profiles is
likely to become dominant via large scale projects includ-
ing cell atlases for Humans [8] and Drosophila [9].
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It is still an open question whether these different ap-
proaches to classification will produce multiple, orthog-
onal classifications, distinct from classical classifications,
but early results suggest not. For example, the unsuper-
vised classification of retinal bipolar cells using single
cell RNAseq data recapitulates and further subdivides
classical classifications of these cell types, rather than
being consistent with a novel classification scheme [1].
Similarly, unsupervised clustering of imaged single Dros-
ophila neurons using a similarity score for morphology
and location (NBLAST) identifies many well-known
Drosophila neuron types [3]. These results and others
are consistent with the existence of cell types corre-
sponding to stable states in which cells have characteris-
tic morphology, gene expression profile, and functional
characteristics etc.
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Data-driven queries for cell types

With data driven classification comes the possibility of
data-driven queries for cell-types. NBLAST is already in
use as a query tool allowing users to use a suitably-
prepared neuron image to query for neurons with simi-
lar morphology, with results ranked, as for BLAST, using
a similarity score.

BLAST-like techniques are also being developed to
automatically map cell identity between single cell RNA-
seq experiments. For example, SCMAP [10] can map be-
tween cell clusters from two different single cell RNAseq
analyses, or from clusters in one experiment to single
cells in another.

Unsupervised clustering of transcriptomic profiles to
predict cell-types also produces a simpler type of data
that might be used for data-driven queries for cell-types:
small sets of marker genes whose expression can be used
to uniquely identify cell-types within the context of a
clustering experiment. A clustering experiment that uses
CD4 positive T-cells or retinal bipolar cells as an input
may provide unique sets of markers for subtypes of these
cells. Where these correspond to known markers of sub-
types of CD4 positive T-cells or retinal bipolar cells they
can be used directly for mapping, where not they can be
used to define new cell types.

Coping with the deluge

These new single-cell techniques hold enormous prom-
ise for providing detailed profiles of known cell types
and identifying many new cell types. In combination
with targeted genetic manipulation, they promise to un-
lock a transcriptome level view of changes in cell state
and differentiation [11].

But this work faces a problem, especially when carried
out on a scale as large as the Human Cell Atlas. How
can the results be made searchable and accessible to bi-
ologists in general? How can they be related back to the
rich classical knowledge of cell-types, anatomy and de-
velopment? How will data from the various types of sin-
gle cell analysis be made cross-searchable? Clearly data-
driven queries for cell-type will be an important part of
the solution, but to be useful to biologists, single cell data
needs to be attached to human-readable labels using well-
established classical nomenclature. Where new cell-types
are described, we need standard ways to record the
anatomical origin of the analyzed cells as well as the devel-
opmental stage and characteristics of the donor organism
(age, sex, disease state efc).

Classification and annotation of cell types by ontologies

We already have computer-readable representations of
classical classifications of cell types in the form of cell-
type and anatomy ontologies. The Cell Ontology is a
(mostly) species-neutral ontology of cell types [12].
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Species-specific cell-type classifications exist in in a
number of single-species anatomy ontologies including
ontologies of zebrafish (Zebrafish anatomy ontology [13]),
Drosophila (Drosophila anatomy ontology [14]) and hu-
man anatomy (Foundational Model of Anatomy [15]).

Each of these ontologies provides a controlled vocabu-
lary for referring to cell-types and a mapping to
commonly-used synonyms. Each also provides a nested
classification of cell-types and records their part rela-
tionships to gross anatomy. They are commonly used to
annotate gene expression, phenotypes and images.

These class and part hierarchies are commonly used
for grouping annotations. For example, if a gene is anno-
tated as expressed in a retinal bipolar neuron we might
use classification and part relationships in an ontology
to infer that it is expressed in the retina and expressed
in a (type of) neuron.

It is, of course, not always clear precisely what known cell
type, if any, corresponds to a single cell whose image or
transcriptome we have or corresponds to a cluster of simi-
lar cells predicted by unsupervised clustering. In this case,
ontologies can be a source of more general cell classifica-
tions that may applicable (lymphocyte; cortical interneuron;
epithelial cell). Along with other information, they can also
be used to describe the properties of unidentified cells. For
example, virtual Fly Brain records the location of the vari-
ous parts of unidentified neurons depicted in single cell im-
ages on the site, as well as the transgenes they express.

Specifying context in this way can be very useful to
working with the outputs of unsupervised clustering of
trancriptomic data — by providing a way to specify a
context within which sets of marker genes defined by
this analysis can be used to uniquely identify cell-types.

Conversely, the knowledge recorded in ontologies (part
relationships, developmental stage, records of function)
and in annotations may also be useful in homing in on
candidate mappings for unmapped single cells. For ex-
ample, the Drosophila anatomy ontology has been used to
record the expression of transgenes in specific neuron
types in the Drosophila brain and to record which brain
regions these neuron-types overlap. Both these types of
information are recorded for individual neurons.

In as far as these ontologies accurately record nomen-
clature, classification and part relationships to anatomy
they are ideally suited to provide a mechanism for anno-
tation of single-cell experiments. But cell ontologies will
only be able to play this role if they are sufficiently
accurate, flexible and scalable enough to keep up with
the flood of new data.

Making cell ontologies scalable and query-able with
design patterns

Scalability and accuracy and query-ability of ontologies
depends on formalization. All except the human-specific
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Foundational Model of Anatomy (FMA) are expressed
in Web Ontology Language 2 (OWL2). OWL2 is a de-
scription logic that allows the expression of assertions
about classes (the class of all neurons) and individuals
(the individual neuron depicted in Fig. 3b) using quanti-
fied logic [16]. For example, we might assert that all
retinal bipolar neurons are synapsed by a photoreceptor
cell, or that any neuron that secretes glutamate as part
of synaptic transmission is a type of glutamatergic
neuron. These types of assertions are used to automatic-
ally OWL classes in a large and increasing number of
ontologies (e.g. [12, 14, 17] In some resources, such as
Virtual Fly Brain (VEB), they are used to classify individuals
and to drive query systems [14, 18-21].

Multiple axes of classification are required for cell on-
tologies to be useful to biologists: A single neuron may
be classified by structure (pseudo-bipolar), electrophysi-
ology (spiking), neurotransmitter (glutamatergic), sen-
sory modality (secondary olfactory neuron), location(s)
within the brain (antennal lobe projection neuron,
mushroom body extrinsic neuron), etc. But manually
maintaining these multiple axes of classification simply
doesn’t scale: adding new terms requires (human) edi-
tors to know all of the appropriate classifications to add
and how to rearrange existing classifications to fit the
new term. It also requires them to understand the intent
behind existing manually asserted classifications, which
is typically partially documented at best. To cope with
this, many ontologies have gradually moved over to
using something approximating ‘Rector’ normalization
[22]: minimizing the use of asserted classification in
favor of automatically inferred classification driven by
OWL equivalence axioms specifying necessary and suffi-
cient conditions for class membership. Consistency is
maintained by the use of standard design patterns for
representing class properties. The same design patterns
can be used to annotate individuals allowing cross-
querying of the ontology and individuals and auto-
classification of individuals.

This approach has been used for a wide range of ontol-
ogies including the Gene Ontology [17], the Drosophila
Anatomy Ontology [14] and the Cell Ontology [12]. In the
Drosophila anatomy ontology, which includes 4767 cell
classes, 48% of classifications (5893/12233) are automated
via 2807 equivalent class axioms. In the Cell Ontology
59% of classifications (1910/3253) are inferred based on
2907 equivalent class axioms.

The strength of this approach is that it can be used to
integrate diverse types of knowledge and data into a sin-
gle query-able classification. An ontology might record
information about the structure, function, lineage, loca-
tion, connectivity and gene expression of some class of
neuron or of an individual neuron and use one or more
of these properties to classify it. A potential weakness is
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the mismatch between quantified logic, which records
assertions about a/l members of a class, and the messy,
noisy reality of biology and the data we collect about it.
For example, when single cell transcriptomics and un-
supervised clustering are used to find and predict cell
types, the same experiments identify markers that can
be used to distinguish them from other cell-types identi-
fied in the same experiment. These markers could be
used to formally define cell-types. But, either through
natural variation, or noisy data, these markers are not
perfect — all have some level of false positive and false
negatives when judged against clusters mapped to cell
types [1, 23].

Here I present two case studies of how formalizing cell
ontologies and using them to annotate the results of
single cells analysis can improve the searchability and
query-ability of the single cell data. In both cases I
explore how we might use the outputs of single-cell
analysis to extend cell ontologies and link them to data
that can be used for data-driven queries for cell types.

Results

Case study: Mouse retinal bipolar neurons

Background

Retinal bipolar cells (RBCs) are a well characterized class
of neurons of that transduce and process signals from
the rod and cone photoreceptor cells of the vertebrate
retina. RBCs are classically divided into classes based on
whether they are synapsed by rod or cone cells (and if so
by which types of cone cell), which laminas of the inner
plexiform layer of the retina their axons arborize in and
on the morphology of their axonal arbor [24]. Mammalian
RBCs can also be divided into functional groups depend-
ing on whether they depolarize in response to a light
stimulus (ON) or to the removal of a light stimulus (OFF)
and whether they carry chromatic or achromatic informa-
tion. A complete connectome for a single region of the
mouse retina provides connectomic profiles and circuit
context for over 400 RBCs [7]. A classification derived
from unsupervised clustering of 25,000 single mouse RPC
transcriptomes by Shekhar and colleagues [1] found 15
cell types distinguishable by transcriptome. This study also
identified marker genes for each cell type which they then
used in microscopy studies to determine morphologies of
cells corresponding to each type. This, along with map-
ping of previously known marker genes to transcriptomes,
showed that the transcriptomic derived types recapitulated
and further subdivided classical classifications.

Formalizing the representation of retinal bipolar neurons to
enhance querying and grouping of transcriptomic data

The cell ontology already contains terms for the major sub-
classes of RBCs in the mouse (see Fig. 1) along with manual
classification by photoreceptor cell input (rod vs cone) and
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A8 ® 'retinal bipolar neuron’

v “'cone retinal bipolar cell'
'type 1 cone bipolar cell (sensu Mus)'
'type 2 cone bipolar cell (sensu Mus)'
'type 3 cone bipolar cell (sensu Mus)'
'type 4 cone bipolar cell (sensu Mus)'
'type 5 cone bipolar cell (sensu Mus)'
'type 6 cone bipolar cell (sensu Mus)'
'type 7 cone bipolar cell (sensu Mus)'
'type 8 cone bipolar cell (sensu Mus)'
'type 9 cone bipolar cell (sensu Mus)'
v “'OFF-bipolar cell'
'type 1 cone bipolar cell (sensu Mus)'’
‘type 2 cone bipolar cell (sensu Mus)'
‘type 3 cone bipolar cell (sensu Mus)'’
'type 4 cone bipolar cell (sensu Mus)'’
v “'ON-bipolar cell’
'rod bipolar cell’
'type 5 cone bipolar cell (sensu Mus)'
'type 6 cone bipolar cell (sensu Mus)'
'type 7 cone bipolar cell (sensu Mus)'
'type 8 cone bipolar cell (sensu Mus)'
'type 9 cone bipolar cell (sensu Mus)'

Fig. 1 Classification of retinal bipolar cells in the cell ontology. Note
that general types (rod, cone, ON, OFF) are non-species specific,
whereas specific types are specified for mouse. This is necessary

because morphologically defined classes vary between species

by function (ON vs OFF). However, prior to this work,
these terms lacked formal definitions useful for automated
classification and querying. Figure 2 shows extensions to
the cell ontology which formalize classification the general
RBC class (retinal bipolar neuron) and its major subclasses.

RBCs are known to be to be glutamatergic and to form
excitatory synapses to their target cells. Fig. 2 shows axi-
omatization of the general RBC class (retinal bipolar
neuron) leading to classification under glutamatergic
and excitatory. The former classification is likely to cor-
relate with the expression of genes involved in glutamate
synthesis transport and secretion and so is a potentially
a useful classification for cross-querying transcriptomic
data. The new axiomatization also deploys standard
patterns for recording sensory modality [20] to classify
RBCs as visual system neurons.

To formalize classification of OFF vs ON responsive
RBCs, I added new terms on the response branch of the
Gene Ontology covering response to light-dark transition
and response to dark-light transition. I then used these to
compose formal axioms referring to the response to these
transitions as part of visual perception, using these axioms
to automate classification. This major functional subdiv-
ision of RBCs is likely to be reflected in transcriptomic
differences and so is a potentially a useful classification for

A N

'bipolar neuron'
and ('part of' some retina)

SubClass Of
'capable of part of' some 'visual perception'

'capable of' some (‘glutamate secretion, neurotransmission’
and 'part of' some 'excitatory chemical synaptic
transmission')

'bipolar neuron’
'excitatory neuron'
'glutamatergic neuron'
'retinal cell'

'visual system neuron'

Equivalent Tc

'retinal bipolar neuron'

that (expresses some 'neuropilin and tolloid-like protein 1
(mouse)')

and (expresses some 'LIM/homeobox protein Lhx3 (mouse)')
and (expresses some 'iroquois-class homeodomain protein
IRX-6 (mouse)')

JClass Of
'axon synapses in' some 'sublaminar layer S1'

'capable of' some (‘response to light-dark transition' that
'part of' some 'visual perception')

'retinal bipolar neuron'

'synapsed by' some 'retinal cone cell'
'cone retinal bipolar cell'

'OFF-bipolar cell'

Fig. 2 Automated classification of retinal bipolar neurons in the cell
ontology. Panel a: Axioms linking retinal bipolar neuron to GO terms
(‘'visual perception’, ‘glutamate secretion, neurotransmission’, ‘excitatory
chemical synaptic transmission’) along with axiomatization elsewhere
in CL (not shown) is sufficient for inferred classification (in yellow) as a
glutamatergic, excitatory, visual system neuron. Panel b: Formal
Definition of type 2 cone bipolar cell using marker genes. Subclassof
axioms are sufficient for inferred classification of this cell type as a cone
retinal bipolar cell and an OFF bipolar neuron

cross-querying transcriptomic data. I also used standard
relationships for modelling neuroanatomy [18] to record
which laminas of the plexiform layer each RBC innervates,
making this information queryable.

Using the outputs of data driven classification to structure
an ontology of retinal bipolar neurons

What outputs of transcriptomic, data driven classifica-
tion might we usefully incorporate into ontologies?
Assertions about marker expression are an obvious can-
didate. These are potentially very valuable to biologists
seeking reliable markers for identifying specific neuronal
classes in their experiments. If used to construct equiva-
lent class expressions, they are also potentially useful for
providing formal definitions for classes newly identified
by transcriptomic analysis. They can also be useful for
automated classification of cell-types from minimal data.
For example, Shekhar and colleagues identify Igfnl as a
marker that distinguishes type 7 RBCs from other RBC
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types. On this basis, we could add an equivalent class
axiom recording that any RBC that expresses Igfnl is a
type 7 RBC. Where multiple markers of a cell types are
identified multiple equivalence-axioms could be added.
This process of generating equivalence axioms could po-
tentially be automated using mappings of cell ontology
terms to data-derived clusters.

A closer look at the data reveals a potential problem:
within clustered transcriptomes there are small numbers of
cells that fail to express an identified maker, or express a
marker diagnostic of another type. In the case of Igfnl and
type 7 RBCs the percentage of false positives appears very
low, and may be acceptable. In other cases (Nnat in type
3B RBCs) the potential level of false positives is very high.

There are a number of possible strategies for dealing
with this. Mappings could be limited to cases where the
expected false positive rate is below some cut-off. Axioms
could be annotated to include a record of the expected
false positive rate. A more conservative approach would
be, wherever possible, to generate equivalence axioms
combining multiple gene expression assertions per cell
type. I have taken this approach in extending the cell
ontology (Fig. 2). However, with this pattern, automated
classification from data will only be possible for experi-
ments where expression of all marker genes is assayed.

Case study: Drosophila antennal lobe projection neurons
Background

The antennal lobe of Drosophila is made up of 50 glom-
eruli, each of which receives input from a single type of
olfactory receptor neuron. Each glomerulus is also inner-
vated by uniglomerular projection neurons that carry
olfactory information to higher brain centers [25].

The NBLAST algorithm [3] measures how similar two
neurons are with respect to their morphology and location.
Using co-registered single-cell image data for over 16,000
individual neurons, Costa and colleagues generated a
matrix of pairwise NBLAST similarity scores for all neurons
and then used unsupervised clustering to find potential cell
types. Many of these clusters correspond to classically de-
fined neuron types in the Drosophila brain, including many
types of antennal lobe projection neurons [3].

In an independent study, Li and colleagues generated a
classification for antennal lobe projection neurons using
unbiased clustering based on transcriptome profiles from
several thousand projection neurons at various stages of
their development [23]. Cells for this study were isolated
based on expression of a transgenic marker expression
(GH146). VEB and FlyBase have extensive annotation of
expression of this marker to cell types, providing one pos-
sible route to candidate terms for mapping transcriptomic
clusters. This study didn’t identify single marker genes
that could uniquely distinguish clusters, but rather identi-
fied broader markers.
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The question of which data-type provides the most
detailed classification is likely to vary with cell type. For
example, automated classification from single-cell RNA-
seq profiling of Drosophila olfactory projection neurons
shows that some neurons are indistinguishable at the
transcriptomic level belong to different classes defined
by location, morphology, lineage and odor response [23].
Their distinct odor response functions are likely to be
conferred by their connectivity.

Formalizing the representation of drosophila antennal lobe
projection neurons

The Drosophila anatomy ontology already includes richly
axiomatised classes for all 50 known uniglomerular pro-
jection neurons defined by a combination of lineage and
glomerulus innervated. It also includes classification of
these neurons by sensory modality and neurotransmitter
released. It captures the tract through which each projec-
tion neuron type projects and the higher brain regions
that they innervate.

Annotation of clusters of single neuron images with
the ontology terms enriches the annotated image data by
linking it to formal, query-able descriptions of its rela-
tionships to gross anatomy (innervation, fasciculation).
This allows, for example, queries for images of neurons
in a specified tract, or that innervate one or more speci-
fied brain regions.

Li and colleagues find similarity in gene expression
profiles between cells sharing the same lineage. The
query-able lineage information encoded in the ontology
will make it easy to explore this further. The Drosophila
anatomy ontology also encodes and growing set of
query-able formal assertions of neurotransmitter for
each class of neuron and direct records of known synap-
tic connections between neuron types. With this infor-
mation, it is possible to group transcriptomes of neurons
by neurotransmitter to look for patterns of gene ex-
pression which correlate this, and to group transcrip-
tomes of cells synapsed to these neurons to search for
expression of relevant neurotransmitter receptors and
associated proteins.

Using the outputs of data driven classification to structure
the ontological representation of antennal lobe projection
neurons
What outputs of NBLAST based clustering might we
usefully incorporate into ontologies? It would be useful
to provide a link to data that could be used for subse-
quent queries. The clustering algorithm used in this
study identified an exemplar (most typical) neuron for
each cluster.

Where clusters are mapped to ontology classes, the
image of a cluster exemplar can serve as an exemplar for
the class — serving a role similar to that of a type
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specimen in taxonomy. This can be used both as a visual
reference for the morphology and location of the neuron
type, and as a substrate for future queries with NBLAST
or any other search tool that can use image data. The
exemplar approach has already been used by VFB to de-
fine the boundaries of brain regions via links to image
data. It may also prove useful for the outputs of other
clustering methods, for example, a link from a cell-type
classes to an exemplar transcriptomic profile might pro-
vide a substrate for SCMAP queries to identify clusters
corresponding to the same or similar neuron types in
other clustering experiments.

Figure 3, panel a shows the axiomatization of a uniglo-
merular projection neuron class (DL2d adPN) along with
a formal link to an exemplar neuron (VGlut-F-400462)
illustrated in panel b.

Discussion

Future challenges

The examples given here are well axiomatised, but the
degree of effort put in to axiomatising will, of course, de-
pend on use cases and resources in individual projects.
Much annotation of classifications from unsupervised
clusterings are likely to be simpler and more general —
particularly when less well studied tissues are being
characterized.

Given the huge scale of major efforts to automatically
characterize and classify cell types, annotation efforts
will need to be efficient and flexible. The same will apply
to efforts to make use of the outputs of unsupervised
clusterings to extend and refine ontology terms. For ex-
ample, efficient mapping of markers to cell types would
require semi-automated pipelines that can run as soon
as mappings are generated. It should be possible to use
machine learning methods to determine the most in-
formative set of markers to use in classification of each
cluster in the context of a single clustering analysis.

Patterns of axiomatization

Equivalence axioms are now widely used within biomed-
ical ontologies as a means of automating classification
both within ontologies and of individuals. The success of
this effort depends on devising equivalent class axioms
with the minimal commitment necessary for correct
classification and using standard design patterns. With
this approach, it is possible for ontology editors to keep
track of the basic properties and patterns needed to
drive classification.

The rise of complete profiles of cell types poses
some dilemmas for this approach. If, as seems likely,
there are multiple sets of criteria that can be used to
distinguish cell types, should this be reflected in the
use of multiple equivalence axioms? To what extent
should we record additional properties of classes as
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VGlut-F-400462

s

ol

2>

Equivalent Tc

@'uniglomerular antennal lobe projection neuron'
and ('part of' some 'adult brain')
and (has_postsynaptic_terminal_in some 'antennal lobe glomerulus DL2d")
and (develops_from some 'neuroblast ALad1’)

SubClass Of

® has_exemplar value VGlut-F-400462

@ has_presynaptic_terminal_in some 'calyx of adult mushroom body'
¥ has_presynaptic_terminal_in some 'lateral horn'

©'adult uniglomerular antennal lobe projection neuron adPN'
©'unilateral ACT relay interneuron’

Fig. 3 Linking projection neurons to exemplars derived from
clustering. Panel a: Cluster of neurons with similar morphology

from unsupervised clustering of >16,000 co-registered single neuron
images (Costa et al. [3]) Panel b: VGlut-F-400462 (Chiang et al,, [29])
is the exemplar (most typical neuron) from the cluster in panel A is
shown in yellow. It has arborizes in the antennal lobe (AL; red), calyx
of adult mushroom body (MB calyx; purple), lateral horn in (LH; blue).
Image generated in VFB 2.0 alpha (unpublished). Panel ¢: OWL
Axiomatization defining ‘adult antennal lobe projection neuron DL2
adPN’, which the cluster in panel a was manually mapped to. A
minimal-commitment equivalent class axiom defines the class my
lineage and innervated glomerulus. Innervation of the MB calyx and
LH are recorded in subclass axioms. The axiom in blue links this class
to the exemplar of the cluster, providing a standard reference for
morphology and a substrate for future NBLAST queries of

co-registered neurons

simple subclassing axioms? The combination of equiva-
lence and subclassing (restriction) axioms generates hid-
den General Class Inclusion axioms — logically associating
sets of properties with each other in a way that can be
hard to keep track of.
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Thomas Gruber’s ‘principle of minimal commitment’
[26] is particularly relevant to this discussion. This
principle suggests that:

“An ontology should require the minimal ontological
commitment sufficient to support the intended
knowledge sharing activities. A shared ontology need
only describe a vocabulary for talking about a domain
whereas a knowledge base may include the knowledge
needed to solve a problem or answer arbitrary queries
about a domain.”

The examples in this paper illustrate how knowledge
embedded in ontologies can enrich querying of datasets
that provide ‘omics profiles of cell types. But we need to
avoid bloating ontologies with information that allows
‘arbitrary queries about a domain, especially where such
queries could better be served via queries of annotated
data. For example, while it may be useful to include
qualitative assertions about marker gene expression in
ontologies, arbitrary queries for cell types by gene ex-
pression should involve direct queries of transcriptomic
data. Devising strategies to keep this balance sustain-
able will be one of the major challenges for the future
development of cell ontologies.

Linking ontologies to data-driven queries

Where ontology annotation provides broad contextual
information about an individual cell-type identified by
unsupervised clustering, it serves to narrow down the
input data to a data-driven query for similar cell types.
This is important because data-driven querying can be
very compute-intensive [3, 10] making scaling across a
growing dataset potentially limiting. Where more precise
annotation of cell-type is possible, linking cell-types to
data that can be used in data-driven queries can help
users find potential matches and is potentially a source
of automated annotation.

Conclusions
Annotation with ontology terms can play an important
role in making data driven classifications searchable and
query-able. This role requires attention to both the lexical
and formal aspects of ontology development. Extensive
synonym collection is necessary to maximize findability.
Formalization is needed to support multiple inheritance
classification querying and automated classification of
individuals from annotation. Successful formalization re-
quires the development of clear, well documented design
patterns in which equivalent class axioms are kept
minimal — with clear aims in mind for use.

By supporting general assertions about cell-types and
their properties, ontologies and the application of standard
design patterns to annotation can support the description
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of single cell data at multiple levels of precision, depend-
ing on available data. This can be used to specify the
context in which marker genes uniquely identify a cell
type, or to provide lists of candidate cell-types for
mapping to a single cell or predicted cell type from
data-driven classification.

The relevance and usefulness of annotation with
ontologies can be increased by suitable strategies for
linking ontology term to data useful for data-driven
queries for cell type.

Methods
Ontology editing was carried out using Protégé 5.2 [27].
Ontology reasoning used the ELK OWL reasoner [28].

Abbreviations

FACS: Fluorescence-activated cell-sortingRNAsegRNA sequencing;
RBC: Retinal bipolar cell; SCMAP: Single cell map; SeqFISH: Sequential
fluorescent in situ hybridization
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