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Abstract
Background: Community quarantine is controversial, and the decision to use and prepare for it should
be informed by specific quantitative evidence of benefit. Case-study reports on 2002-2004 SARS outbreaks
have discussed the role of quarantine in the community in transmission. However, this literature has not
yielded quantitative estimates of the reduction in secondary cases attributable to quarantine as would be
seen in other areas of health policy and cost-effectiveness analysis.

Methods: Using data from the 2003 Ontario, Canada, SARS outbreak, two novel expressions for the
impact of quarantine are presented. Secondary Case Count Difference (SCCD) reflects reduction in the
average number of transmissions arising from a SARS case in quarantine, relative to not in quarantine, at
onset of symptoms. SCCD was estimated using Poisson and negative binomial regression models (with
identity link function) comparing the number of secondary cases to each index case for quarantine relative
to non-quarantined index cases. The inverse of this statistic is proposed as the number needed to
quarantine (NNQ) to prevent one additional secondary transmission.

Results: Our estimated SCCD was 0.133 fewer secondary cases per quarantined versus non-quarantined
index case; and a NNQ of 7.5 exposed individuals to be placed in community quarantine to prevent one
additional case of transmission in the community. This analysis suggests quarantine can be an effective
preventive measure, although these estimates lack statistical precision.

Conclusions: Relative to other health policy areas, literature on quarantine tends to lack in quantitative
expressions of effectiveness, or agreement on how best to report differences in outcomes attributable to
control measure. We hope to further this discussion through presentation of means to calculate and
express the impact of population control measures. The study of quarantine effectiveness presents several
methodological and statistical challenges. Further research and discussion are needed to understand the
costs and benefits of enacting quarantine, and this includes a discussion of how quantitative benefit should
be communicated to decision-makers and the public, and evaluated.
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Background
Outbreaks such as Severe Acute Respiratory Syndrome
(SARS) and H1N1 influenza have triggered acute policy
debates around community-based infection control meas-
ures [1-4]. Quarantine is the segregation of healthy per-
sons exposed to an infectious disease from unexposed
persons, until the exposed person becomes ill or the incu-
bation period has passed [2,5]. Quarantine is also one of
the most controversial measures available in outbreak
control, with important impacts on economic activity and
civil liberties [6,7]. Public health agencies need to have
weighed evidence of the potential costs and benefits of
these manoeuvres before the next outbreak of a severe,
novel infection [8,9] and to have publicly and widely
communicated the importance of planned control meas-
ures [6,10]. This makes outcome evaluation of modern
quarantine activity an important area for research [2,4,6].

Health policy and practice guidelines rely heavily on
experimental and quasi-experimental research comparing
outcomes under intervention and non-intervention con-
ditions [11-14]. Statistical estimates used in health deci-
sion-making tend to derive from differences in outcome
rates in treated versus non-treated individuals (e.g., risk
difference, RD; attributable risk, AR and population
attributable risk, PAR) [12,13,15], as well as variations on
the number needed to treat (NNT) statistic [11,15-20].
Research to evaluate the impact of modern quarantine is
less well-developed, and no clear tradition has emerged in
the measures of association used to communicate net
harm and benefit. The quantitative impact of control
measures for infectious diseases is commonly assessed
using variants of the effective reproductive number, R (the
average observed number of secondary infections per
index cases in an observed population). Rt the daily effec-
tive reproductive number, is the observed number of sec-
ondary cases to index case at a specific time. When Rt, has
a value below1.0, this is evidence that an outbreak is
dying out [21].

Here, we discuss the quantitative evidence available to
inform policy-makers on the potential benefit of commu-
nity-based quarantine in outbreak control, based upon
the SARS experience. To bridge the gap between evaluative
research on quarantine and other areas, we also use data
from the 2003 Ontario, Canada (hereafter, Ontario),
SARS outbreak to demonstrate statistical approaches used
elsewhere to the evaluation of modern quarantine meas-
ures.

We propose a series of measures of reduction of adverse
outcomes (analogous to those used in other contexts), to
evaluation of quarantine. Specifically, we estimated the
difference in secondary transmissions that is attributable
to community quarantine as the Secondary Case Count
Difference (SCCD), which is comparable to risk difference

statistics and interpretable as reduction in average trans-
missions per existing case, attributable to intervention.
We also report the inverse of this statistic, interpretable as
Number Need to Quarantine (NNQ).

Methods
Subjects and data extraction
The contact tracing and quarantine procedures used in the
2003 Ontario SARS outbreak have been described previ-
ously [22,23]. From source public health records, we
extracted data for all 332 index cases with a final disposi-
tion of suspect or probable SARS [23] of whom 204 had
at least one community contact uniquely associated with
them in Public Health records. Contacts included had
non-overlapping periods of exposure to SARS index cases
within 10 days, as previously reported [23]. The total
number of community contacts associated with these
index cases, for this analysis, was 8,498. This number
excluded health care providers who were contacts of those
SARS index cases only as a result of providing care to SARS
cases, but included health care workers exposed through
social or family contacts. Community contacts were clas-
sified by closest level of exposure to the index case (e.g.,
level 1 being closest at ≥30 minutes within a distance of
one metre [23]). For all community contacts, outcome
status as a secondary SARS case was defined [23]. We also
consider data for an additional 140 individuals who were
quarantined as contacts of a known SARS case, became ill
and were considered to be potential cases themselves, but
who subsequently had SARS ruled out. These additional
140 observations were used only in sensitivity analyses.

Analysis
In the first step, we carried out an analysis where the 8,498
individual contacts were treated as the unit of analysis.
The outcome was whether or not each contact became a
SARS case (binary outcome). The predictor variable of
interest was whether the associated index case had been in
community quarantine at symptom onset. This, seem-
ingly intuitive, analysis treats the individuals in whom the
outcome is measured as though they were assigned to
treatment conditions. Therefore, information regarding
quarantine status is used only from the 204 SARS index
cases with one or more community contacts. In place of
typical logistic regression which would yield an odds ratio
(OR), we obtained risk difference (naïve secondary attack
rate difference - ignoring index cases with no contacts) as
the measure of association, using a generalized linear
regression model with binomial error term and identity
link function. Clustering of multiple contacts to index
cases was accounted for using robust variance estimates
[24,25].

In the next step, we treated all 332 SARS index cases as the
unit of analysis and applied Poisson regression analysis to
model the number of secondary cases per index case. As
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before, the exposure of interest is whether or not the index
case was quarantined. We calculated several measures of
association to describe the difference in transmission
observed in the quarantine and non-quarantine group.
These included the secondary case count ratio or SSCR,
the ratio of secondary cases (per index case) in the quar-
antine condition relative to the non-quarantine condi-
tion. The SSCR is a function of the ratio of secondary cases
per quarantined index case (SCq) and of the ratio of sec-
ondary cases per non-quarantined index case (SCnq) as
discussed below. We also calculated the difference in aver-
age secondary cases per index case between the two groups
(secondary case count difference, SCCD), and the inverse
of the SCCD which we label as "NNQ".

Secondary Case Count Ratio (SCCR) was estimated using
the most familiar form of Poisson regression (Poisson
error term and the canonical log link function) [26]. Pois-
son regression is often used to estimate incidence rate
ratios (IRRs), where the outcome variable is the numera-
tor for a rate in a stable population, or where a variable
person-time denominator is accounted for by specifying
an offset variable for the model. IRR is equal to the expo-
nent of the beta coefficient for the regression term of inter-
est [26,27]. For Poisson models used here, no offset was
specified for the number of community contacts at risk for
each index case. Said differently, the outcome variable
here is not the rate of secondary transmission among a
variable number of potentially exposed community con-
tacts per index case, but the number of secondary SARS
cases arising from an index case. The SCCR is the expo-
nentiated beta term for this model (where quarantine sta-
tus was entered as a binary variable). SCCR is the ratio of
(secondary cases per quarantined index case, SCq) to (sec-
ondary cases per non-quarantined index case, SCnq);
therefore, SCCR = SCq/SCnq.

Estimation of SCCD (attributable difference in number of
secondary cases, per index case) was achieved using a
Poisson model estimating additive effects (Poisson error
term and identity link function). SCCD is the difference in
the average absolute number of secondary cases in the
quarantine versus non-quarantine conditions (SCCD =
SCnq-SCq). This model yields a (non-exponentiated) beta
coefficient interpreted as the difference in outcome [26].
Here, beta = SCCD. The inverse of this SCCD we define as
NNQ, a statistic analogous to NNT [17,18,28]. NNQ is
the number of cases that would need to be in quarantine
at symptom onset to prevent one case among contacts of
an index case. This is defined as:

Additional analysis quantified the degree to which reduc-
tion in total contacts, and close contacts, mediated the

impact of quarantine. An estimate of the reduction in size
of the SCCR was tested against a null (no change) using a
bootstrap method [29]. This mediation analysis was car-
ried out using the canonical (log link) Poisson regression
model, above.

For the sensitivity analysis, we re-estimated SCCD and
NNQ including data for an additional 140 case observa-
tions. This group consisted of quarantined contacts who
were, prospectively, under suspicion of being SARS cases
themselves (i.e., during the outbreak), but in whom SARS
was later excluded. These people also had at least one
community contact themselves, in order to be included in
the database. This sensitivity analysis was to show the
effect of false positive index cases on apparent outcomes
of quarantine.

For all regression models, diagnostics were performed.
This included post-fit examination for non-linearity for
ordinal independent variables (i.e., numbers of contact by
level of exposure). Where found, non-linearity was cor-
rected by taking a linear transformation of the predictor
variable to obtain normally distributed residuals. Non-
normality of residuals in models including total contacts
was corrected by transforming the total number of the
contacts (replaced with square root of value) to reduce the
influence of the positive skew in this covariate. For all
models using the Poisson error term, tests for over-disper-
sion were carried out. Identical models using the negative
binomial error term were also run, correcting for over-dis-
persion. Both are presented.

Because of the limited sample size, confidence limits
based on large sample assumptions are questionable.
Therefore, we also present confidence intervals estimated
using bootstrap variance estimation [30]. For bootstrap-
ping, 5000 replications were used in all cases. All analyses
were carried out with Stata, Version 10 [25].

This study received ethical review and approval from the
Health Sciences I Research Ethics Committee of the Uni-
versity of Toronto (Protocol #10764).

Results
Table 1 summarizes quarantine status for 332 probable
and suspect SARS cases in the 2003 Ontario SARS out-
break, with numbers of contacts by level of contact and
transmission status.

Table 2 presents several measures of association describ-
ing the impact of quarantine using regression models
described above. In the first, naïve, regression analysis
(Approach A in Table 2) the estimated effect was positive
(indicating a harmful effect for quarantine) but not statis-
tically significant.

NNQ SC -SCnq q=
−1
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The first model treating index cases as the unit of analysis
(Approach B in Table 2) yields an estimate of SCCR of
0.316 indicating less than one third the number of sec-
ondary cases for quarantined versus non-quarantined
index cases. Approach C provides the estimated SCCD
obtained using an additive Poisson regression model
(Poisson error term and identity link function). The aver-
age difference in secondary SARS cases in moving from
non-quarantine to quarantine status is estimated at 0.133
secondary cases per index case. The final estimate in Table
2 is NNQ suggesting 7.51 SARS index cases be placed
under quarantine to reduce the number of secondary
cases by one. When variance estimates and confidence
intervals are estimated using a large-sample assumption
(asymptotic variance) all Poisson regression models pre-
sented were statistically significant. When negative bino-
mial regression was used to estimate SCCR, this became
non-significant (p = 0.057). When using bootstrap vari-
ance methods, confidence intervals for all estimates
became very wide and none of these estimates were signif-
icantly different from the null value.

Table 3 presents supplemental analyses of the degree to
which the effect of quarantine is explained by reduction in
the number of contacts. Adjustment of the effect of quar-
antine only for the total number of contacts had little
impact on the point estimate for SCCR (0.35245 versus

0.31598; data not shown), nor its significance (when
compared to Table 2). However, when quarantine status
was also adjusted (see Table 3) for the number of close
contacts (level 1; see Table 1), the SCCR attributable to
quarantine was reduced by 3.6% and it's asymptotic level
of significance went from p = 0.026 to p = 0.046. This
change falls just short of satisfying criteria for significant
mediation using the Baron and Kenny method [31]. A
bootstrapped test for reduction of effect [29] was not sig-
nificant (p > 0.999).

The adjusted models in Table 3 also show that the number
of close contacts was a significant predictor of the number
of secondary cases, even when adjusting for total number
of contacts. This remained statistically significant even in
the bootstrapped model.

Finally, the SCCD and NNQ estimates (Table 2) were
rerun including 140 additional quarantined false-positive
SARS cases with no secondary cases. In this analysis, the
NNQ estimate drops from 7.51 to 5.74, giving the appear-
ance of a still greater benefit (data not shown; again, sta-
tistically significant under the large sample assumption,
and not when using bootstrap methods).

For all Poisson-based analyses, model diagnostics did not
indicate significant over-dispersion (p-value > 0.99 in all

Table 1: Numbers of index SARS cases* and non-overlapping contacts† associated with index cases.

Quarantine 
status

N of SARS 
probable 

and suspect 
index cases†

N of SARS 
index cases 

with no 
community 

contacts

N of SARS 
index cases 
with at least 

one 
community 
contact at 
any level

Group total numbers of community contacts (and secondary cases) by 
level of contact‡§

All levels Level 1 Level 2A Level 2B Level 3

Not in 
quarantine 

at symptom 
onset

267 89 178 7970 (52) 578 (37) 3186 (14) 1258 (1) 2948 (0)

In 
quarantine 

prior to 
symptom 

onset

65 39 26 528 (4) 52 (2) 164 (1) 297 (1) 15 (0)

Total 332 128 204 8498 (56) 630 (39) 3483 (15) 1555 (2) 2963 (0)

*Cases of Severe Acute Respiratory Syndrome (SARS) in the Ontario, Canada, 2003 outbreak. Includes all cases with a final disposition of suspect 
or probable SARS.
† Also considered, in sensitivity analyses only, were an additional 140 individuals who were potential SARS cases at some point during the outbreak 
and had at least one community contact, but subsequently did not meet criteria for probable or suspect SARS.
‡ Includes 8,498 community contacts with contact to one SARS case and not a second SARS case within 10 days of exposure to the first within any 
single 10 day period of exposure.
§ Level of contact: 1 = contact for at least 30 minutes within 1 metre; 2A = same room for ≥ 30 minutes; 2B = same room for <30 minutes or same 
floor, regardless of duration; level 3 = distant contact only - was in same building or large social network.
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Table 2: Quantitative measures of the impact of quarantine on secondary cases in the community*.

Analysis approach Measure of association 
obtained from model

Variance
estimation

method

Estimated value 
of measure of 
association

p-
value

95% confidence interval

Lower limit Upper limit

A) Generalized linear model 
with binomial error and 
identity link (additive logistic). 
Unit of analysis is community 
contacts, clustered within 
shared 204 index cases. (N = 
8498).

Naïve Secondary Attack 
Rate Difference 
(incorporates information 
only for 204 index cases 
with one or more 
community contact; see 
text)

Asymptotic:
Bootstrapped:

0.00105
0.00105†

0.786
0.881

-0.00665
-0.01269

0.00866
0.01479

B) Canonical Poisson and 
negative binomial regression 
with log link functions. Unit of 
analysis is all index cases. (N = 
332).

Beta coefficient Poisson,
asymptotic:

Neg.Binomial
asymptotic:

Poisson,
bootstrapped:

-1.15209
-1.15209
-1.15209†

0.026
0.057
0.589

-2.16906
-2.33953
-5.32984

-0.13511
0.03535
3.02567

Secondary Case Count 
Ratio (SCCR) (SCCR = 
exponentiated Beta for 
quarantine)

Poisson,
asymptotic:

Neg.Binomial
asymptotic:

Poisson,
bootstrapped:

0.31598
0.31598
0.31598†

0.026
0.057
0.573

0.11428
0.09637
0.00577

0.87362
1.03599
17.30158

C) Generalized linear model 
with Poisson error term and 
identity link function, yielding 
an additive effect measure.

Secondary Case Count 
Difference 
(SCCD).(SCCD = Beta 
coefficient for quarantine)

Poisson,
asymptotic:

Neg.Binomial,
asymptotic

Poisson,
bootstrapped:

-0.13322
-0.13322
-0.13322†

0.001
0.002
1.000

-0.21346
-0.21812
-1.18 × 1014

-0.05298
-0.04832
1.18 × 1014

Unit of analysis is all index 
cases. (N = 332).

Number needed to 
quarantine (NNQ). 
(NNQ = 1/|SCCD|, 
above)

Poisson,
asymptotic:

Neg.Binomial,
asymptotic:

Poisson,
bootstrapped:

7.50647
7.50648
7.50647†

0.001
0.002
1.000

4.68469
4.58462
-8.476 × 10-15

18.87661
20.69733
8.476 × 10-15

* Data from 332 index community-living probable or suspect Severe Acute Respiratory Syndrome (SARS) cases and 8,498 associated community 
contacts. Ontario, Canada, SARS outbreak, 2003.
† Bootstrapping used to obtain variance estimate; point estimate fixed from corresponding asymptotic model.

Table 3: Assessment of whether number and level of contacts mediate the effect of quarantine on secondary cases.

Term in adjusted 
model* (contrasts 
with crude model B, in 
Table 2)

Secondary Case Count 
Ratio (SCCR)

p-value under large 
sample assumption and 

using bootstrapped 
variance estimate 

(in italics)

95% confidence interval under large sample 
assumption and using bootstrapped variance 

estimate (in italics)

Lower limit Upper limit

Quarantine (v. no) 0.3524498 0.046
0.550

0.1266103
0.0048919

0.9811279
20.14694

Total contacts 
(continuous†)

0.9999988 0.657
0.090

0.9999937
0.9999816

1.000004
1.000017

Total close contacts 
(continuous)

1.061969 0.005
0.009

1.018544
1.015351

1.107246
1.107246

* Poisson regression for secondary case count, adjusting for total and close contacts.
†Continuous term transformed by taking the square root of raw data; used to achieve normally-distributed residuals.
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cases). Using negative binomial models to account for
over-dispersion did not affect point estimates, but
resulted in slightly wider asymptotic confidence limits
(Table 2).

Discussion
How has quarantine been evaluated?
Previous studies evaluating quarantine for control of SARS
used two general methods: simulation studies [9,32,33];
and, case-study reports describing specific settings (e.g.
[22,34-42]).

Simulation studies serve several purposes in outbreak
research, one of which is to estimate the impact of control
measures in outbreak scenarios [1,33]. A review of simu-
lation studies on quarantine effectiveness for SARS has
been presented by Bauch and colleagues [9]. This review,
and other individual reports [43] suggest that quarantine
measures are most effective when mobilized at the very
start of the outbreak when numbers are small. While deci-
sion-makers must rely heavily on simulation studies, a
persistent concern raised [33] is that results are driven by
prior assumptions; which may be unrealistic. Simulations
rely on some degree of simplification such as considering
only point-source outbreaks in non-overlapping popula-
tions. More sophisticated models incorporate heterogene-
ity in parameters including variations in size and
behaviour of human contact networks, differences in
transmissibility due to the host, and levels of adherence
with control measures, such that scenarios simulated
reflect what happens in real-world experiences
[4,33,44,45]. Simulation studies, typically, do not present
impact statistics familiar to health policy makers, and may
not provide evidence as compelling to decision-makers as
real world outbreak experiences. To give an example, a
recent World Health Organization review on control
measures for influenza cited no simulation studies but
only real-world observational data [46].

Quarantine-related studies from real SARS outbreaks typ-
ically present the epidemic curve with case counts plotted
against the timeline of events including arrival of index
cases, and changes in public health response. In many
reports [22,34,39,40], the impact of control measures is
implied from qualitative observation, such as visible
deceleration of new cases in plots, or the eventual end of
the outbreak. Some of these reports appeared well after
the outbreak, with efforts made to complete data on onset
dates and transmission in hindsight (e.g., [42]). Drawing
inference from epidemic curves suits only point-source
outbreaks, and amount to one-group, pre-test post-test
designs [47], providing weak evidence for causation. The
true value of case reports, arguably, is the rich contextual
information on challenges faced and unexpected events,

and showing socio-political feasibility of aggressive con-
trol across settings [40].

Some case reports have taken a more quantitative
approach. A few studies reported on the effect of quaran-
tine in shortening the time from onset of symptoms to
isolation [48], or the proportion of SARS cases who devel-
oped symptoms while already under quarantine [49].
Others report quarantine yield (the proportion of individ-
uals quarantined who eventually develop SARS) [36],
which reflects specificity of contact tracing versus burden
from unnecessary quarantine. These are intermediate out-
comes, however, evaluating processes as opposed to final
outcomes.

In others, control interventions are examined pre- post-
quarantine in relation to subsequent changes in R [4,43].
Wallinga and Teunis, 2004 [43], present the average daily
effective reproductive number, R, both prior to alert and
after, for each of four SARS outbreak locations. Table 1 of
their analysis reveals fairly consistent transmission num-
bers pre-alert, but more variable R values post-alert, high-
lighting less effective control in Ontario relative to
elsewhere. This is also an uncommon example of presen-
tation of R estimates along with confidence limits from
observed (as opposed to simulated) data. Their analysis
would permit reporting of differences in transmissions
before and after alert, but no reduction in R attributable to
control was presented (with or without confidence lim-
its). The approach also permitted no consideration of
individual-level covariates.

Quantitative estimates of quarantine impact
We estimated that use of community quarantine in the
2003 Ontario SARS outbreak reduced transmission to one
third, with an absolute difference of 0.13 secondary cases
per index case under quarantine, relative to not quaran-
tined by symptom onset. For discussion purposes, we
present several effect measures, including Secondary Case
Count Difference (SCCD) and "number needed to quar-
antine" (NNQ), a novel adaptation of NNT. Our point
estimate of NNQ for the Ontario outbreak was 7.5 per-
sons in quarantine to one SARS case averted using data
from probable or suspected SARS cases. As a point esti-
mate, this NNQ compares very favourably with NNTs
reported for public health interventions such as chemo-
prophylaxis for leprosy [50] and meningococcal disease
[51], or vaccination against pertussis [52] and influenza
and pneumococcal disease [53], particularly with a condi-
tion like SARS with significant morbidity and a high case-
fatality rate. All estimates we present for the impact of
quarantine, however, are imprecise. Bootstrapped confi-
dence intervals include values for no impact. Statistical
power is a limitation to this and many analyses of real
outbreak data.
Page 6 of 10
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We also show, not surprisingly for an infection now
known to be transmitted by droplet spread, a statistically
significant association between the number of close con-
tacts and number of secondary cases, per index case.
Number of close contacts (level 1 in Table 1) had some
overlap with the observed (non-significant) effect of quar-
antine, whereas the number of more distant contacts was
unrelated to any apparent benefit of quarantine. Our anal-
ysis also suggests (without statistical significance) that
reduction in the number of close contacts contributed to
reduction in spread, and this may have implications for
targeting of quarantine toward closer contacts [23,36].

Statistical challenges
Research in quarantine effectiveness presents many chal-
lenges. One complication is the unit of analysis for the
outcome relative to the intervention. Clinical decision-
making looks at outcomes in the same individuals
assigned to treatment. Interventions such as vaccination
are more complex in that outcomes may be assessed at the
individual or population level, with different implica-
tions, although the individual vaccinated is part of the
same population. Number Needed to Vaccinate (NNV)
has been estimated incorporating herd immunity [52].
The case of quarantine is distinct even from vaccination,
in that all potential benefit is to other persons. It is theo-
retically possible to study sets of index cases and their con-
tacts as independent units of analysis, although it is often
difficult to identify precisely which persons exposed
which others [43]. Here, we have worked with contacts
matched to an exclusive index case [23]. The creation of
sets of cases and associated controls goes only part-way
toward a complete network-based analysis [33], although
future studies could address non-independence of net-
works.

A second challenge to evaluators might be non-familiarity
with regression models for count data. The generalized
linear model used here to obtain an NNQ estimate, with
a Poisson error term and identity link function, is less
commonly used, but long-described in biostatistics texts.
Regression models used here are available in all major sta-
tistical packages (Stata, SAS, SPSS and others). The distri-
bution of secondary cases (per index case) may be
positively skewed (with a few cases generating large num-
bers of transmissions [4]). Over-dispersion may need to
be addressed through means such as use of negative bino-
mial models in place of Poisson models, as above. Nega-
tive binomial models have interpretation very similar to
Poisson models [26].

Statistical power was a limitation of our analysis and most
studies of real outbreaks [54]. As the goal of outbreak
management is to minimize events, small samples must
be considered. Procedures assuming large samples tend to

overstate precision relative to bootstrapping. Other
authors in this field have used bootstrap variance meth-
ods as well [42].

Methodological challenges
Random assignment of individuals to quarantine is not
ethical; and in some jurisdictions, comprehensive quaran-
tine procedures may eliminate any control arm [4]. In
North America and Europe, voluntary quarantine prac-
tices are favoured and some degree of non-adherence is
inevitable [6,22], so both non-quarantined and quaran-
tined groups will be observed. However, selection bias
related to health status, employment, family structure and
other factors may confound the association between quar-
antine status and observed transmissions. The best possi-
ble observational design would permit evaluation of the
decision made by public health officials to place individ-
uals under quarantine and apply analyses based on both
the intention to treat approach and taking compliance
into account.

Retrospectively, we explored the possibility of identifying
all individuals screened by public health staff for potential
quarantine and contact tracing, regardless of final disposi-
tion. This was not feasible. Practices varied with respect to
when a record was initiated (i.e., in one health unit a file
might have been opened even with an unfounded
inquiry, elsewhere a record was generated only with a con-
firmed contact link and symptoms). Within Public Health
records, we were able to confirm 140 quarantined false
positive "cases". These cases were quarantined contacts
who became ill with possible SARS symptoms but were
subsequently excluded as SARS cases, and they had at least
one identified community contact. Future cost-benefit
studies should include information on such groups (e.g.,
[36]). Legitimate costs are incurred for and by these false
positive cases and their contacts which should be taken
into account. Because people without the disease can't
spread it, uneven distribution of such individuals across
infection control conditions being compared could bias
estimates of impact. As we found, the rate of false positive
cases (resulting in no transmission) may have a large
influence on the apparent benefit. Several case-reports dis-
cussed problems with prospective record-keeping, in
terms of detailed contact tracing and the implications of
time-lags in serological testing (including those never
tested), as challenges to both outbreak management and
research [4,35,41].

Measurement error is also likely with other important
information, such as documenting level of contact and
therefore numbers of individuals at risk by contact level.
With delayed contact tracing, assignment of contact level
may even be done after secondary infection (unblinded)
and so could be biased toward closer contact where trans-
Page 7 of 10
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mission already happen, and toward less close contact
where the contact remained well.

Papers on the SARS experience have spoken about the
importance of data management resources and described
core data to be tracked during an outbreak (e.g., [55]).
None made explicit recommendations for statistical eval-
uation of control measures. Planning to report statistics
familiar to other areas of health care evaluation may
improve the quality and comparability of data collected.

Our approach demonstrates that existing outbreak data
may yield more information to evaluate outbreak control
measures than has been reported. Further research, pre-
senting quantitative differences in outcomes attributable
to measures such as quarantine, would be useful in many
ways. First, this would add to evidence on cost-effective-
ness. Second, it would facilitate further methodological
development in this field. Pooled re-analysis of existing
outbreak data across several settings, would ameliorate
statistical power problems, and increase the scientific con-
tribution from these important databases.

Challenges in interpretation and communication
Policy-makers rely on estimates of the impact of popula-
tion-based preventive measures, which should derive
from actual experience, as well as theoretical forecasting.
Evidence also needs to be understood. It has been debated
whether the NNT statistic achieves its goal to facilitate
decision-making in other health care settings [17-20]. Fur-
ther thought and discussion are needed as to how mean-
ingful a NNQ statistic might be for decision-making in
outbreak planning, relative to other expressions of attrib-
utable case reductions, such as SCCD also proposed here,
or other metrics.

No variant on attributable risk difference or NNT can be
interpreted without consideration of the absolute costs of
not acting, and the harm side of the decision [56]. This
discussion must include the severity of the illness, as well
as harms of intervention to the individual and society
which are difficult to quantify and value-laden [6]. Quar-
antine includes potential non-health related harms
including civil liberties and may include economic and
other costs to the individual [57].

Finally, studies to evaluate control measures for one agent
may not be generalizable to other agents. Measures to
restrict close contact probably made an important contri-
bution to the control of SARS outbreaks [46]. Evidence of
this is accumulating slowly and should be taken into con-
sideration for future outbreaks of SARS or similar droplet
spread agents without significant transmission in the
asymptomatic phase. However, the applicability of this
evidence to the current experience with pandemic influ-

enza is less certain. Ferguson et al [58] present simulation
data suggesting community quarantine and isolation may
play a role in influenza control but comment that this
would presume such measures were feasible. Transmis-
sion patterns for influenza however, make it less likely
that contact tracing and quarantine would be fast enough
to avoid transmission which is greatest in the earliest stage
of infection [46]. Under such circumstances, use of a
'severe' [57] measure such as quarantine is likely not jus-
tified where such efforts are likely to yield little benefit.

Conclusions
Relative to other health policy areas, literature on quaran-
tine tends to lack in quantitative expressions of effective-
ness, or agreement on how best to report differences in
outcomes attributable to control measure. The study of
quarantine effectiveness presents several methodological
and statistical challenges. Further research and discussion
are needed to understand the costs and benefits of enact-
ing quarantine, and this includes a discussion of how
quantitative benefit should be communicated to decision-
makers and the public, and evaluated.
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