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Abstract

Background: FYVE domains have emerged as membrane-targeting domains highly specific for
phosphatidylinositol 3-phosphate (PtdIns(3)P). They are predominantly found in proteins involved in various
trafficking pathways. Although FYVE domains may function as individual modules, dimers or in partnership with
other proteins, structurally, all FYVE domains share a fold comprising two small characteristic double-stranded b-
sheets, and a C-terminal a-helix, which houses eight conserved Zn2+ ion-binding cysteines. To date, the structural,
biochemical, and biophysical mechanisms for subcellular targeting of FYVE domains for proteins from various
model organisms have been worked out but plant FYVE domains remain noticeably under-investigated.

Results: We carried out an extensive examination of all Arabidopsis FYVE domains, including their identification,
classification, molecular modeling and biophysical characterization using computational approaches. Our
classification of fifteen Arabidopsis FYVE proteins at the outset reveals unique domain architectures for FYVE
containing proteins, which are not paralleled in other organisms. Detailed sequence analysis and biophysical
characterization of the structural models are used to predict membrane interaction mechanisms previously
described for other FYVE domains and their subtle variations as well as novel mechanisms that seem to be specific
to plants.

Conclusions: Our study contributes to the understanding of the molecular basis of FYVE-based membrane
targeting in plants on a genomic scale. The results show that FYVE domain containing proteins in plants have
evolved to incorporate significant differences from those in other organisms implying that they play a unique role
in plant signaling pathways and/or play similar/parallel roles in signaling to other organisms but use different
protein players/signaling mechanisms.

Background
The FYVE lipid-binding domains were named after the
first letter of the four proteins in which they were ori-
ginally discovered: Fab1, YOTB, Vac1, and EEA1 [1].
FYVE proteins have primarily been associated with func-
tions related to endosomal trafficking e.g. Hrs is
involved in sorting of down-regulated receptor mole-
cules in early endosomes [2], Vacuolar protein sorting
mutant 27 phenotype (Vps27p) in endosome maturation
[3], EEA1 in endocytic membrane fusion [4] and regula-
tion of endosome-to-TGN retrograde transport via
phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) [5].

However, they may play other important roles in cell
signaling as exemplified by Faciogenital dysplasia 1 in
cytoskeletal regulation [6], Fab1p in regulation of mem-
brane homeostasis [7-9] and Smad Anchor for Receptor
Activation (SARA) [10] as well as endofin in growth fac-
tor signaling [11-13]. Structurally, FYVE domains share
a fold comprising of two small double-stranded b-sheets
and a C-terminal a-helix as deduced from experimen-
tally solved structures such as the crystal structure of
the FYVE domain from yeast Vps27p [14]. The fold is
stabilized by eight Zn2+ coordinating cysteines residues,
which bind Zn2+ in pairs such that the first and third
pairs bind one zinc atom, while the second and fourth
pairs bind the other zinc atom [14]. The FYVE domains
have been characterized as phosphoinositide-binding
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domains that are highly specific for the phosphatidylino-
sitol 3 phosphate (PtdIns(3)P) [15-18]. This ligand
recognition is Zn2+-dependent [19] and stems primarily
from a conserved ligand-binding motif, i.e. (R/K)(R/K)
HHCR surrounding the third and fourth cysteine resi-
dues [14]. Mutagenesis of either the cysteines involved
in Zn2+ coordination or the ligand-binding conserved
residues result in decreased affinity for PtdIns(3)P
[15,19-21].
The PtdIns(3)P-binding signature contains three clas-

sic conserved regions: the N-terminal WxxD, the cen-
tral R(R/K)HHCR and the C-terminal R(V/I)C motifs
[14]. Combined they drive the PtdIns(3)P specific
membrane recruitment of FYVE domains. However,
there are several factors in addition to PtdIns(3)
P-binding that are thought to contribute to the mem-
brane affinity of FYVE domains: nonspecific electro-
static interactions between the basic face of the
domain and the anionic membrane surface [22-24],
hydrophobic interactions between the residues located
in the “turret loop” near the PtdIns(3)P binding pocket
and the membrane bilayer [14,23-26], dimerization
[19,27] and pH [28]. In additional to working out the
structural and functional role of various amino acids
comprising the binding motifs, it has also been shown
that the binding of PtdIns(3)P to the ligand-binding
pocket of FYVE domains neutralizes nearby basic resi-
dues to reduce the local positive potential and allow
conserved hydrophobic residues to penetrate the mem-
brane interface enhancing membrane attachment
[22,24,25]. Recently, a molecular dynamics simulations
study explored the interactions of the EEA1-FYVE
domain and verified that it undergoes a decrease in
dynamic flexibility upon binding to its PtdIns(3)P
ligand and a phospholipid bilayer [29].
The PtdIns(3)P-binding FYVE domains are well con-

served in various organisms and have been studied
extensively in different model organisms except plants.
Plants possess several FYVE domain-containing proteins
and PtdIns(3)P has been shown to be present in various
compartments [30] as well as membranes [11] of plant
cells. It is possible to envision that plant cells utilize the
same or highly similar lipid-binding and membrane-tar-
geting mechanisms [30] for FYVE domains given that
both the FYVE domains and type III PI3-kinase, which
makes PtdIns(3)P, are present in plant cells [31]. How-
ever some recent reports suggest that PtdIns(3)P may
not be the only known phosphoinositide ligand recog-
nized by plant FYVE domains, for example, the FYVE of
EEA1 has been shown to be capable of binding to
PtdIns(5)P [32,33].
We have undertaken a comprehensive examination

of all FYVE domains of the model plant Arabidopsis
thaliana (At) to understand the structural basis for the

mechanism of their function and to explore their simi-
larities and differences with respect to other organisms.
We describe the 15 different FYVE domain-containing
proteins that are expressed in Arabidopsis, all of which
are largely unexplored. Our detailed sequence analysis
and biophysical characterization of the structural mod-
els of the FYVE domains in Arabidopsis suggest mem-
brane interaction mechanisms and their subtleties.
Moreover, the study also reveals unique biophysical
properties of plant FYVE domains, a new binding
motif specific only to the variant class of plant FYVE
domains and novel domain architectures unique to
plant FYVE proteins.

Results
Identification, characterization and chromosomal
localization of FYVE domain-containing proteins encoded
in the Arabidopsis genome
The total number of FYVE domain-containing proteins
seems to be directly correlated with the total estimated
number of genes for a given organism, e.g. 27 FYVE
encoding genes in a total of 42,000 in H. sapiens, 13 in
a total of 18,000 in C. elegans and 5 in a total of 6,000
in S. cerevisiae [34]. We identified 15 AtFYVE proteins
in the Arabidopsis protein sequence database i.e. TAIR
first genome release (version TAIR 6.0, Nov 2005).
Later genome releases built upon the gene structures
of TAIR6 release as well as community input regarding
missing and incorrectly annotated genes and they do
not contain any new genes encoding FYVE proteins.
Our finding of 15 FYVE proteins encoded within pre-
dicted 25,500 genes [35] of the Arabidopsis genome
falls in line with the above observation. The initial
identification was done using an automated pipeline
[36]. Later, the total number of AtFYVE proteins and
their individual accession numbers were verified
through manual searches performed in various data-
bases. The 15 FYVE domains present in various Arabi-
dopsis proteins (representing the entire family of
AtFYVE proteins) aligned with human EEA1 FYVE
domain (PDB: 1JOC chain A [37]) are shown in Fig.
1A. Fig. 1B displays the schematic localization of the
15 AtFYVE proteins within the Arabidopsis genome.
The 15 identified sequences of AtFYVE proteins are
dispersed throughout the Arabidopsis genome, being
located on all chromosomes except chromosome
2 (Fig. 1B). The disagreement of our total with pre-
viously reported totals of nine [32], over ten [38]
and most recently, sixteen [39] FYVE domains stems
from misannotations. For example, AT1G61620,
AT1G66040, AT1G66050 and AT5G39550 proteins are
all annotated as FYVE proteins but do not actually
possess FYVE domains based on various sequence ana-
lysis methods.
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Domain Architecture of Arabidopsis FYVE proteins
On the basis of domain architecture of the proteins, we
propose five classes of AtFYVE proteins (Fig. 2). Class I
comprises two out of four documented Arabidopsis
Fab1p homologues expressed in plants, i.e. AT3G14270
and AT4G33240 [40,41]. The other two Fab1 homolo-
gues do not contain a FYVE domain [40,41]. Class I
members, i.e. AT3G14270 and AT4G33240, contain a
FYVE domain, followed by Fab1_TCP(chaparonin-like)
and PIPKc domains. AT3G14270 and AT4G33240 are
annotated in NCBI database as “phosphatidylinositol-4-
phosphate 5-kinase family proteins” while in Uni-
ProtKB/TrEMBL as “putative uncharacterized proteins.”
Our Blast analysis reveals similarity of both class I mem-
bers to ppk-3 (C. elegans), Fab1p (S. cerevisiae), and
phosphatidylinositol-3-phosphate 5-kinase type III (H.
sapiens) (see supplementary material). Ppk-3 and Fab1p
proteins share domain architecture identical to class I
members and phosphatidylinositol-3-phosphate 5-kinase
type III protein has an additional DEP domain (see

supplementary material). Class II is represented by two
sequences, AT3G43230 and AT1G29800, which possess
two domains: a FYVE and a Domain of Unknown Func-
tion (DUF500). Class III comprises the AT1G61690
protein and class IV comprises the AT1G20110 protein.
Both classes are unique in that they contain only a
FYVE domain but they differ in the placement of the
FYVE domain (N-terminus versus C-terminus) and also
their biophysical properties (this study). UniProtKB/
TrEMBL annotates function for class II-IV as putative
uncharacterized. The representation of class II-IV mem-
bers in the literature is full of contradictions. They are
not mentioned in the classification by Drobak and
Heras [38] and AT1G29800 of class II together with
AT1G61690 of class III are omitted from the classifica-
tion by Jensen et al [32]. Moreover, class IV protein was
identified as AtAAF79901 and shown to contain a FYVE
domain followed by a plant specific SGNH-plant-lipase-
like domain [32]. Our analysis of the sequence suggests,
however, that class IV protein is over 300 amino acids

Figure 1 A. Multiple sequence alignment of AtFYVE domains. Absolutely and moderately conserved residues are highlighted in black and
grey, respectively. For comparison, the secondary structures of EEA1 FYVE domain (PDB: 1JOC chain A [37]) are highlighted in red (a-helix) and
blue (b-sheet). All eight cysteine residues are colored yellow. B. A schematic localization of AtFYVE domain-containing proteins within the
Arabidopsis genome.
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shorter than AtAAF79901, and it does not contain a
SGNH-plant-lipase-like domain. Class II sequences,
seem to contain an additional DUF500 domains not
represented by van Leeuwen [39]. Class V is the largest
class. It includes nine AtFYVE proteins, which share
similar domain architecture, i.e. Pleckstrin Homology of
Phospholipase C (PH_PLC), followed by Regulator of
Chromosome Condensation 1 (RCC1) regions/blades
(overlapping with Alpha Tubulin Suppressor 1 (ATS1))
and FYVE domains. In addition, seven out of nine class
V proteins are characterized by the presence of a DZC
motif found near the C-terminus DZC. UniProtKB/
TrEMBL annotates function for class V members as
either disease resistance protein-like, e.g. AT5G42140
and AT4G14370, Ran GTPase binding/chromatin bind-
ing/zinc ion binding, e.g. AT1G65920, AT1G69710,
AT3G23270 and AT5G12350, or putative uncharacter-
ized, e.g. AT3G47660, AT1G76950, and AT5G19420.
The SMART database recognizes between three and five

RCC1 regions within class V AtFYVE proteins, whereas

the CD-search identifies additionally yeast domain with
similarity to human RCC1 domain, ATS1 domain, over-
lapping the RCC1 blades (Fig. 2). In some cases, only the
ATS1 domain is detected by the CD-search or the number
of RCC1 blades does not correspond to the number
obtained from SMART database (data not shown). These
inconsistencies prompted further enquiry into the number
and nature of the putative RCC1 repeats identified in class
V of AtFYVE proteins. Up to now, RCC1 and RCC1-like
domains that have been described are within cytoplasmic
proteins associated with membrane structures, e.g. endo-
somes (Alsin) [42] and Golgi apparatus (HERC1) [43]. Fig.
3 shows an internal sevenfold sequence repeat of 51-68
residues present in the solved structure of human RCC1
[44] aligned with putative RCC1 regions of class V
AtFYVE proteins. In human RCC1, one half of the first
sequence repeat, the C and D repeats, is made from the
N-terminal end of the protein, and the other half, the A
and B repeats, is made from the C-terminal end [44]. It
has been suggested that this arrangement stabilize the

Figure 2 A. Cartoon of representative examples of the five classes of AtFYVE proteins. The Pfam (PF), SMART (SM), Conserved Domains
(CD) and Clusters of Orthologous Groups (COG) accession numbers for the different domains are given under the figure. The lengths of each
protein are indicated on the right.
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Figure 3 Sequence alignment of human RCC1 and putative Arabidopsis homologues (class V). The secondary structures are adapted from
solved structure of human RCC1 with minor modifications [44]. Residues absolutely conserved within the secondary structures are black on a
colored background. Residues moderately conserved within the secondary structures and/or among Arabidopsis repeats and not human RCC1
are white on a colored background. Boxed residues correspond to amino acids which are highly conserved among each blade of the seven
propeller structure [44].
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circular arrangement of secondary structural elements
through a molecular clasp mechanism similar to a belt clo-
sure [44]. Our data show that putative RCC1 blades of
AtFYVE proteins align well with six of human seven
RCC1 blades. In fact, the seven highly conserved residues,
i.e. four glycines, a tyrosine, a leucine and a cis-proline,
identified in human RCC1 repeats are also mostly con-
served among putative AtRCC1 blades (boxed residues).
However, it appears that the first blade of human RCC1
shares little or no primary and/or secondary sequence
similarity with most putative AtRCC1 blades. The first
blade of putative AtRCC1 may not even be a potential
repeat for at least seven out of nine class V AtFYVE pro-
teins because they share a low sequence similarity with
human RCC1 in the corresponding region as compared to
other regions.

Molecular models of the Arabidopsis FYVE domains and
their biophysical properties
We built homology models of all FYVE domains present
in 15 AtFYVE proteins listed in Fig. 1. Since electrostatic

forces play critical roles in protein-membrane interac-
tions and numerous membrane-mediated biological phe-
nomena, we mapped the charge distribution on the
surface of each AtFYVE domain (Fig. 4). In Fig. 4, we
have constructed an electrostatic profile panel showing
the location of negatively (red) and positively (blue)
charged regions on the surface of AtFYVE domains. The
electrostatic profile of class I AT3G14270-FYVE model,
which has a net charge of +7 (including zinc ions), bears
a resemblance to the electrostatic profile of D. melano-
gaster Hrs-FYVE (PDB: 1DVP). The model of the other
class I member, AT4G33240-FYVE, exhibits weaker
positive potential. Both members of class II AtFYVE
domains share a potential profile that is similar to the
profile observed for H. sapiens EEA1-FYVE (PDB:
1HYI). Class II AT3G43230-FYVE has a net charge of
+6 and AT1G29880-FYVE has a net charge of +8. Intri-
guingly, the model of class III AT1G61690-FYVE has a
very strong positive potential similar to that observed
also for all models of class V AtFYVE domains, M. mus-
culus 19 protein-FYVE (PDB: 1WFK) and for H. sapiens

Figure 4 Electrostatic profiles of FYVE domains. Four known FYVE domain structures, i.e. PDB:1DVP, PDB:1HYI, PDB:1WFK, PDB:1X4U and
fifteen AtFYVE homology models, i.e. class I-V, are included. All FYVE domains are shown in the same orientation with the membrane binding
regions facing down. The red and blue meshes represent the -1 kT/e and +1kT/e equipotential contours of the FYVE domains. The numbers in
the upper left corner correspond to the AtFYVE classification described earlier (Fig. 2). The numbers in the lower right corner correspond to total
charges on each AtFYVE domain model.
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27 isoform b-FYVE (PDB: 1X4U). Their overall net
charge is highly positive, but varies from +9 to +16. The
electrostatic profile of class IV AtFYVE model shows the
weakest positive potential observed among AtFYVE
domain models. Additional electrostatic profiles for the
alternative models, their PDB coordinate files and verifi-
cation profiles are available online (see supplementary
material).

Sequence motifs of the Arabidopsis FYVE domains
AtFYVE domains can be divided into two distinct
groups based on different consensus sequences identi-
fied via CLUSTALW multiple sequence alignment (Fig.
5). Fig. 5A depicts AtFYVE domains, which belong to
class I-IV. These Arabidopsis domains were previously
referred to as classic FYVE domains because they

contain three classic conserved regions: the N-terminal
WxxD, the central R(R/K)HHCR and the C-terminal R
(V/I)C motifs [32] implicated in binding the phosphoi-
nositide ligand PtdIns(3)P. Class I-IV AtFYVE proteins
have a classic FYVE domain (Fig. 5A) with a conserved
motif for PtdIns(3)P-binding that is found in FYVE
domains of H. sapiens [34], S. cerevisiae, C. elegans [45]
and various other organisms, e.g. P. troglodytes, M. mus-
culus, R. norvegicus, C. familiaris, B. taurus, G. Gallus.
Class V AtFYVE domains do not share the N-terminal
WxxD motif. Instead they have a WxxG motif, only a G
residue or residues that share no similarity to the WxxD
or WxxG motifs (Fig. 5). Moreover, the central R(R/K)
HHCR motif is replaced by a (K/R)(R/K)HNCY motif,
which is atypical and hence the name “variant binding
motif” of FYVE domains [32].

Figure 5 The alignment of classic and variant AtFYVE domains. The conserved and variable sequence motifs of classic and variant AtFYVE
domains are boxed and highlighted in different colors, i.e. the N-terminal W and D residues in blue, the turret loop in grey, the central HHCR/
HNCY motif in pink, the putative dimer interface corresponding to EEA1-FYVE dimer region in yellow and the C-terminal RVC motif in green.
Additionally, residues on red background represent the residues interacting with Ins(1,3)P2 (Panel A) and residues interacting with Ins(1,5)P2
(Panel B).
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We observe that the variable turret loop prior to the R
(R/K)HHCR motif, which is associated with membrane
penetration of the FYVE domain, and the putative
dimerization interface region are made up of residues,
which are quite diverse in the various class I-IV FYVE
domains. Despite the observed differences in residues,
however, all class I-IV AtFYVE domains share at least
one hydrophobic residue within the turret loop and
highly hydrophobic dimerization interface regions.
AT1G29800-FYVE and AT3G43230-FYVE have an
insertion of an additional hydrophobic residue within
the turret loop. Class V AtFYVE domains contain a con-
served phenylalanine residue in the second position
(with the exception of AT3G47660-FYVE) and a con-
served arginine in the last position within the turret
loop. As in the case of class I-IV AtFYVE domains, the
putative dimerization interface region of class V AtFYVE
domains is highly hydrophobic. Unlike class I-IV
AtFYVE domains, however, class V AtFYVE domains
dimerization interface regions seems highly conserved
with at least three absolutely conserved residues, i.e.
AxxAP.

FYVE domains have the potential to bind headgroups of
both PtdIns(3)P and PtdIns(5)P
Preliminary docking studies depicted in Fig. 5 and Fig. 6
show that class I-IV AtFYVE domains have a potential
to bind headgroups of both PtdIns(3)P and PtdIns(5)P
using the same set of residues previously identified to
bind the headgroup of PtdIns(3)P in other FYVE
domains, i.e. the RHHxR motif and the arginine residue
of RVC motif (Fig. 5). Class V AtFYVE domains use the
variant signature of residues, i.e. xRKxHNxY motif, and
a (L/F/P)YR motif, which overlaps the classic RVC
motif, to potentially bind headgroups of PtdIns(3)P and
PtdIns(5)P (Fig. 5B). In addition to the variant residues,
our data indicate that a (H/K/N)xx(S/T)(S/N)(K/R)K
motif located immediately prior to the dimerization
region is also used by class V AtFYVE domains to
recognize either headgroup (Fig. 5B).

Discussion
Proteins that contain FYVE zinc finger domains have so
far been known as effectors of PtdIns(3)P playing a
major role in endocytic and vesicular trafficking [46-48].
PtdIns(3)P is a phosphoinositide that is present at very
low levels in plant cells [49-52]. It is synthesized by
phosphatidylinositol 3-kinase (PI3K). Both PtdIns(3)P
and PI3K are essential for normal plant growth [31] and
have been implicated in diverse physiological functions,
including root nodule formation [53], auxin-induced
production of reactive oxygen species (ROS) and root
gravitropism [54], root hair curling and Rhizobium
infection in M. truncatula [55], maintenance of the

processes essential for root hair cell elongation [56],
increased plasma membrane endocytosis and the intra-
cellular production of ROS in the salt tolerance
response [57], stomatal closing movement [57,58], and
possibly cytokinesis [11]. If we envision plant FYVE
domains as being potential effectors of PtdIns(3)P, they
could play important roles in various physiological pro-
cesses. In this study we have modeled the structure of
all AtFYVE domains and predicted their membrane tar-
geting behavior based on the biophysical profiles of the
modeled structures.
Based on the domain architecture and homology to

proteins of known function, we have classified AtFYVE
proteins into five distinct classes (Fig. 2). Similar domain
based classifications previously performed for FYVE
domain-containing proteins in H. sapiens, C. elegans
and S. cerevisiae genomes [34,45] suggested a certain
degree of correspondence among the different FYVE
proteins in various organisms [34]. However, AtFYVE
proteins are striking in showing no obvious similarities
or correspondence to the FYVE proteins included in
these domain architecture-based classifications. More
specifically, only one class of AtFYVE proteins corre-
sponds to what was reported in other organisms, i.e.
class I in our classification and the corresponding PIKf-
vye, MmPIKfyve and ScFab1p groups in the other classi-
fications [34,40,45]. Even that correspondence, however,
is partial since the Arabidopsis counterparts lack the
disheveled, Egl-10, and pleckstrin (DEP) domain
observed in mammals and worms [34,40,45,59]. The
remaining members of AtFYVE proteins class II-V are
unique and exhibit completely different domains sug-
gesting that FYVE domains in plants play a unique role
in plant signaling pathways and/or play similar/parallel
roles in signaling as other organisms but use different
protein players or signaling mechanisms.
The two class I sequences are homologues of the PIK-

fyve/Fab1 family of phosphatidylinositol phosphate 5-
kinases that phosphorylate the D-5 position in phospha-
tidylinositol (PtdIns) and PtdIns(3)P to make PtdIns(5)P
and PtdIns(3,5)P2, respectively [60]. PIKfyve/Fab1 pro-
teins bind PtdIns(3)P with high specificity through their
FYVE domains [15,60] and are known to participate in
several aspects of endosomal trafficking functions [61],
transduction of osmotic shock signals [62] and other
cellular functions in mammals and yeast [40] as well as
in plants [63-65]. Recently, the two class I AtFYVE, PIK-
fyve proteins, were found to participate in vacuolar rear-
rangement essential for successful pollen development
[63] and our molecular models provide the structural
insight into their mode of function. Both members pos-
sess the complete classic signature for PtdIns(3)P-bind-
ing and the conserved hydrophobic motif suggesting
that they likely bind membranes using the general
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mechanism of non-specific electrostatic interactions, fol-
lowed by membrane penetration of hydrophobic resi-
dues close to the PtdIns(3)P-binding pocket facilitated
by an electrostatic switch coupled with specific interac-
tions with PtdIns(3)P as proposed by previous computa-
tional modeling studies [22]. These studies have shown
that all human FYVE domains have electrostatic equipo-
tential profiles similar to those of Hrs and EEA1 FYVE
domains. This electrostatic polarity seems to be charac-
teristic for class I AtFYVE domains and their S.

cerevisiae and C. elegans homologues (Fig. 4 and Fig. S1
(Supplementary material)). Despite the overall electro-
static profile similarity, AT3G14270-FYVE has a higher
net charge (+7 at pH 6.5; Zn ions included) than
AT4G33240-FYVE (+3 at pH 6.5; Zn ions included) (Fig
3). Based on the net charge difference, we predict that
AT4G33240-FYVE will have a reduced non-specific
electrostatic contribution to membrane targeting. More-
over, we predict that its hydrophobic contribution will
also be reduced because the conserved hydrophobic

Figure 6 Ins(1,3)P2 and Ins(1,5)P2 coordination. A schematic representation of the coordination of PtdIns(3)P headgroup, Ins(1,3)P2, and PtdIns
(5)P headgroup, Ins(1,5)P2, by the conserved sequence motif of class II Arabidopsis AT3G43230-FYVE (classic) and class V Arabidopsis AT1G65920-
FYVE (variant). The figures were created using LIGPLOT [132].
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motif of AT4G33240-FYVE possesses a valine residue
instead of a leucine residue found in AT3G14270-FYVE
(Fig. 4). Additionally, FYVE domain dimerization might
be important for functional membrane association of
AT4G33240-FYVE.
Class II-IV proteins have untouched sequences in

terms of functional assignment, which remain annotated
as “putative uncharacterized proteins” in various
sequence databases. All of them share the complete/
nearly complete conserved PtdIns(3)P-binding motif and
a large basic binding pocket except for class IV
AT1G20110-FYVE, which has a significantly reduced
basic surface patch in the potential ligand-binding
pocket (Fig. 4; class II-IV domains have net charges of
+6, +8, +11, and +2, respectively). Class II FYVE
domains possess a classic FYVE domain electrostatic
profile but their binding signature is missing the first of
the arginines in the R(R/K)HHCR motif, which is
known to recognize the 1-phosphate of PtdIns(3)P head-
group [20]. Even though this residue doesn’t participate
in the direct recognition of the 3-phosphate, mutational
studies suggest that substitution of this arginine sub-
stantially reduces the FYVE domain’s affinity for PtdIns
(3)P-containing membranes and potential for membrane
localization. The altered signature may slightly reduce
the local basic charge in the vicinity of the hydrophobic
motif and lower the barrier to membrane penetration.
In this class, we predict a classic FYVE domain mem-
brane-targeting behavior with subtle differences that
could be verified using mutational studies. Class III
FYVE domain on the contrary has the full binding sig-
nature and an electrostatic equipotential profile similar
to those of Hrs and EEA1 FYVE domains. We predict
that this domain will localize to PtdIns(3)P-containing
membranes using the classic mechanism of action of
previously studied FYVE domains with a strong contri-
bution from non-specific electrostatic interactions.
Class IV AtFYVE domain has the most reduced basic

surface patch and the lowest net charge of +2 among
AtFYVE domains. Hydrophobic contribution through
membrane insertion will likely be an important compo-
nent of membrane binding for this class, similar to
FENS-FYVE [22], which localizes to endosomal mem-
brane [66] even though it has a weaker positive potential
than other known FYVE domains [22].
Class V proteins are the most interesting class of the

FYVE domain-containing proteins although much
remains to be understood about their function. Out of
the 18 human RCC1 superfamily proteins, none corre-
sponds, in their domain architecture to class V FYVE
proteins [67]. The closest match, the PAM protein, has
3 RCC1 repeats and a FYVE domain but in a different
order and accompanied by domains other than domains
found in class V AtFYVE proteins [67]. In contrast to

the traditional seven canonical repeats found is most
RCC1-like proteins, there are six RCC1 repeats in some
proteins such as WBSCR16, Nek9, RPGR [67] and some
AtFYVE proteins (this study). Since b-propellers (includ-
ing RCC1 repeats) could be made of a variable number
of blades and are thought to evolve by blade duplication
and deletion [68], there could be three alternative expla-
nations for the absence of the first canonical RCC1
repeat in some class V AtFYVE proteins: 1) the second
half of blade 1 and the first half of blade 7 engage with
one another to form a symmetrical 6-bladed b-propeller;
2) an “open” ring-propeller forms as known for the C-
terminal domain of ParC subunit [69] and suggested for
the short-form of Alsin [70]; or 3) the first repeat is a
non-canonical RCC1 repeat as seen in other proteins
[67]. Therefore, despite the sequence differences, it is
possible that the 6 RCC1 repeats found in some AtFYVE
adapt a b-propeller structure similar to b-propeller
structures found in proteins from other organisms.
Previously, it has been suggested that association with

membrane(s) may be crucial for the functioning of this
class of AtFYVE proteins given the presence of two
phosphoinositide-binding domains, i.e. PH and FYVE
domains [32]. Experimental data suggest that class V
AT1G65920 PH domain binds to PtdIns(4,5)P2 while its
FYVE domain binds to PtdIns(3)P as well as PtdIns(5)P
[32]. The various members of class V AtFYVE domains
show a high degree of sequence conservation within an
enrichment of basic residues throughout the length of
the FYVE domain (Fig. 5). The most striking feature of
these FYVE domains is the presence of a variant phos-
phoinositide-binding motif (Fig. 5B), which seems to be
unique to plants as is the overall domain architecture of
these proteins ([32]; Fig. 5B). When the variant (K/R)(R/
K)HNCY motif of class V FYVE domains is used to
search for other FYVE domains, only sequences from
plants are retrieved, e.g. Q1SA17 (M. truncatula),
Q1SIN6 (M. truncatula), Q84RS2 (M. sativa), Q5JL00
(O. sativa) Q5N8I7 (O. sativa) Q6AV10 (O. sativa)
Q6L5B2 (O. sativa) Q259N3 (O. sativa), Q5XWP1 (S.
tuberosum), Q60CZ5 (S. tuberosum), Q60CZ5 (S. demis-
sum) or Q5EWZ4 (T. turgidum).
The obvious question that comes to mind is whether

this variant signature is responsible for an altered bind-
ing specificity in this class of FYVE proteins and there-
fore associated with a novel pattern of membrane/
sub-cellular targeting. Within mammalian cells, FYVE
domains are highly conserved and seem to select PtdIns
(3)P over other phosphoinositides [16]. Despite the con-
servation in the overall mechanism, there are significant
differences in the specificity and affinity of individual
FYVE domains towards phosphoinositides. In fact, EEA1
has affinity for PtdIns(5)P as well, perhaps because
PtdIns(3)P and PtdIns(5)P are similar in all aspects
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except having the phosphomonoester in a different posi-
tion [38]. Consequently, PtdIns(5)P has been shown to
induce small but important chemical shift changes simi-
lar to those induced by PtdIns(3)P in the binding motif
residues with the exception of one arginine, which
remains practically unaltered by PtdIns(5)P [38]. PtdIns
(3)P specific recognition by the FYVE domain seems to
involve indirect recognition of this specific ligand by
exclusion of alternatively phosphorylated phosphoinosi-
tides: the two residues implicated in this are the aspartic
acid of the N-terminal WxxD motif and the second his-
tidine of the central HHCR motif [20]. Both of these
motifs are substituted in class V variant AtFYVE
domains (Fig. 5) by the WxxG and HNCY motifs,
respectively. This opens up the possibility that class V
FYVE domains may have the potential to interact
equally or better with phosphoinositide ligands other
than PtdIns(3)P. Our preliminary docking analysis of
classic as well as variant motif-containing AtFYVE
domains seem to suggest that both have the potential to
interact with PtdIns(3)P and PtdIns(5)P headgroups
using practically the same set of residues (Fig. 5). Addi-
tionally, our analysis reveals a highly conserved putative
ligand-association motif located immediately prior to
the dimerization region present only within the class V
proteins (Fig. 5). Class V AtFYVE domains are also dif-
ferent in exhibiting very large basic surface patches with
prominent hydrophobic motifs. These patches are the
largest observed among FYVE domains classified to date
[71,72]. We predict that class V AtFYVE domains target
to the membrane with highly significant contributions
from non-specific electrostatics and hydrophobic inter-
actions, coupled with specific interactions with PtdIns(3)
P and/or PtdIns(5)P using the variant binding residues
and an additional conserved motif specific to this class
of FYVE domains.
Based on experimental studies, it has been suggested

that the strength of the positive potential and the iden-
tity of the hydrophobic residues near the binding site
may be two key factors, which are critical in determin-
ing which FYVE domains act alone, undergo dimeriza-
tion or require additional partners before anchoring to
the membrane [22]. For example, SARA-FYVE was pre-
dicted and verified experimentally to associate with the
membrane with significant contributions from non-spe-
cific electrostatic and hydrophobic interactions given its
net charge of +12 (zinc ions included) as well as the
presence of phenylalanine at the conserved hydrophobic
position [22,71,73]. Our data suggests that AtFYVE
domains engage in both non-specific electrostatic and
PtdIns(3)P-induced hydrophobic interactions for mem-
brane localization, the contribution differing for indivi-
dual domains as described earlier. Additionally,
dimerization may play an important role in the

membrane recruitment of FYVE domains [21,74] and it
appears that the free energy contributions to the mem-
brane association are additive for each monomer of the
EEA1-FYVE dimer [22]. The dimer interface regions of
AtFYVE domains are longer and more hydrophobic (Fig.
5) than the equivalent region of EEA1-FYVE and pre-
dicted region of SARA-FYVE [72,75] suggesting that all
AtFYVE domains have the potential to dimerize and
associate with membrane(s) as dimers.

Conclusions
Overall, AtFYVE proteins are quite distinct from other
organisms, exhibiting unique domain architectures, bio-
physical properties as well as altered binding motifs.
The biophysical profiles of the modeled FYVE domains
in Arabidopsis suggest membrane-targeting mechanisms
ranging from the previously described classic modes to
the novel binding mode of the class V FYVE domains,
which seem to be found only in plants. Our predictions
provide a foundation for designing directed mutational
studies to confirm these behaviors, which is crucial to
the understanding of the role of these domains in
important plant signaling pathways, something that has
so far not been explored.

Methods
Arabidopsis FYVE proteins
The accession numbers of the AtFYVE proteins were
identified using a computational pipeline for automated
high-throughput modeling [36], which run against Ara-
bidopsis protein sequence database (TAIR6_-
pep_20051108). The AtFYVE protein sequences
corresponding to the identified accession numbers were
retrieved from KEGG GENES [76,77] and verified for
presence of FYVE domain with SMART [78-80].

Sequence verification
To verify the total number and individual accession
numbers of AtFYVE proteins obtained with pipeline,
three additional methods were employed: 1) search of
publicly available sequence databases: Swiss-Prot/
TrEMBL [81,82], NCBI [83,84] and UniProt [85-87]; 2)
query performed by the Arabidopsis Information
Resource (TAIR) for BLASTn 2.2.14 [88]; and 3)
MOTIF search [77] using a manually derived pattern
specific to AtFYVE domains in PROSITE format offered
by GenomeNet service [77].

Domain architecture analyses
Each AtFYVE protein sequence was analyzed by searching
against Pfam [89], SMART [78-80], Conserved Domain
Database v2.10 and CD-Search [90-94] and Clusters of
Orthologous Groups [95,96]. All sequences were then sub-
grouped according to consensus domain architecture.
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Modeling methodology
There is no single homology modeling program/routine
that has been singled out as the best method for compara-
tive modeling [97]. To generate high-quality models for
the AtFYVE domains, we implemented a number of pro-
grams to create many different alternative alignments and
models followed by a quality assessment and a selection
process. We used two separate approaches: automated
and manual. The automated approach involved the use of
a high-throughput computational pipeline, which uses its
own built in alignment, modeling and evaluation methods
[36] as well as Pudge for modeling and evaluation [98].
The manual approach is based on choosing several alter-
native options for each step in the process of creating the
homology models as previously detailed by Singh and
Murray [99]. The scheme involves the use of multiple
approaches at each step: 1) choice of a suitable structural
template, 2) alignment of the template and target
sequences, 3) model building, and 4) model evaluation and
refinement using 3D-JIGSAW [100-102], Modeller 8v1
[103,104], NEST [105], LOOPP [106-108], HOMER [109],
CPH [110], PHYRE [111], manual editing using GeneDoc
[112], guided by Verify3 D [113,114] and Prosa [115].
Loop refinement and side chain conformations were per-
formed using individual modeling programs whenever
available. In addition, loop refinement was done with
Loopy [116] and the prediction of side-chain conforma-
tions with SCWRL3.0 [117] and SCAP [118-120].

Analysis of the models
The models were analyzed for their sequence, structural
and biophysical properties. The analyses of biophysical
properties including the electrostatics, hydrophobicity
and shape of each model were conducted using the sur-
face property analysis tools in the program GRASP
[121]. The pKa values of ionizable amino acid side
chains in AtFYVE domains as well as total charges were
computed using the automated system H++ [122-124],
which is based on solutions to the Poisson-Boltzmann
equation. The calculations were performed using default
settings. The reported total charges was calculated at
pH 6.5 because EEA1-FYVE was estimated to exist in
bound state at low pH of 6.0-6.6 and only half of the
protein was estimated to remain active at the cytostolic
pH of 7.3 [20].

Ligand preparation
Ins(1,3)P2, Ins(1,4)P2, Ins(1,4,5)P3, Ins(1,3,5)P3, Ins(1,3,4)
P3, and Ins(1,3,4,5)P4 ligands were extracted from their
corresponding PDB files. Ins(1,5)P2 ligands were created
from Ins(1,4,5)P3 ligands in Chimera [125] and energy
minimized. Hydrogens were added to all ligands using
Chimera [125]. Gasteiger charges were calculated for all
ligands.

Phosphoinositides docking and analysis of resulting
interactions
Rigid and flexible docking was performed using DOCK
6.1 [126] and DOCK 6.1 suite programs. A molecular
surface of the receptor was created with DMS [127,128].
Spheres were generated with Sphgen_cpp v1.2, which
was modified by Andrew Magis from its original version
called Sphgen [126]. The resulting file was edited to
include only spheres grouped within the first cluster.
Grids were generated with GRID [129,130]. Contact
scores and energy scores were calculated using an
energy cutoff distance of 5.0 A. Our docking technique
was validated by docking Ins(1,3)P2 of known FYVE
domains into their corresponding solved structures.
Although FYVE domains are suggested to bind only Ins
(1,3)P2 and Ins(1,5)P2, we also docked Ins(1,4)P2, Ins
(1,4,5)P3, Ins(1,3,5)P3, Ins(1,3,4)P3, and Ins(1,3,4,5)P4 as
controls. Following the initial validation we used our
approach to dock three Ins(1,3)P2 and three Ins(1,5)P2
ligands using rigid and flexible docking scenarios with
the predictive models of AtFYVE domains. In the end,
each predictive model was subjected to twelve docking
runs, six for each headgroup. A given residue is reported
to interact with the headgroup only if it does so 50% or
more of the time (i.e. 3 or more times) as evaluated by
the Ligand-Protein Contacts (LPC) server [131].

Electronic supplementary material
The sequences and coordinate files representing our
models for all AtFYVE domains as well as other supple-
mentary information (GRASP images and structure veri-
fication plots, and alignment files) are available at the
following website: http://userhome.brooklyn.cuny.edu/
ssingh/arabidopsis/FYVE/fyve.html.
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