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Abstract

Background: Broad-scale phylogeographic studies of freshwater organisms provide not only an invaluable
framework for understanding the evolutionary history of species, but also a genetic imprint of the paleo-
hydrological dynamics stemming from climatic change. Few such studies have been carried out in Siberia, a vast
region over which the extent of Pleistocene glaciation is still disputed. Brachymystax lenok is a salmonid fish
distributed throughout Siberia, exhibiting two forms hypothesized to have undergone extensive range expansion,
genetic exchange, and multiple speciation. A comprehensive phylogeographic investigation should clarify these
hypotheses as well as provide insights on Siberia's paleo-hydrological stability.

Results: Molecular-sequence (mtDNA) based phylogenetic and morphological analysis of Brachymystax
throughout Siberia support that sharp- and blunt-snouted lenok are independent evolutionary lineages, with the
majority of their variation distributed among major river basins. Their evolutionary independence was further
supported through the analysis of || microsatellite loci in three areas of sympatry, which revealed little to no
evidence of introgression. Phylogeographic structure reflects climatic limitations, especially for blunt-snouted
lenok above 56° N during one or more glacial maxima. Presumed glacial refugia as well as interbasin exchange
were not congruent for the two lineages, perhaps reflecting differing dispersal abilities and response to climatic
change. Inferred demographic expansions were dated earlier than the Last Glacial Maximum (LGM). Evidence for
repeated trans-basin exchange was especially clear between the Amur and Lena catchments. Divergence of sharp-
snouted lenok in the Selenga-Baikal catchment may correspond to the isolation of Lake Baikal in the mid-
Pleistocene, while older isolation events are apparent for blunt-snouted lenok in the extreme east and sharp-
snouted lenok in the extreme west of their respective distributions.

Conclusion: Sharp- and blunt-snouted lenok have apparently undergone a long, independent, and
demographically dynamic evolutionary history in Siberia, supporting their recognition as two good biological
species. Considering the timing and extent of expansions and trans-basin dispersal, it is doubtful that these
historical dynamics could have been generated without major rearrangements in the paleo-hydrological network,
stemming from the formation and melting of large-scale glacial complexes much older than the LGM.
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Background

Our knowledge on the evolutionary history of north tem-
perate fishes has been fundamentally altered due to the
advent and application of broad-scale phylogeography [1-
4]. Phylogeographic investigations of freshwater fishes in
Europe are numerous and inferences drawn on the history
of intraspecific lineages often relate to how river courses
and their accompanying catchment basins dynamically
change through several glacial epochs [e.g., [5,6]]. For
cold tolerant fishes such inferences can be complex.
Genetic lineages can be distributed mosaically among
basins, reflecting repeated population expansions and
contractions across the shifting colonization corridors
that have resulted from river capture events, the formation
and dynamics of pro-glacial lakes and fluctuating levels
and salinities of seas [7-9]. Despite relatively sound
knowledge of European glaciation and attempts to find
common patterns, phylogeographic scenarios are often
species specific.

There are few similar studies in Siberia and far less cer-
tainty concerning the extent of glaciation and paleohydro-
logical stability [10]. One of the first broad-scale
phylogeographic studies in Siberia reported that genetic
lineages of grayling (genus Thymallus), corresponded to
major Siberian river systems (e.g. Amur, Lena, Enisei)
[11]. The study also supported that grayling had been
extirpated from Lake Baikal during the early to mid-Pleis-
tocene as the result of some climate-induced environmen-
tal perturbation. Subsequently, grayling were able to
recolonize Lake Baikal when its waters over spilled form-
ing a new outlet into the Enisei basin, 110,000 to 450,000
years ago [11]. The authors speculated that this event
might relate to highly controversial hypotheses concern-
ing the paleo-climate in Siberia. Most geologists consider
Siberian glaciation to have been rather limited based on
the modeling of sparse precipitation during the Pleis-
tocene (minimum model) [12]. However, field evidence
supports extensive glaciation along the polar continental
shelves and coastal Pacific lowlands (maximum model)
[13]. Such ice sheets would have blocked north flowing
rivers and created a series of pro-glacial lakes. Evidence for
such blockage has been presented for the Ob and Enisei
systems [14,15].

Furthermore, interior mountain regions (e.g. Trans-Baika-
lian) were glaciated perhaps above 1000-1200 m. How-
ever, many potential refugia for cold tolerant organisms
must have existed in central and east Siberia, north of inte-
rior mountain systems, as supported by phylogeographic
patterns found in grayling from the Lena basin [16]. Sibe-
rian glacial scenarios, however, are much in dispute, espe-
cially for the last glacial maximum (LGM) [17]. Recent
studies reflect an appreciation for the region's paleohydro-
logical dynamics and its effects on organismal history
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[6,18-21]. Nonetheless, no study has of yet covered the
majority of Siberia where four of the world's ten largest
rivers occur (Ob, Lena, Enisei, and Amur).

The Asian endemic salmonid fish Brachymystax lenok
occurs in all major Siberian river systems (Figure 1) and
thus can serve as a phylogeographic model for assessing
paleohydrological events. Lenoks occur in two morpho-
logical forms, differing in the length and shape of their
snouts as well as a number of external morphological and
osteological characters. The so-called sharp- and blunt-
snouted lenoks are viewed as either one species complex
B. lenok represented by two infraspecies [22], or as two
nominal species. Morphological variation within each
form exists among major basins [22,23] and in zones of
sympatry F1 hybrids are found [[24-26], Additional File
1]. Interestingly, longitudinal clines in morphological
characters led to the hypothesis of countercurrent disper-
sal, with sharp-snouted lenok expanding from the west
and blunt-snouted from the east [23]. Such dispersal,
combined with character displacement in contact zones is
thought to have resulted in the formation of clines
[22,23].

Analysis of allozyme variation supported limited gene
flow between the two forms [26,27]. Several enzyme sys-
tems can distinguish sharp- and blunt-snouted lenoks
within basins, particularly in sympatry, but no alleles are
consistently diagnostic throughout Siberia. Moreover, the
range-wide pattern of allelic distribution for di-allelic loci
is complex with no consistency as to which alleles are
fixed or found in high frequencies within a form among
all river basins. These results were interpreted as evidence
of extensive hybridization and gene exchange in the past,
with the present structure of the genus formed via "multi-
ple hybrid speciation" [22], though such interpretation
received criticism [27].

Considering the interesting evolutionary scenario of
sharp- and blunt-snouted lenoks as well as their wide-
spread distribution in Siberia, we proposed a combined
genetic and morphological approach to test the existing
hypotheses of counter-current dispersal, hybridization
and gene flow between the two forms. Concomitantly, we
aimed to use lenok as a phylogeographic model for fur-
ther understanding the paleohydrological dynamics of the
Pleistocene in Siberia.

Results

The final alignment included 494 bp of the mtDNA con-
trol region (CR) (N = 151), 987 bp of the NADH-1 gene
(ND1) (N =142),and 1481 bp (N = 114) with both genes
combined. There was no significant deviation from base
frequency homogeneity across taxa for either gene. In
lenok the transition/transversion ratio was 2.56 for the
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Figure |

Ranges and sampling locations of sharp- andblunt-snouted lenoks. Ranges of sharp- and blunt-snouted lenoks com-
piled from data and literature. Grey shading, sharp-snouted lenok; left hatch, blunt-snouted lenok; crosshatch, form uncertain.
Korean and Chinese parts of the range follow Kim (1972) and Li (1985). Arab numerals and solid circles correspond to sample
sites of this study, listed in Table |, Roman numerals and open circles — to sample sites for the external data from China and
Korea: | — Songhua (Sungari), Il — Woniuhe, Il — Suifenhe (Suifun), IV — Tumen, V — Yalu, VI — Yellow River (Hwang Ho) basin,

VIl — Tuligenhe (China — Yingzhe et al, 2006), VIIl — Hanjiang (Korea). The red-dotted line corresponds to 56° N.

CR, which revealed one 2-bp and four 1-bp indels, with
outgroup taxa included. For the coding ND1 there were
no indels nor amino acid changes. Neither transitions nor
transversions were saturated in either gene segment,
including third codon positions. There were 33 variable
sites for the CR, 30 of which were parsimony informative
(excl. indels) and 208 variable sites (109 parsimony
informative) for the ND1. Pairwise sequence divergence
within B. lenok ranged from 0 to 3.0% (CR) to 0 to 6.2%

(ND1). In all analyses two monophyletic groups are iden-
tified corresponding to blunt- and sharp-snouted lenoks
(Figure 2). Net divergence between groups ranged from
1.7% (CR) to 4.7% (ND1), while within lineage diver-
gences ranged from 0.2% to 0.7%. Net divergences
between outgroup taxa and lenok varied with the two
genes: 4.3% (CR) or 7.7% (ND1) for H. hucho, 5.4%(CR)
or 7.4% (ND1) for H. taimen, and 7.6% (CR) or 13.3%
(ND1) for P. perryi.
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Figure 2
ML tree based on CR and ND|I sequences. Tree derived from a ML search using the Tamura-Nei model (TRN+G+l) for
the CR and ND| sequences combined. All analyses (NJ, MP, and ML) gave similar estimates of relationships. For the major
clades, bootstrap values (over 50%) are shown for ML (above); MP (with gaps) (below, left) and NJ (below, right). 100*means
that all bootstrap values are higher than 95. The tree is rooted with H. hucho, H. taimen and P. perryi.
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The phenogram based on external morphological and
osteological characters parallels the genetic results reveal-
ing two clusters corresponding to sharp- and blunt-
snouted lenoks (Figure 3). Similarly, a plot of the first two
factors of a Principal Component Analysis (PCA) reveals
two clusters clearly representing the two forms (Figure 4).
Only the position of sharp-snouted lenok from the Ob
basin, intermediate along the first factor (PC1) between
blunt-snouted lenok and all other sharp-snouted individ-
uals prevents 100% diagnosis of all individuals to a form.
Size effects were assumed to be minimal as there was no
correlation between PC1 and size (Additional File 2) and
mean total length of individuals analyzed in both forms
was nearly identical (sharp-snouted 41.2 cm; blunt-
snouted 41.6 cm). Application of a Discriminant Function
(DF) produced from a 25% random sample of the data set
resulted in 99.9% and 99.6% correct identification for the
blunt- and sharp-snouted lenok, respectively. DF values
for the misclassified individuals (two Ob basin sharps and
5 Primor'e region blunts) were intermediate to the ranges
of values defining each form.

Haplotype Networks

The CR network revealed 19 haplotypes, 10 in blunt- and
9 in sharp-snouted lenok (Figure 5; Additional File 3).
Maximum pairwise divergence was considerably less
within blunt-snouted (six steps) compared to sharp-
snouted (twelve steps) lenok (Figure 5). Both forms
revealed at least one haplotype shared between the Lena
and Amur drainages supporting dispersal of some kind
between these basins. Both forms also revealed private

Blunt-snouted

Sharp-snouted

Amur I

Figure 3
UPGMA dendrogram of external morphological and osteological characters. UPGMA dendrogram of lenok popula-
tions (N = 50) based on 46 external morphological and osteological characters. H. taimen is added to the analysis. Photograph
of both sharp- and blunt-snouted lenoks’heads. Population numbers corresponding to those in Table | can be found in Addi-

tional File |1 and Additional file 12.

Lena

Sea of Japan | =}
Uda |
Amur, Sakhalin,

Shantar
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haplotypes at the eastern (Uda) as well as western (Ob)
edge of their distributions, supporting isolation of these
drainages.

The addition of 15 GenBank sequences (from China and
Korea) to the CR network revealed a significant finding.
While several haplotypes from mainland China clustered
with both our blunt- and sharp-snouted clades, the
remaining haplotypes from Korea and the Paleo-Yellow
River formed a distinct cluster, a minimum of seven steps
divergent from our sharp-snouted clade (Figure 5).
Despite the lack of morphological data it is likely that the
first two groups of haplotypes represent blunt-snouted
and sharp-snouted lenoks, respectively.

Parsimony analysis of the ND1 gene revealed nearly twice
the number of haplotypes (N = 35) as the CR, suggesting
a considerably higher substitution rate for this coding
gene seqment. Two separate networks were revealed, in
addition to one highly divergent sharp-snouted haplotype
from the ODb basin (Figures 6A and 6B; Additional File 4).
Both networks revealed at least one star-like cluster of
haplotypes, reflecting demographic expansions of popu-
lations primarily from the Amur (blunt-snouted) and the
Amur and Lena (sharp-snouted) basins. Each network
also revealed one or more highly divergent groups, span-
ning 12 steps in blunt- and 13 steps in the sharp-snouted
lenok.

The blunt-snouted lenok ND1 network (18 haplotypes)
contained no shared haplotypes between the Lena and

Ob |

Hucho taimen
rrrrrrrrrrrrertrerrre T
1.0 2.0 25 3.0

0.5 1.5 ' L2
Taxonomic distance
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Scatterplot of PCA factors based on morphological and osteological characters. PCA scatterplot of sharp-snouted
(open circles) and blunt-snouted (filled circles) lenoks from different parts of Siberia and the Far East of Russia based on 46

external morphological and osteological characters.

Amur catchments in contrast to analysis with the more
slowly evolving CR. Some Amur haplotypes were shared
with the Tugur River and/or one of the island populations,
whereby the Shantar Islands also revealed a unique haplo-
type reflecting a degree of long-term isolation. Considera-
bly longer periods of isolation were suggested for both the
extreme eastern (Ob) and western (Sea of Japan) regions
of the blunt-snouted lenok's distribution. The Ob basin
revealed five unique haplotypes that were a minimum of
two steps from either the Lena's or Amur's most common
haplotype. In the Sea of Japan basin, two very distinct
haplotypes (ND15 & ND16) were found, both a mini-
mum of eight steps from any other in the network.

The sharp-snouted ND1 network (17 haplotypes)
revealed one presumably ancestral haplotype (ND17)
shared among populations throughout the Lena, as well
as locations in the Indigirka, Kolyma and Amur basins.
This haplotype is central to a star-like cluster of 11 haplo-
types, each one or two base pairs divergent from ND17.

Unique haplotypes were found in the Amur, Tugur, Eni-
sei, and Uda basins. Three haplotypes from the Selenga-
Baikal basin (ND31, 32, 33) form a highly divergent
group, suggesting a refuge or isolation, not reflected in
data sets from other salmonid fishes [11]. The Ob basin is
fixed for one, highly divergent haplotype (ND34) beyond
the 95% parsimony limit defining the network, which,
together with the results of the blunt-snouted lenok, dem-
onstrate long-term isolation of this basin.

Among basin comparisons (Amova & pairwise differences)
For both lenok forms, the among group variance (@),
representing differences between major ocean basins (Arc-
tic and Pacific) was minimal (or negative) and statistically
non-significant, while the largest and highly signficant
component (®g) represented the among river basin vari-
ance (Additional File 5). A overview this among basin var-
iability can be provided with a table of pairwise
differences, which demonstrates relatively large average
differences among most pairs of basins, except those that
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@ selenga-Baikal

Sharp-snouted
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Parsimony networks of CR haplotypes Parsimony network (95%) of CR haplotypes observed in blunt- and sharp-snouted
B. lenok from Siberia including the nine haplotypes from GenBank (shown in red), representing Chinese and Korean samples.
Circle size is proportional to observed haplotype frequencies and black points represent unobserved haplotypes. [The name B.
tumensis was suggested for blunt-snouted lenok, but this name was first given to fish bearing the haplotype from the Tumen
River, shown in this network to group with the sharp-snouted mtDNA lineage.]

share some haplotypes (Additional File 6), such as the
Amur and Lena (both forms) or Lena and Enisey (sharp
only). Within basin variation is mostly much lower,
except for those basins harboring multiple divergent hap-
lotypes such as the Primor'ye and Ob basins for blunt-
snouted lenok, and the Enisei or Tugur/Uda region for
sharp-snouted lenok.

Mismatch Analysis

The CR pairwise mismatch distribution was uni-modal for
blunt-, and bi-modal for sharp-snouted lenok (Additional
File 7). Removal of regionally restricted haplotypes (Ob
and Uda basins) in sharp-snouted lenok, reflecting popu-
lation subdivision allowed analysis of uni-modal distri-
butions for both forms, and these distributions both
differed significantly from those expected for stable popu-
lation sizes (K-S tests; P < 0.0001). Additionally, using the
least-squares approach, there was no significant difference
between observed and simulated data under an expansion
model for either form (blunts: SSd, P = 0.108; Harpend-
ing's raggedness index, P = 0.116; sharps: SSd, P = 0.1680;
Harpending's raggedness index, P = 0.1000).

The ND1 mismatch distribution was multi-modal for
both forms (Additional File 8). Similar to the CR analysis,
removal of geographically distinct haplotype groups
allowed analysis of uni-modal distributions, representing
the Amur and Uda basins for blunt-snouted, and the
Amur and Lena basins for sharp-snouted lenok. Again,
observed mismatch distributions were significantly differ-
ent from that expected under stable population models
(K-S tests; P < 0.0001), but the data did not fit the expan-
sion model either.

Using estimates for the expansion parameter tau, along
with divergence rate estimates ranging from 0.5 to 3% per
million years for the CR and 1.5 to 6% for the ND1, we
estimated the mean age of expansion for both genes in
both forms (Figure 7A-D). Mean estimates of expansion
times, regardless of the gene or presumed substitution rate
clearly relate to periods in the mid- to late Pleistocene
(50,000 to 400,000 year ago) but in all cases earlier than
the LGM (18,000 years ago).

Microsatellites
Microsatellite loci revealed significant deviations from
HWE within populations across loci (primarily positive
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Parsimony networks of ND1 haplotypes. Parsimony
networks (95%) of ND| haplotypes in (A) blunt-snouted and
(B) sharp-snouted lenok. Circle size is proportional to the
observed haplotype frequencies and black points represent
unobserved haplotypes.

Fig values), most likely due to the sampling of spawning
and post-spawning aggregates of individuals. A test of
deviation from HWE across all loci and populations was
also significant. The population tree reveals two groups
(sharp- and blunt-snouted forms) supported by a moder-
ate D¢ bootstrap value (73%) and a lower value (56%)
for Nei's genetic distance (Figure 8).

The Bayesian population structure analysis for the entire
data set resulted in the highest delta log-likelihood
between K = 1 and K = 2, representing the two groups of
individuals corresponding to sharp- and blunt-snouted
lenoks. Strong structure was further revealed within forms
(data not shown), especially for blunt-snouted lenok cor-
responding to different sampling dates, providing the
most plausible cause of deviations from HWE. That is, a
Wahlund effect is assumed caused by the pooling of dis-
tinct population units into single tests for HWE.

We further tested for introgression between forms by run-
ning the Bayesian structure analysis on each sympatric
sampling site individually, with K set at 2. Using this anal-

http://www.biomedcentral.com/1471-2148/8/40

ysis there was little to no signal for a mixed ancestory for
individual genotypes (Additional File 9).

Correlation between morphological and genetic distances
Genetic (mtDNA) and morphological distances among
populations were highly correlated in sharp-snouted
lenok (Mantel's r = 0.75, P < 0.001) but weakly correlated
in blunt-snouted lenok (Mantel's r = 0.36, P = 0.014).
Morphological analysis corresponds with genetic data as
populations are almost exclusively grouped according to
major river basins, except for divergence within the
Selenga basin, a phenomenon common to the genetic
data set (Figure 3).

Discussion

Phylogenetic relationships and taxonomic inferences
Extensive mtDNA screening and comprehensive morpho-
logical analysis of Brachymystax throughout its Siberian
range support that the two forms represent two independ-
ent evolutionary lineages, and analysis of 11 microsatel-
lite loci in three sympatric populations (N = 130) revealed
no signs of introgression. Thus, the hypothesis of "multi-
ple hybrid speciation" [22] is not supported with our
selection of genetic markers.

The complete concordance between morphology and
mtDNA haplotype as well as no evidence of admixture in
sympatric populations analyzed with microsatellite loci
strongly suggests that introgression between the two
forms is low or non-existent. Nonetheless, hybrids exist
[[24-26], Additional File 1], some evidence of introgres-
sion has been reported [28] and in captivity, F, hybrids
and their progeny (backcrosses and F2) are viable [Ale-
kseev S., unpublished data]. Thus, one or more mecha-
nisms must be operating to prevent higher levels of
introgression, such as selection against hybrids in nature.
However, a pre-zygotic barrier, such as spatial segregation
of spawning may be the primary isolating mechanism.
Despite widespread co-occurrence in the Amur [26] and
Lena basins [25] blunt-snouted lenok are reported to pre-
fer cooler water during summer months and use distinct
spawning grounds. Blunt-snouted lenok spawned both in
mountain tributaries (at 3-4°C) and in the main channel
(at 5-7°C) of a second-order Amur tributary whereas
sharp-snouted lenok spawned in the main channel only,
typically in its more downstream reaches [29].

The lack of correlation between genetic and morphologi-
cal distances in blunt-snouted lenok may be due to the
fact that they exist in smaller and more fragmented popu-
lations, which would result in higher genetic drift and
more stochastic evolutionary change. Likewise, strong
genetic drift among basins, as well as fragmentation
within basins could explain the range-wide incongruities
in allozyme allele distributions between the two forms
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sharp-snouted lenok.

[26,27,30], and thus more complex models of hybridiza-
tion and introgression need not be invoked.

The data from China and Korea are difficult to incorporate
into our conclusions, although these populations may
prove pivotal for understanding the evolutionary history
of the genus. The divergent mtDNA lineage in the Yellow
River basin for example, is only weakly supported as a sis-
ter group to the sharp-snouted clade (data not shown).
Lenok from this region are known as B. lenok tsinlingensis
[31], but [32] and [33] place them together with Siberian
blunt-snouted lenoks based on external morphology. [32]
assigned the name B. lenok to the sharp-snouted form, and
B. savinovi to the blunt-snouted, but the latter name was
shown to be invalid [34]. Alternatively the name B. tumen-
sis [35] first used for Tumen River (Korea) lenok is cur-

rently used for the blunt-snouted lenok [36]. If the Yellow
River and Korean lineage can be definitively defined as
blunt-snouted lenok, then the strong correspondence
between genetic lineage and form presented in our work
would be eroded.

The taxonomy of sharp- and blunt-snouted lenok remains
unresolved. The genetic proximity of the Tumen River
haplotype to the sharp-snouted lineage (Figure 5) casts
serious doubt on the applicability of the name B. tumensis
for blunt-snouted lenok. Thus, taxonomic harmonization
of Brachymystax can only be achieved when both genetic
and morphological (especially craniological) characters of
Chinese and Korean lenoks are compared to material
from the Siberian range.
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Anui

Khor

Sharp-snouted lenok

Sukpai

Sukpai
Anui

Khor

Blunt-snouted lenok

Figure 8

Population tree based on microsatellites. Neighbor-
joining population tree based on microsatellite data. Boot-
strap values for D, distances are shown on the left and for
Nei's distances on the right.

Comparative phylogeography of blunt- and sharp-snouted
lenok

Both lenok forms revealed strong phylogeographic struc-
ture with some common patterns such as the existence of
highly divergent mtDNA lineages below 56° N and no
such variation above 56° N. This suggests that extensive
regions of contemporary lenok habitat in Siberia may
have been uninhabitable during one or more Pleistocene
glacial maxima. In contrast, high within or among basin
diversity in more southern latitudes supports the existence
of long-term refugia. Interestingly, there has apparently
been a complex history within several of these refugia,
analogous to the concept of "refugia-within-refugia" pro-
moted for the high lineage diversity of numerous taxa
within the Iberian Peninsula in Europe [37]. This "within-
refugia" pattern can be seen for the Ob and Primor'e basin
blunt-snouted lenoks as well as the Enisey sharp-snouted
lenoks. Only the Ob sharp-snouted lenoks run counter to
this pattern, as only a single haplotype has been thus far
found.

Furthermore, as the most divergent groups within each
form are not geographically congruent, different regions
apparently served as refugia for each form during unfavo-
rable paleohydrological conditions. For example, rela-
tively divergent haplotypes in sharp-snouted lenok are
found in the Selenga/Baikal portion of the Enisei basin

http://www.biomedcentral.com/1471-2148/8/40

where blunt-snouted lenok are wholly absent. Addition-
ally, in contrast to the broadly distributed sharp-snouted
lenok, blunt-snouted lenok above 56° N are only found
in the Lena basin, a very large system where at least its
upstream regions are known to have served as a refuge for
an endemic lineage of grayling Thymallus [16]. These pat-
terns imply that the two lenok forms, perhaps related to
their spatial or temperature preferences differ in both dis-
persal ability and response to climatic change.

Whereas the majority of genetic variance in both forms
was distributed among major basins more specific mech-
anisms generating phylogeographic structure were
inferred. Both long distance dispersal (Uda) and contigu-
ous range expansion (Shantar Islands) underscore the
importance of the Amur region as a center of radiation for
blunt-snouted lenok. Additionally, the morphological
phenogram groups blunt-snouted lenoks from both
islands together with those from the Amur. That blunt-
snouted lenoks from the Tugur carry the most widespread
Amur haplotype, suggests that this river was a corridor
between the Amur and the Shantar islands. This supports
earlier conclusions of [38] and [39] and is concordant
with geological data indicating that Shantar and Sakhalin
islands were connected to the continent during glacial
maxima. As both genetic and morphological divergences
are greater between the Uda and Amur, than the Amur and
islands suggests that the Uda may have been colonized
during an earlier marine regression than the islands,
which were presumably colonized during the LGM. This
perspective was supported by the mismatch analysis,
revealing expansion from the Amur basin. The age esti-
mate of this event clearly reaches back into the mid-Pleis-
tocene (Figure 7), based on moderate substitution rates of
1%/MY for the CR, or moderately faster rates for the ND-
1. The earliest split within blunt-snouted lenok, however,
is clearly between populations of the Primor'e region and
all others. Coupled with their morphological distinctive-
ness, Primor'e region blunts have clearly experienced a
long isolation from the Amur basin.

The demographic history of sharp-snouted lenoks is more
difficult to describe. Mismatch analysis supports exponen-
tial growth for the Lena, Amur and Enisei data combined,
and long distance dispersal was documented from the
Lena to the Amur drainage, as well as continuous range
expansion within the Amur and into the Enisei basin. The
allopatric fragmentation in sharp-snouted lenoks involv-
ing the Selenga-Baikal lineage may correspond to the
prior isolation of the Baikal basin and subsequent connec-
tion to the Enisei basin as discussed in relation to Thymal-
Ius [11], or about 500,000 years ago according to
geological data [40]. Yet longer periods of isolation are
clear for sharp-snouted lenok in the extreme east (Uda)
and west (ODb).
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In both forms, the CR network reveals haplotypes shared
between Lena and Amur basins, as previously described
[20] and thus supporting paleohydrological exchange
between these major basins. Interestingly, this basin shar-
ing is seen with the ND1 gene in sharp-snouted but not
blunt-snouted lenok perhaps reflecting a longer period of
allopatry between the two basins for blunts, allowing suf-
ficient time for mutations to occur.

While data from China and Korea adds some confusion to
phylogeographic summary of Siberia, a scenario suggest-
ing that the Chinese portion of the lenok's range was col-
onized by expansion from Siberia southwards [41] is
unlikely, or at best oversimplified. Chinese lenok popula-
tions contain diverse lineages, perhaps reflecting both
long-term relictism as well as admixture from southward
expansion.

Demographic history

The primary demographic inference was that sudden
expansions in both forms relate to paleo-climatic condi-
tions much older than the LGM, and thus are better
reflected in the more slowly evolving CR. Moreover, sig-
nals of sudden expansions are limited to the Amur, Lena,
or Enisei, and were not evident in the extreme eastern or
western areas of occurrence. These results appear incon-
gruent with countercurrent dispersal [23], as no signal of
expansion from Western or Central Siberia can be seen for
sharp-snouted lenoks, but rather from the aggregated dis-
tributions across major basins. Nonetheless, the occur-
rence of highly divergent lineages in the east for blunts
and the west for sharps supports long-term residence, but
there is a lack of genetic resolution for the deep past, so no
inference concerning origins of either lineage can be
made.

Paleohydrological dynamics

Although major basins account for a substantial percent-
age of both morphological and genetic variation, under-
scoring isolation, the inferred trans-basin expansions
support repeated availability of paleohydrological disper-
sal (active or passive) corridors. This implies a dynamic
paleo-landscape with refugia perhaps in the form of per-
iglacial lakes and shifting drainage patterns stemming
from headwater captures and river flow reversals. More
specific details concerning Siberia's paleohistory remain
highly controversial, and can not be addressed based on
the moleulcar phylogeography of Brachymystax alone.
Glacial reconstructions range from nearly complete cover-
age of northern Siberia by a marine-based ice-sheet
[13,42,43] to individual ice caps centered on arctic archi-
pelagos that advanced onto adjacent shelves [44]. It
remains to be seen whether or not phylogeographic mod-
els, and especially comparative phylogeography could be
used to support or refute one of these contrasting scenar-
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ios of paleo-Siberian landscapes. While prior studies
[11,16,20,21] have invoked highy dynamic paleo-climatic
events to explain the distribution of salmonid mtDNA lin-
eages in various Siberian basins, we offer no further spec-
ulations on these scenarios. It is clear, however, that the
level of resolution in understanding the effect of paleohy-
drology on current genetic diversity and distribution of
freshwater fishes in Siberia lags behind that of Europe and
North America.

Conclusion

To date, there have been no Siberian-wide phylogeo-
graphic studies of aquatic organisms, and as well, an
underestimation of the effects of paleo-hydrological
dynamics on their current distributions. Our data clearly
identify a "northern" gradient in lineage diversity particu-
larly evident across 56° N, multiple genetic imprints of
inter-basin exchange, long-distance dispersal and sudden
expansions across broad expanses of Siberia in two evolu-
tionarily independent lineages of the salmonid fish Brach-
ymystax lenok. Genetic signals for these events clearly date
to climatic periods prior to the LGM, and thus were better
reflected by the more slowly evolving mtDNA control
region rather than the faster mutating NADH-1 gene seg-
ment.

Several previous hypotheses concerning the evolution of
lenok are not supported by our data. Namely, multiple
hybrid speciation [22], countercurrent dispersal [23], and
a Siberian source for lenok in the Chinese portion of their
current range [41]. While no inference can be drawn on
the potential origins of the two forms of lenok, both
exhibit highly divergent lineages located at opposite end's
of the composite distribution range (to the extreme west
for the sharp-snouted form, and the extreme east for the
blunt-snouted form). A simple taxonomic division of two
genetic lineages of lenok, corresponding to two phenotyp-
ically recognizable forms is compromised by the existence
of a third mtDNA lineage in China and Korea where phe-
notypic data is lacking. Our data support species recogni-
tion of the two forms, but taxonomic harmonization rests
on the ability to integrate both genetic and phenotypic
data from the China and Korea.

Methods

Sampling

Blunt-snouted (n = 663) and sharp-snouted (n = 1028)
lenoks from 78 locations were sampled in 1975-2005. In
22 locations both forms were collected, whereas 23 sites
yielded exclusively blunt-and 33 exclusively sharp-
snouted lenoks (Table 1, Figure 1). Several of the most
closely related taxa were added for comparative purposes
to the genetic analyses including one Hucho hucho, one
Hucho taimen, and one Sakhalin taimen Parahucho perryi;
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Table I: Site names, basins/regions, sample sizes and coordinates for lenok (Brachymystax) samples used in this study

Number of individuals sampled Geo_coordinates
Site mtDNA Morphology
Site Drainage Sharp-snouted Blunt-snouted Sharp-snouted Blunt-snouted Latitude Longitude
Ob basin
L. Markakol' Kal'dzhir—Chernyi I 4 60 48°44'  85°45'

Irtysh—Zaisan—Irtysh—
Ob—Kara Sea

R. Kal'dzhir Chernyi 2 2 93 48°36' 85°10'
Irtysh—Zaisan—Irtysh—
Ob—Kara Sea

R. Kara-Kaba Chernyi 3 2 48°53'  86°10'
Irtysh—>Zaisan—Irtysh—
Ob—Kara Sea

R. Pyzha Biya—>Ob—Kara Sea 4 2 34 51°46'  87°06'

R. Biya Ob—Kara Sea 5 3 3 51°49"  87°09'

R. Mrassu Tom—Ob—Kara Sea 6 | 52°43'  88°35'

R. Kabyrza Mrassu>Tom—Ob—Ka 7 | 52°52'  88°52'
ra Sea

R. Bol'shoi Kemchug Kemchug—Chulym—Ob 8 2 6 55°49"  91°34'
—Kara Sea

Enisei Basin (Selenga River)

R. Orkhon Selenga— Baikal—Enisei 9 2 49°20"  105°30'
—Kara Sea

R. Ero Orkhon—Selenga—Baika 10 2 49°05' 107°14'
|—Enisei—Kara Sea

R. Ider Selenga— Baikal—Enisei I 20 48°44'  98°|5'
—Kara Sea

R. Delger-Muren Selenga— Baikal—Enisei 12 10 49°32'  99°13
—Kara Sea

L. Chovsgol Selenga— Baikal—Enisei 13 | 15 51°10"  100°35'
—Kara Sea

R. Khankhgol Chovsgol—>Selenga—Bai 14 2 51°26'  100°4I'
kal—>Enisei—>Kara Sea

Enisei Basin (Lake Baikal)

R. Frolikha Baikal—>Enisei—>Kara Sea |5 2 55°31'  109°53'

R. Shegnanda Baikal—>Enisei—>Kara Sea 16 23 54°58'  109°32'

R. Bol'shaya Baikal—>Enisei—>Kara Sea |7 5 54°28'  109°30'

Enisei Basin

R. Kyzyl-Khem Malyi 18 [ 51°30'  97°57'
Enisei—Enisei—Kara Sea

R. Kazyr Tuba—>Enisei—>Kara Sea 19 35 53°42"  94°06'

R. Verkhnyaya Surnikha Enisei—>Kara Sea 20 6 60°05'  90°34'

R. Stolbovaya Podkamennaya 21 22 62°09'  91°25'
Tunguska—Enisei—Kara
Sea

R. Varlamovka Enisei—>Kara Sea 22 5 14 62°23'  89°24'

Lena (upper) basin

L. Nomama Asektamur—Chaya—le 23 | 14 56°16'  110°I16'
na—Laptev Sea

L. Amudisa Kalar—Vitim—Lena—la 24 2 2 56°33' 119°04'
ptev Sea

R. Kalakan Kalar—Vitim—Lena—»La 25 [ 2 5 56°14' 119°32'
ptev Sea

L. Leprinidokan Kuanda—Vitim—Lena— 26 2 104 13 56°33'  117°29'
Laptev Sea

R. Kuanda Vitim—Lena—Laptev Sea 27 2 4 124 6 56°31'  117°26'

R. Kuanda Vitim—Lena—Laptev Sea 28 5 18 56°25'  117°23'

R. Kuanda Vitim—Lena—Laptev Sea 29 8 15 other sites

Nameless lake Kuanda—Vitim—Lena— 30 13 56°25'  117°30'
Laptev Sea
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Table I: Site names, basins/regions, sample sizes and coordinates for lenok (Brachymystax) samples used in this study (Continued)

L. Amalyk

Lena (middle) basin

L. Bol'shoe

Nameless lake

Nameless lake

R. Utuk

L. Bol'shoe Toko

R. Yudoma
R. Kele

R. Vilui
R. Morkoka

R. Tuyng

Lena (lower) basin

R. Dyanyshka
R. Kundudei
R. Undyulyung
R. Tirekhtyakh

R. Sobolokh-Mayan

Indigirka basin

R. Nizhnyi Labynkyr

R. Indigirka
Kolyma basin
R. Krivaya

R. Popovka

Amur basin
R. Onon

R. Tok

R. Bureya
R. Levaya Bureya

R. Gobili
R. Ertukuli
R. Anui

R. Anui

R. Manoma

R. Sukpai

R. Khor

R. Suluk

Amalyk—Vitim—Lena—
Laptev Sea

Chara—Olekma—Lena
—Laptev Sea
Itchilyak—Evonokit—>Kh
ani—>Olekma—Lena—la
ptev Sea
Itchilyak—Evonokit—Kh
ani—>Olekma—Lena—la
ptev Sea

Bol.
Toko—Mulam—Idyum—
Algama—Uchur—Aldan
—Lena—Laptev Sea
Mulam—Idyum—Algama
—Uchur—Aldan—Lena
—Laptev Sea
Maya—Aldan—Lena—La
ptev Sea
Aldan—Lena—Laptev
Sea

Lena—Laptev Sea
Markha—Vilui—>Lena—L
aptev Sea
Vilui—Lena—Laptev Sea

Lena—Laptev Sea
Lena—Laptev Sea
Lena—Laptev Sea
Undulung—Lena—Lapte
v Sea

Lena—Laptev Sea

Tuora-
Yuryakh—Indigirka—Eas
t Siberian Sea

East Siberian Sea

Omolon—Kolyma—East
Siberian Sea
Kolyma—East Siberian
Sea

Shilka—>Amur—Sea of
Okhotsk
Zeya—>Amur—Sea of
Okhotsk

Bureya—>Amur—Sea of
Okhotsk
Anui—>Amur—Sea of
Okhotsk
Anui—>Amur—Sea of
Okhotsk

Amur—Sea of Okhotsk
Amur—Sea of Okhotsk
Anui—>Amur—Sea of
Okhotsk

Khor
—Ussuri->Amur—Sea of
Okhotsk
Ussuri—>Amur—Sea of
Okhotsk
Amgun'—>Amur—Sea of
Okhotsk

31

32

33

34

35

36

37

38

39
40

41
42
43
44
45
46

47

48

49

50

51

52

53
54

55
56
57
58
59

60

6l

62

AW - —

2

71

86

20

10

21

36

31

10

21

43

49

50

57°35'

56°38'

57°11

57°10'

55°55'

56°02'

61°1l'

63°25'

65°32'
64°36'
63°49'
65°27'
65°47'
66°16'
66°13'
67°14'

62°36'

66°36'

64°38'

65°12'

48°35'

55°38'

51°38'
51°55'

49°15'
49°18'
49°17'
49°14'
49°21'

47°45'

47°38'

51°05'
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17°17

117°36'

119°50'

119°52'

130°45'

130°53'

140°33'

130°27'

106°43'
112°29'

121°27'
126°56'
125°34'
123°58'
124°42'
123°4]"

143°36'

143°00'

160°45'

151°39'

110°48'

130°01"

133°24'
134°53'

138°19'
138°03'
137°55'
137°01"
137°24'

137°18'

135°52'

134°06'
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Table I: Site names, basins/regions, sample sizes and coordinates for lenok (Brachymystax) samples used in this study (Continued)

R. Merek Amgun'5>Amur—Sea of 63
Okhotsk

R. Duki Amgun'>Amur—Sea of 64 |
Okhotsk

R.Im Amgun'->Amur—Sea of 65
Okhotsk

Sakhalin Island

R. Bol'shoi Vagis Sea of Okhotsk (Amur 66

Liman)
R. Ten'gi Sea of Okhotsk (Amur 67
Liman)
R. Pyrki Sea of Okhotsk (Amur 68
Liman)
Bol'shoi Shantar Island
R. Yakshina Sea of Okhotsk 69
R. Bol'shoi Anaur Sea of Okhotsk 70
Tugur basin
R. Konin Tugur—Sea of Okhotsk 71 3
Uda basin
R. Uda Sea of Okhotsk 72
R. Uda Sea of Okhotsk 73 |
Popkovskie lakes Uda—Sea of Okhotsk 74 |
L. Urgos Uda—Sea of Okhotsk 75
Primor'e (Sea of Japan basin)
R. Edinka Sea of Japan 76
R. Samarga Sea of Japan 77
R. Beya Serebryanka—Sea of 78
Japan
TOTAL 91

and for the morphological analysis 101 H. taimen from
various basins.

Amplification and sequencing

Whole genomic DNA was extracted using a standard high-
salt protocol. Two mtDNA fragments, the control region
(CR) and NADH-1 subunit (ND1) were amplified using
the polymerase chain reaction (PCR). The complete CR
(including segments of flanking tRNA) was amplified in
97 B. lenok and three outgroup individuals using the prim-
ers LRBT-25 and LRBT-1195 (8). The remaining CR
sequences were taken from previously published research
(GenBank accession no. AY230451-AY230472). The
ND1 primers BINDF and BINDR [45] were used to
amplify 142 B. lenok as well as outgroup individuals. PCR
conditions (25 pl reactions) were identical to those
described in [45], and sequences of the left-domain of the
CR (486 bp) and complete ND1 (987 bp) were produced
on an ABI-3100 genotyper. When necessary, primers
designed to amplify shorter segments were used to
amplify degraded DNA (see Additional File 10). New
mtDNA sequences have been deposited under accession
numbers [GenBank: EU395714-EU395769].

Sequence alignment and phylogenetic analysis

All sequences were easily aligned by eye including an
alignment incorporating one sequence from South Korea
(GenBank accession no. AF125519), and 14 from China

2 517 134°47

49 29 51°28'  135°4¢'

2 52°30'  138°14'

5 52°30'  142°00'

6 52°44'  142°03'

7 52°52'  142°05'

[ 50 54°55'  |37°32'

4 54°47'  137°40'

2 53°14  136°06'

8 30 54°08'  131°5['

[ 10 6 54°33'  134°2¢'

4 4 47 54°39'  135°10'

35 54°39'  135°]5'

[ 7 47°12'  138°37

38 47°17°  138°39'

[ 22 45°02'  136°34'
67 992 630

[41]. Quantitative assessment was limited to the

sequences produced in our laboratory.

Sequences were imported into PAUP*4.0b10 [46] for
phylogenetic analyses, pairwise sequence divergence
(uncorrected p distances) and the number of transitions
and transversions. Saturation in ND1 was assessed by
plotting the number of transitions and transversions
against uncorrected p distances for each codon position. A
chi-square (2) test was used to evaluated base composi-
tion homogeneity in the ND1 gene for each codon posi-
tion.

To evaluate relationships among closely related haplo-
types, unrooted networks were constructed with a 95%
parsimony criterion using TCS ver 1.13 [47]. Between-
group variation was calculated using net nucleotide diver-
gence (Da) in MEGA version 2.1 [48]. Haplotype or clade
divergence was also calculated using Da distances
between groups using the Kimura two-parameter model.
Uncorrected p distances were used for divergence esti-
mates between in- and outgroup taxa.

Maximum parsimony (MP), Maximum-Likelihood (ML)
and Neighbor-Joining (NJ) were used for phylogenetic
reconstruction. Modeltest 3.0 [49] was used to choose
models of nucleotide evolution. To estimate the most
likely topology for ML and MP methodologies, heuristic
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searches (10 replicates) started with stepwise addition
trees, with each replicate beginning with a random order
of sequences. Bootstrap analysis was used to estimate
node support with 10000 (NJ and MP) or 1000 replicates
(ML). Full heuristic search algorithms were applied for the
MP and the "fast" stepwise addition method for the ML
analysis.

Amova

Genetic variation among and within major basins was
evaluated with an analysis of molecular variance
(AMOVA) using Arlequin 3.1 [50]. The AMOVA structure
was defined by major ocean basins (Arctic/Pacific), then
by large river basins or regions (Ob, Enisei, Lena including
Indigirka and Kolyma, Amur, Islands, Primor'e, and Uda
and Tugur) (see Table 1). A more detailed overview of
within and among basin differentiation is provided with
a table of average (and corrected) pairwise differences also
done with Arlequin.

Mismatch Analysis

The demographic signature of mtDNA haplotype varia-
tion was evaluated with the pairwise mismatch distribu-
tion [51]. The goodness-of-fit of the observed data to a
simulated model of expansion was tested with the sum of
squared deviations and Harpending's raggedness index
[52]. The age of expansion was estimated with the formula
T =2 ut, where 1 is drawn from the mismatch distribution,
p equals the aggregate substitution rate across all nucle-
otides per generation (5 years for lenok) and ¢ is the
expansion time in generations, graphically displayed in
years. The aggregate substituion rate was based on a plau-
sible range of divergence rates for mtDNA in salmonid
fishes [see Discussions in [8,11,20,53] and references
therin]. Thus, estimates of the age of expansion were plot-
ted across a range of substitution rates, whereby it is
assumed that the substitution rate of the coding ND1 gene
is higher than the control region, which is common for
salmonid fishes [45,54], and supported by our haplotype
diversities (i.e., twice the number of haplotypes for the
ND-1 gene compared to the CR). A Kolmogorov-Smirnov
two-sample test was used to test the distribution of
observed values against those expected under the null
hypothesis of a stable population using SPSS ver. 12.0.

Microsatellites

To assess introgression between sharp- and blunt-snouted
lenoks, we applied bi-parentally inherited microsatellites
to three sets of sympatric populations from the Amur
basin: the Anui (n = 56), Khor (n = 48), and Sukpai (n =
26) rivers.

Four tri-nucleotide and three tetra-nucleotide microsatel-
lite loci [55], and four unpublished di-nucleotide micros-
atellite loci were analyzed (see Supplementary Materials).

http://www.biomedcentral.com/1471-2148/8/40

All forward primers were fluorescently labeled and PCR
and genotyping were performed as described in [55], (see
Additional File 10). Exact probability tests for deviations
from Hardy-Weinberg equilibrium (HWE) across popula-
tions (within loci) and loci (within populations), exact
tests for deviations from genotypic linkage equilibrium
(LE) across populations, and tests for genic differentiation
among populations were performed with Genepop 3.2a
[56]. Corrections for multiple significance tests were per-
formed using a sequential Bonferroni-type correction
[57].

To estimate the proportion of each individual's genome
originating in each parental species and the patterns of
intraspecific variability among sharp- and blunt snouted
lenoks we used the Structure [58]. This software imple-
ments a Bayesian model-based clustering algorithm that
reveals population structure in a data set by resolving clus-
ters of individuals that minimize Hardy-Weinberg and
linkage disequilibrium. The parameter settings included
the assumption of admixture and a correlated allele fre-
quencies model. In exploratory runs we did not provide
the software with prior information regarding the origin
of individuals, but in final runs, and when analyzing the
three sympatric populations separately, individuals from
the two forms were assumed to represent pure blunt- or
sharp-snouted lenoks, and used as a proxy for determin-
ing the degree of admixture of the individuals within each
sympatric population. Structure was run for 100,000
steps, of which the first 10,000 where discarded as burn-
in and we conducted five independent replicates of the
MCMC for each value of k. We also performed analyses
using the independent allele frequencies model to test for
robustness of our conclusions to the violation of prior
assumptions because of recent suggestions that the choice
of the model might strongly influence the outcome of the
clustering algorithm [59,60].

Morphological analysis

External morphology was analyzed using fresh fish or
heads fixed with salt. Measurements were taken with
dividers to the nearest mm. We used a modified morpho-
metric scheme [61] for salmonids [see [62]], with reduc-
tions. Osteological characters were assessed according to
[63] (for details see [25]). To adequately reflect shape var-
iation, body measurements were expressed as percent of
fork length (FL), head measurements as percent of head
length (c), skull measurements as percent of skull base
length (Lcr) and bone widths (depths) as percent of bone
lengths. Allometric growth is known to be weak in lenok
above 20 cm FL. Therefore, to reduce potential allometric
effects only fish larger than 25 cm FL were used. A total of
38 indexes and 8 counts were analyzed (see Additional
File 10).
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To explore the relationship in morphology between forms
and among populations within forms both principal
component analysis (PCA) and cluster analysis were done
using the NTSYS-pc package, v2.0 [64]. For PCA, indexes
and counts of individual fish were used. Eigenvectors were
calculated from the variance-covariance matrix and the
eigenvector loadings were scaled so that the length of the
vectors equaled the square root of their eigenvalues. For
cluster analysis, index and count means were standardized
and used to calculate taxonomic distances between popu-
lations. These distances served as raw data for construc-
tion of a UPGMA phenogram. To further control for
potential allometric effects, the first factor in the PCA was
regressed with body size.

To quantify the morphological differentiation between
forms we used a canonical discriminant analysis (CDA),
using the first three PCA factors as input variables, and an
equal probability of assignment of each individual to a
form (blunt or sharp). A discriminant function (DF) was
derived from a 25% random sample of the data set, and
this DF was then applied to assign individuals to a form.

Comparison of morphological and genetic data

We assessed the correlation between genetic and morpho-
logical data across the range of the two lenok forms using
Mantel tests, done in the NTSYS-pc package. To produce a
pairwise genetic (mtDNA) distance matrix, between
group variation (corrected for within-group variation)
was calculated using the net nucleotide distances (D,)
(Kimura two-parameter model). For the morphological
distance matrix, the same taxonomic distances generated
for the clustering were used. As not all populations had
matching genetic and morphological matrices, only 22
populations of sharp-snouted, and 17 populations of
blunt-snouted lenoks were used. The significance of Man-
tel's r was evaluated with 9999 permutations.
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Additional material

Additional File 1

Figure 4a from [25] showing the intermediate position of hybrids between
pure sharp-snouted and blunt-snouted lenok from the Kuanda River basin.
Hybrids were first identified "by eye" in the field but corroborated with
this multivariate analysis (PCA) based on 37 morphological characters.
Additionally, a subset of these hybrid individuals were screened for alloz-
yme variation and shown to be heterozygous at loci diagnostic for the two
forms in that basin [26].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S1.JPEG]

Additional File 2

Scatterplot demonstrating no relation between PCA factor 1 and fish size
(given as fork length).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S2.DOC]

Additional File 3

List of haplotypes and their frequencies for the control region gene ana-
lyzed across the populations sampled (N = 150 B. lenok individuals).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S3.DOC]

Additional File 4

List of haplotypes and their frequencies for the ND1 gene analyzed across
the populations sampled (N = 139 B. lenok individuals).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S4.DOC]

Additional File 5

Pairwise haplotype differences among six basins for both forms of lenok.
The upper diagonal represents average pairwise differences, the diagonal
within basin differences, and the lower diagonal pairwise differences cor-
rected for within basin variation.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S5.jpeg|

Additional File 6

Results of the AMOVA of pairwise haplotype differences with the structure
defined by major ocean basins, and river drainages (or regions when con-
sidering Islands of the Okhostsk Sea) within basins. Signficance fo the
variance components is based on 1000 permutations.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S6.JPEG]

Additional File 7

The CR pairwise mismatch distribution for (A) — blunt-snouted lenok;
(B) - sharp-snouted lenok; and (C) — sharp-snouted lenok after removal
of regionally restricted haplotypes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S7.DOC]
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Additional File 8

The ND1 pairwise mismatch distribution for (A) - blunt-snouted lenok;
(B) - blunt-snouted after removal of regionally restricted haplotypes; (C)
— sharp-snouted lenok; and (D) - sharp-snouted after removal of region-
ally restricted haplotypes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S8.JPEG]

Additional File 9

Graphical display of ancestory coefficients from the Bayesian simulations
from the program Structure. Simulations were run with the assumption
that K = 2 (derived from prior simulations that are not shown), correlated
allele frequencies, and an admixture model. Five replicates for each basin
are shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S9.JPEG]

Additional File 10

Details for amplification, sequencing, primers and morphological meas-
urements used in this study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S10.DOC]

Additional File 11

The identical tree (black/white) as shown in Figure 3, but now including
the site numbers as listed in table 1.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-40-S11.JPEG]
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