Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T11:34:45.876Z Has data issue: false hasContentIssue false

A reinvestigation of holotype wadalite from Tadano, Fukushima Prefecture, Japan

Published online by Cambridge University Press:  15 May 2018

Yasuyuki Banno*
Affiliation:
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
Michiaki Bunno
Affiliation:
The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
Katsuhiro Tsukimura
Affiliation:
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
*

Abstract

A reinvestigation of the type specimen of wadalite, ideally Ca12Al10Si4O32Cl6, from Tadano, Fukushima Prefecture, Japan, reveals that it has well-defined chemical sector zoning. The mineral occurs in skarn xenoliths in two-pyroxene andesite and forms tris-tetrahedral crystals up to 1 mm in size. The mineral is cubic, I¯43d, with a = 12.009(2) Å, V = 1731.8(8) Å3 and Z = 2. The zoning is divided into two sectors, {21¯1} and {211}, on the basis of back-scattered-electron images. The {21¯1} sector is more enriched in Fe3+, Si, Mg and Cl, and depleted in Al than the {211} sector. The empirical formulae yielded by the averaged compositions for the {21¯1} and {211} sectors are: Ca12.01(Al7.88$\hbox{Fe}_{{\rm 0}{\rm. 99}}^{{\rm 3 +}} $Si4.51Mg0.56Ti0.05)Σ13.99O32.22Cl5.55 and Ca12.05(Al8.42$\hbox{Fe}_{{\rm 0}{\rm. 85}}^{{\rm 3 +}} $Si4.20Mg0.44Ti0.04)Σ13.95O32.19Cl5.38, respectively. Compositional variations in the wadalite grains suggest that the Si contents are controlled mainly by the substitution T(Al,Fe3+) + W□ ↔ TSi + W(Cl,F). The presence of sector zoning suggests that the wadalite grew during rapid non-equilibrium crystallization.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Graham

References

Bence, A.E. and Albee, A.L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382403.Google Scholar
Carpenter, M.A. (1980) Composition and cation order variations in a sector-zoned blueschist pyroxene. American Mineralogist, 65, 313320.Google Scholar
Feng, Q.L., Glasser, F.P., Howie, R.A. and Lachowski, E.E. (1988) Chlorosilicate with the 12CaO.7Al2O3 structure and its relationship to garnet. Acta Crystallographica, C44, 589592.Google Scholar
Galuskin, E.V., Gazeev, V.M., Lazic, B., Armbruster, T., Galuskina, I.O., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Dzierżanowski, P., Gurbanov, A.G. and Bzowska, G. (2009) Chegemite Ca7(SiO4)3(OH)2 – a new humite-group calcium mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 21, 10451059.Google Scholar
Galuskin, E.V., Kusz, J., Armbruster, T., Bailau, R., Galuskina, I.O., Ternes, B. and Murashko, M. (2012) A reinvestigation of mayenite from the type locality, the Ettringer Bellerberg volcano near Mayen, Eifel district, Germany. Mineralogical Magazine, 76, 707716.Google Scholar
Galuskin, E.V., Galuskina, I.O., Bailau, R., Prusik, K., Gazeev, V.M., Zadov, A.E., Pertsev, N.N., Jeżak, L., Gurbanov, A.G. and Dubrovinsky, L. (2013) Eltyubyuite, Ca12Fe103+Si4O32Cl6 – the Fe3+ analogue of wadalite: a new mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 25, 221229.Google Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Bailau, R. and Sharygin, V.V. (2015 a) Mayenite supergroup, part I: Recommended nomenclature. European Journal of Mineralogy, 27, 99111.Google Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Dulski, M., Murashko, M., Dzierżanowski, P., Sharygin, V.V., Krivovichev, S.R. and Wirth, R. (2015 b) Mayenite supergroup, part III: Fluormayenite, Ca12Al14O32[□4F2], and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals from pyrometamorphic rocks of the Hatrurim Complex, South Levant. European Journal of Mineralogy, 27, 123136.Google Scholar
Galuskina, I., Galuskin, E. and Sitarz, M. (1998) Atoll hydrogarnets and mechanism of the formation of achtarandite pseudomorphs. Neues Jahrbuch für Mineralogie Monatshefte, 1998, 4962.Google Scholar
Glikin, A.E. (2009) Polymineral-Metasomatic Crystallogenesis. Springer, Houten, The Netherlands.Google Scholar
Gfeller, F., Środek, D., Kusz, J., Dulski, M., Gazeev, V., Galuskina, I., Galuskin, E. and Armbruster, T. (2015) Mayenite supergroup, part IV: Crystal structure and Raman investigation of Al-free eltyubyuite from the Shadil-Khokh volcano, Kel’ Plateau, Southern Ossetia, Russia. European Journal of Mineralogy, 27, 137143.Google Scholar
Kanazawa, Y., Aoki, M. and Takeda, H. (1997) Wadalite, rustumite, and spurrite from La Negra mine, Queretaro, Mexico. Bulletin of the Geological Survey of Japan, 48, 413420.Google Scholar
Mihajlović, T., Lengauer, C.L., Ntaflos, T., Kolitsch, U. and Tillmanns, E. (2004) Two new minerals, rondorfite, Ca8Mg[SiO4]4Cl2, and almarudite, K(□,Na)2(Mn,Fe,Mg)2(Be,Al)3[Si12O30], and a study of iron-rich wadalite, Ca12[(Al8Si4Fe2)O32]Cl6, from the Bellerberg (Bellberg) volcano, Eifel, Germany. Neues Jahrbuch für Mineralogie Abhandlungen, 179, 265294.Google Scholar
Passaglia, E. and Rinaldi, R. (1984) Katoite, a new member of the Ca3Al2(SiO4)3-Ca3Al2(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bulletin de Minéralogie, 107, 605618.Google Scholar
Ranløv, J. and Dymek, R.F. (1991) Compositional zoning in hydrothermal aegirine from fenites in the Proterozoic Gardar Province, South Greenland. European Journal of Mineralogy, 3, 837853.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.Google Scholar
Tsukimura, K., Kanazawa, Y., Aoki, M. and Bunno, M. (1993) Structure of wadalite Ca6Al5Si2O16Cl3. Acta Crystallographica, C49, 205207.Google Scholar