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Abstract

We report on the characteristics of near-band-edge (NBE) emission and deep-level band from ZnO/Al2O3 and ZnO/
ZnO core-shell nanorod arrays (NRAs). Vertically aligned ZnO NRAs were synthesized by an aqueous chemical
method, and the Al2O3 and ZnO shell layers were prepared by the highly conformal atomic layer deposition
technique. Photoluminescence measurements revealed that the deep-level band was suppressed and the NBE
emission was significantly enhanced after the deposition of Al2O3 and ZnO shells, which are attributed to the
decrease in oxygen interstitials at the surface and the reduction in surface band bending of ZnO core, respectively.
The shift of deep-level emissions from the ZnO/ZnO core-shell NRAs was observed for the first time. Owing to the
presence of the ZnO shell layer, the yellow band associated with the oxygen interstitials inside the ZnO core
would be prevailed over by the green luminescence, which originates from the recombination of the electrons in
the conduction band with the holes trapped by the oxygen vacancies in the ZnO shell.
PACS 68.65.Ac; 71.35.-y; 78.45.+h; 78.55.-m; 78.55.Et; 78.67.Hc; 81.16.Be; 85.60.Jb.

Introduction
Because of large surface-to-volume ratio and spatial con-
finement of carriers, researches on one-dimensional (1D)
nanostructures have attracted great interest [1-3], and
remarkable progress has been achieved in various electro-
nic, photonic, and sensing devices [3-7]. Novel synthetic
approaches to the fabrication of high-quality semiconduc-
tor nanotubes have been reviewed by Yan et al. [8]. Zinc
oxide (ZnO) has been regarded as one of the most promis-
ing materials for 1D nanostructures due to its distin-
guished characteristics such as direct and wide band gap
(approximately 3.37 eV), large excitonic binding energy
(up to 60 meV), and high piezoelectricity [9-11]. The
synthesis of well-aligned ZnO nanorod arrays (NRAs) is
crucially important for the practical applications such as
field emitters [12], nanogenerators [13], solar cells [14],
and nanolasers [15]. One of the popular techniques for
fabricating ZnO NRAs is to use Au as catalyst on a lattice-

matched substrate [16]. Since the optical properties of
ZnO NRAs are strongly dependent on surface conditions
[17-20] and natural defect states [21-24], a large variety of
surface modifications on ZnO NRAs have been carried
out by depositing a shell layer. For instance, the enhance-
ment of photoluminescence (PL) has been observed in
ZnO/Er2O3 and ZnO/MgZnO core-shell NRAs [25,26].
The enhanced surface-excitonic emission together with
the suppression in deep-level emission has also been
reported in ZnO/amorphous-Al2O3 core-shell nanowires
[27]. Apart from the enhancement of light emission,
strong photoconductivity [28], photocatalytic activity [29],
and quantum confinement [30] have been observed in var-
ious 1D ZnO nanostructures.
In this paper, vertically aligned ZnO NRAs were synthe-

sized using an aqueous chemical method, which is benefi-
cial for low reaction temperature, low cost, catalyst-free
synthesis, and large-scale production. The growth of ZnO
NRAs was assisted by a ZnO seed layer prepared by
atomic layer deposition (ALD). The self-limiting and
layer-by-layer growth of ALD contribute to many advan-
tages such as easy and accurate thickness control, confor-
mal step coverage, high uniformity over a large area, low
defect density, good reproducibility, and low deposition
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temperature. Therefore, highly conformal Al2O3 and
ZnO shell layers could be deposited upon the surface of
ZnO nanorods by ALD to form the ZnO/Al2O3 and ZnO/
ZnO core-shell NRAs in this study. PL measurements
were conducted to investigate the optical characteristics of
ZnO/Al2O3 and ZnO/ZnO core-shell NRAs. The near-
band-edge (NBE) emission was significantly enhanced, and
the deep-level band was suppressed by the Al2O3 and ZnO
shells due to the flat-band effect and the reduction in the
surface defect density. In addition, the shift of deep-level
emissions from the yellow band to the green band in
ZnO/ZnO core-shell structure was reported. The mechan-
isms of flat-band effect and the shift of deep-level emis-
sions were elucidated in detail.

Experimental details
The ZnO NRAs were synthesized on (100) Si wafers by
aqueous chemical growth. Before the synthesis, a 50-
nm-thick ZnO seed layer was deposited on the wafer at
a temperature of 180°C by ALD. Diethylzinc and H2O
vapors were used as the precursors for zinc and oxygen,
respectively. After the ALD deposition, the seed layer
was treated by rapid thermal annealing at 950°C for 5
min in nitrogen atmosphere to improve its crystal qual-
ity. Afterwards, the ZnO NRAs were grown in 320 ml
aqueous solution, containing 10 mM zinc nitrate hexa-
hydrate and 5 ml ammonia solution, at 95°C for 2 h.
More details of ZnO NRA synthesis have been
described elsewhere [31,32]. Finally, Al2O3 and ZnO
shell layers were prepared by the ALD on the as-grown
ZnO NRAs to fabricate ZnO/Al2O3 and ZnO/ZnO
core-shell NRAs. The precursors for Al2O3 deposition
were trimethylaluminum and H2O vapors, and the
deposition temperature was 180°C. The Al2O3 shell
layers were 2, 5, and 10 nm in thickness. The ALD con-
dition of ZnO shell layers was the same as that of the
ZnO seed layer. The thicknesses of ZnO shell layers
were 5, 10, and 15 nm, respectively. The details of ZnO
and Al2O3 ALD parameters can be found in our pre-
vious studies [33-35].
The structural characterization of ZnO NRAs was

examined by Germini LEO 1530 field emission scanning
electron microscopy (SEM) (Carl Zeiss Microscopy,
Carl-Zeiss-Straße 56, 73447 Oberkochen, Germany) and
FEI Tecnai G2 T20 transmission electron microscopy
(TEM) (FEI Company, 5350 NE Dawson Creek Drive,
Hillsboro, Oregon 97124 USA). X-ray diffraction (XRD)
measurement was used to characterize the crystallinity
and crystal orientation of ZnO NRAs. PL spectroscopy
was measured in a standard backscattering configuration
where the light emission from top surface of the ZnO
NRAs was collected, using a continuous-wave He-Cd
laser (l = 325 nm) as the excitation source.

Results and discussion
Top-viewed and cross-sectional SEM images of as-
grown ZnO NRAs are shown in Figure 1a,b, respec-
tively. The diameter of ZnO nanorods is in the range of
90 to 100 nm, and the length is about 1 μm. The sub-
strate-bound NRAs were mechanically scraped, soni-
cated in ethanol, and deposited on carbon-coated
copper grids for TEM characterization. Figure 1c,d
shows low-magnification TEM images of ZnO/Al2O3

and ZnO/ZnO core-shell nanorods, indicating the uni-
formity in both of the core and shell layers. It can be
seen that about 5 nm Al2O3 and 10 nm ZnO shell layers
were deposited upon the surface of ZnO nanorods,
demonstrating high conformality of the ALD technique.
XRD pattern of as-grown ZnO NRAs is shown in Figure
1e, and the only dominant peak corresponding to (0002)
plane was observed in the spectrum, revealing that ZnO
nanorods are highly c-axis orientated. Moreover, it was
noted that ZnO NRAs cannot be synthesized on (100)
Si wafers without the ZnO seed layer.
Figure 2a shows the room-temperature PL spectra of

as-grown ZnO NRAs and those coated with the Al2O3

shell layers. Both the NBE emission (l ≈ 380 nm) and
deep-level band associated with the oxygen interstitials
(Oi) (l ≈ 550 nm, yellow band) [22] were observed in
the as-grown ZnO NRAs and ZnO/Al2O3 core-shell
NRAs. As compared with as-grown ZnO NRAs, the
NBE emission was significantly enhanced and the deep-
level band was suppressed for the samples coated with
Al2O3 shell layers. The intensity of NBE emission grows
along with the increase of the Al2O3 shell-layer thick-
ness. The deep-level band also increases slightly with
the thickness of the Al2O3 shell layer. The PL spectra
normalized to the peak intensity of each NBE emission
are shown in Figure 2b. It can be seen that the ratio of
the deep-level band to the NBE emission of the samples
coated with Al2O3 shell layers is much smaller than that
of as-grown ZnO NRAs. It may be also noted that the
ratio of deep-level band to the NBE emission is almost
identical for the ZnO/Al2O3 core-shell NRAs with dif-
ferent shell-layer thickness, suggesting that the same
mechanism governs the increase of the NBE and deep-
level emissions with the Al2O3 shell-layer thickness.
As compared with the deep-level band of as-grown

ZnO NRAs, the considerable suppression of the deep-
level luminescence by the deposition of Al2O3 shell
layers, as shown in Figure 2a,b, can be ascribed to the
decrease in the density of oxygen interstitials at the sur-
face of ZnO core [36]. The residual deep-level emission
from the ZnO/Al2O3 core-shell NRAs may mainly origi-
nate from the oxygen interstitials inside the ZnO core.
On the other hand, the remarkable enhancement of the
ZnO NBE emission by depositing Al2O3 shell layers can
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be attributed to the flat-band effect [27,37]. Negatively
charged oxygen ions may adsorb on the surface of as-
grown ZnO nanorods, resulting in a depletion region
near the surface [38]. Weber et al. have reported that
the width of depletion region is about 20 nm [39],
which is smaller than the diameter of the ZnO nanorods
(approximately 100 nm) prepared in this study. This
depletion region can be regarded as an upward band
bending toward the surface as presented in the band
diagram shown in Figure 3a. When the ZnO NRAs are

irradiated by the pumping laser beam, the photo-gener-
ated holes are inclined to accumulate near the surface,
and the photo-generated electrons tend to reside inside
the core. As a result, the wavefunctions of electrons and
holes are separated from each other, lowering the prob-
ability of radiative recombination to yield NBE emission.
However, as plotted schematically in Figure 3b, the
Al2O3 shell layer would eliminate the oxygen ions
adsorbed on the ZnO surface and hence reduce the
band bending near the interface [27]. Therefore, the

   

   

Figure 1 SEM images, TEM images, and XRD pattern. (a) Top-viewed and (b) cross-sectional SEM images of as-grown ZnO NRAs, (c) TEM
image of the ZnO core with approximately 5 nm Al2O3 shell, (d) TEM image of the ZnO core with approximately 10 nm ZnO shell, and (e) XRD
pattern of as-grown ZnO NRAs.
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overlap between the wavefunctions of electrons and
holes in the ZnO core is increased, leading to the
enhancement of NBE emission. The increase of the
Al2O3 shell-layer thickness from 2 to 10 nm may further

lower the band bending near the interface and thus
enhance the wavefunction overlap, resulting in the
increase in NBE emission with the thickness of the
Al2O3 shell layer. The same argument also holds for

Figure 2 PL spectra. (a) Room-temperature PL spectra of as-grown ZnO NRAs and those coated with Al2O3 shell layers of different thicknesses.
(b) Normalized PL spectra of (a). The PL spectra were normalized to the peak intensity of the NBE emission.
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the carrier recombination through the deep-level states
inside the ZnO core. As illustrated in Figure 3a,b, the
flat-band effect may also enhance the deep-level emis-
sion around l ≈ 550 nm originating from the oxygen

interstitials inside the ZnO core due to the increase of
the wavefunction overlap. Accordingly, as shown in Fig-
ure 2b, the normalized PL spectra present almost the
same ratio of the deep-level band to the NBE emission

A  

 

B

Figure 3 Band diagrams. Schematic band diagrams of (a) as-grown ZnO NRAs and (b) ZnO/Al2O3 core-shell NRAs.
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Figure 4 PL spectra. Room-temperature PL spectra of as-grown ZnO NRAs and those coated with ZnO shell layers of different thicknesses.

Figure 5 PL spectrum. Room-temperature PL spectrum of the ZnO seed layer grown by ALD.
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for the NRAs with different Al2O3 shell-layer thickness,
indicating that the increase of the Al2O3 shell-layer
thickness enhances both the NBE and deep-level emis-
sions due to the flat-band effect.

To further investigate the effect of surface band bend-
ing in ZnO nanorods, we conducted the PL measurement
on ZnO/ZnO core-shell NRAs with different thicknesses
of ZnO shell layers. Since the absorption coefficient of

Figure 6 Band diagrams. Schematic band diagram of ZnO/ZnO core-shell structures with ZnO shell layers of different thicknesses.
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ZnO at l = 325 nm is about 1.5 × 105 cm-1 [40] and the
estimated penetration depth is approximately 67 nm,
both ZnO cores and ZnO shells could be excited by the
He-Cd laser during the PL measurement. Figure 4 shows
the PL spectra of the as-grown ZnO NRAs and ZnO/
ZnO core-shell NRAs at room temperature. As compared
with as-grown ZnO NRAs, the NBE emission was
enhanced and the deep-level band around 550 nm was
suppressed after a 5-nm-thick ZnO shell layer was depos-
ited. This can be realized that the ZnO shell layer could
give rise to the increase of the flat-band region in the
ZnO core and the reduction in the density of oxygen
interstitials at the surface of ZnO core. Similar to the
ZnO/Al2O3 core-shell NRAs, the residual deep-level
band around l ≈ 550 nm of the NRAs coated with a 5-
nm-thick ZnO shell layer can be attributed to light emis-
sion from the oxygen interstitials inside the ZnO core.
Figure 4 also presents the remarkable shift of the

defect-related luminescence, from the yellow band
(approximately 550 nm) to the green band (approxi-
mately 490 nm), as the thickness of the ZnO shell layer
is greater than 10 nm. This green band can be also
found in the PL spectrum of the ZnO seed layer grown
by ALD, as shown in Figure 5, suggesting that the green
band may originate from the ALD ZnO shell layer. It
has been reported that the green band arises from the
recombination of the electrons in the conduction band
and the holes trapped by the V+

0 center (one electron at
the site of oxygen vacancy) [27,41]. As shown schemati-
cally in Figure 6a, the photo-generated holes are accu-
mulated near the surface of ZnO nanorods due to the
surface band bending. As a 5-nm-thick ZnO shell layer
was deposited by ALD, the V+

0 centers in the ZnO shell
layer trap the photo-generated holes and then convert
to V++

0 , as illustrated in Figure 6b. However, the band
bending depletes the electrons near the surface so as to
suppress the recombination of the electrons and the
V++
0 centers. As a result, the green band associated with

V++
0 did not appear; instead, the yellow band from the

oxygen interstitials inside the ZnO core was observed in
the PL spectrum. Figure 6c shows that the extension of
flat-band region in the ZnO core can reach the ZnO/
ZnO core-shell interface as the ZnO shell layer is thick
enough. Therefore, the V++

0 centers can recombine with
the electrons in the conduction band to yield the green
luminescence. As a result, the green band dominates
over the yellow band as the ZnO shell-layer thickness is
greater than 10 nm, as shown in the PL spectra in
Figure 4.

Conclusion
In summary, the ZnO/Al2O3 and ZnO/ZnO core-shell
NRAs have been prepared using the aqueous chemical

synthesis and the conformal ALD technique. The deep-
level emission around l ≈ 550 nm from the oxygen
interstitials at the surface of ZnO cores was suppressed
by the Al2O3 and ZnO shell layers. The shell layers also
reduce the surface band bending, leading to the increase
in overlap of the wavefunctions of electrons and holes
in the ZnO core. Therefore, the NBE emission at l ≈
380 nm and the deep-level band around l ≈ 550 nm
from the oxygen interstitials inside the core were
enhanced by the shell layers. Furthermore, the shift of
defect-related emissions from the ZnO/ZnO core-shell
NRAs was observed due to the competition between
light emissions from the oxygen interstitials inside the
ZnO core and the oxygen vacancies in the ZnO shell.
As the thickness of the ZnO shell layer increased, the
green luminescence (l ≈ 490 nm) originating from the
oxygen vacancies in the shell dominated over the yellow
band (l ≈ 550 nm) associated with the oxygen intersti-
tials inside the ZnO core due to the flat-band effect.
The results indicate that the shell layers prepared by
ALD have significant influence both on the NBE and
defect-related emissions of the ZnO NRAs.
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