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Abstract
In this review, we provide a description of those candidate biomarkers which have been demonstrated by multiple-omics approaches to

vary in correlation with specific clinical manifestations of sickle cell severity. We believe that future clinical analyses of severity phenotype

will require a multiomic analysis, or an omics stack approach, which includes integrated interactomics. It will also require the analysis of

big data sets. These candidate biomarkers, whether they are individual or panels of functionally linked markers, will require future

validation in large prospective and retrospective clinical studies. Once validated, the hope is that informative biomarkers will be used

for the identification of individuals most likely to experience severe complications, and thereby be applied for the design of patient-

specific therapeutic approaches and response to treatment. This would be the beginning of precision medicine for sickle cell disease.
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Introduction

Sickle cell anemia (SCA) is a monogenic hemoglobinopathy,
yet it has great variation in the clinical severity and outcome
of the disease. Our focus in this minireview will be primar-
ily on SCA, which is the major form of several related
hemoglobinopathies referred to as SCD. Many SCA patients
have a mild clinical course experiencing few vasoocclusive
events (crises) and sometimes living into their sixth and
seventh decade. Other patients with SCA have a much
more severe clinical course with multiple crises per year,
significant organ damage and a shortened life span.1–6

SCA morbidity and mortality are significant, but patients
demonstrate great variance in the manner in which they
are affected by the disease. Although the Mendelian
genetics of SCA are straightforward, the correlation
between genotypes and phenotypes is far less clear. There
is substantial phenotypic heterogeneity among individuals
with identical alleles at the beta globin gene.7–10

The vasoocclusive crisis (VOC) rate is one measure of
clinical severity that correlates with premature death in
SCD patients over 20 years of age.1 Platt et al. reported
that 39% of subjects had no painful crises during the
period of study, while 1% had more than six episodes

per year. The 5% of individuals who had between 3 and
10 crises per year accounted for 33% of all episodes of
pain in this cohort.1 A subsequent study demonstrated an
increased risk of early death in those sickle cell patients who
experienced acute chest syndrome (ACS).2,11 In searching
for biomarkers that predict variations in disease severity, a
good starting point is identifying those which correlate with
VOC and ACS rates.4–6

The lack of validated biomarkers for SCA severity repre-
sents a void in the state of knowledge of SCD that creates a
critical roadblock in the design of clinical trials, the devel-
opment of novel therapies and the emergence of precision
medicine for SCD patients. The discovery of validated bio-
markers will require teams of researchers with expertise in
multiomic platforms (omics stacks) and sufficient numbers
of subjects to perform retrospective and prospective clinical
studies. This review provides candidate omic biomarkers,
which require future verification and validation.

Fetal hemoglobin and sickle cell severity

Although SCA is a monogenic disorder due to a single nucleo-
tide polymorphism (SNP) in the sixth codon of b-globin
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(HBB), genetic and environmental factors contribute to vari-
ations in the severity of clinical complications. The sequential
expression of the developmentally regulated b-like globin
genes (e, Gg, Ag, d, and b) located in the HBB locus on
chromosome 11 has been investigated for many decades.
During the first year of life, the g-globin gene is silenced
and b-globin is activated, a process known as hemoglobin
switching.12 However in children with SCA, this process is
attenuated leading to sustained fetal hemoglobin (HbF; a2g2)
synthesis with a mean HbF level of 28.1% at 6 months13 com-
pared with 7.3% in babies with normal hemoglobin A pro-
duction. HbF is a potent modifier of clinical severity in SCA
because of its ability to directly inhibit sickle hemoglobin
polymerization under deoxygenated conditions.14 Shortly
after birth when HbF levels are high, infants are protected
against the VOC complications of SCA however as HbF
drops, clinical complications occur such as splenic sequestra-
tion and high risk for serious infection among others.

After many years of clinical research to develop specific
therapies, hydroxyurea is the only FDA approved drug for
treating adults with SCA primarily through HbF induc-
tion.15,16 Subsequent clinical trials in children culminating
with the BABY HUG study showed hydroxyurea to be
effective in young children,17,18 but this agent did not
reverse abnormal spleen and kidney function observed in
the first year of life. Recently, evidence-based guidelines
were released that recommend offering hydroxyurea at 9
months of age to children with SCA regardless of clinical
symptoms.19 However, clinical providers remain concerned
about the optimal age to safely initiate this therapy in young
children. Therefore, other biomarkers of SCA clinical sever-
ity that can be targeted for the design of non-chemothera-
peutic agents need to be identified.

Genomics

Over the last decade with the rapid expansion of genomic
approaches, candidate gene and genome-wide studies have
been used to discover genetic modifiers of disease severity
in sickle cell patients. Based on extensive clinical research,
two major SCD phenotypes including VOC and hemolysis
have been described.20,21 The VOC phenotype is secondary
to sickle hemoglobin polymerization, vessel occlusion, and
tissue hypoxia/reperfusion injury. Acute painful episodes,
ACS and avascular necrosis of the femoral head are asso-
ciated with VOC pathophysiology. Genetic studies have
identified mutations in the GCH1,22 MBL2,23 HMOX1,24

and MTHFR:BMP225 genes associated with VOC. By con-
trast, the hemolysis phenotype is caused by intravascular
hemolysis, free hemoglobin release from red blood cells,
and reduced nitric oxide production. The severity of
anemia and complications of stroke, leg ulcers, and priap-
ism have been associated with the hemolytic pheno-
type.20,21,26 Genotype–phenotype studies identified
mutations in the NPRL3,27 VCAM1,28 NOS3,29 Interleukin
4 receptor,30 TGF-b/SMAD/BMP pathway, KL,31 TEK,
TGFBR3, and AQP132 genes associated with hemolysis
risk. de Oliveira Filho et al.33 confirmed null mutations in
two glutathione S-transferase subunit-encoding genes,
GSTM1 and GSTT1 associated with SCD severity.

Null genotypes at these two loci increased the risk of
severe complications including ACS, avascular necrosis of
the femoral head, stroke, and leg ulcers 4- to 6-fold. A
detailed discussion of the implications of SNPs in the vari-
ous loci and SCA clinical severity is reviewed by Habara
and Steinberg34 in this thematic issue of the Experimental
Biology and Medicine.

The greatest impact on clinical severity in SCA is clearly
illustrated by a group of disorders known as hereditary
persistence of HbF (HPFH) caused by deletion and point
mutations in the HBB locus.12 Persons who are heterozy-
gous for the bS-globin mutation and a HPFH mutation dis-
play minimal clinical symptoms or complications. It is
known that a subgroup of children with SCA continue to
express the g-globin gene with an average HbF level of 6%
after 5 years of age attributed to SNPs in the HBB locus.13

Previous genomic analysis of the HBB locus established
inherited haplotypes (SNPs inherited in unique patterns)
based on different African populations. The Bantu and
Benin haplotypes have been associated with low HbF
levels and increased severity of clinical manifestations in
sickle cell patients3,35 compared with the Senegal and
Arab-Indian haplotypes with higher HbF and a milder dis-
ease phenotype.36,37 However, these haplotypes are not con-
sistently predictive of clinical severity of SCA patients.

Candidate gene and genome-wide studies have been
conducted to discover genetic modifiers of HbF expression
outside the HBB locus in sickle cell patients. Twelve SNPs in
four candidate genes (PDE7, PEX7, MAP3K5, and MAP7)
account for 20–30% of HbF variation.38 Since genotyping
performed in this early study was relatively sparse by cur-
rent standards, additional studies in larger populations are
required to identify true disease severity-influencing vari-
ants. Subsequent quantitative trait loci39–41 and genome-
wide association studies (GWAS)42–44 discovered three
major loci including -158Xmn1-HBG2 (Gg-globin), the
HBS1L-MYB region on chromosome 6q23, and BCL11A at
chromosome 2p15 accounting for 13–20% of HbF variance
in different hemoglobinopathy patient populations. The
Xmn1-HBG2 SNP is associated with 13% of HbF variance
in b-thalassemia patients; however, this locus was not repli-
cated in African American43,45 or Tanzanian46 sickle cell
patients. A group of SNPs located in the intergenic region
50 of the HBS1L and MYB genes were associated with high
HbF40,44 to support a possible mechanism of g-globin regu-
lation; reduced levels of the repressor transcription factor
MYB was observed in primary erythroid cultures generated
from individuals with HPFH.47

The most widely investigated HbF modifier is the tran-
scription factor BCL11A; multiple SNPs in this gene has
been associated with up to 15% HbF variance in several
populations from different ancestry.41,45,46 Sankaran et al.48

demonstrated that high HbF levels were associated with
reduced BCL11A expression. Later studies confirmed
BCL11A gene inactivation in sickle cell mice inhibited
developmentally regulated g-globin gene silencing and
improved several hematologic parameters including renal
function and spleen size in these animals.49

Several groups have shed light on the mechanisms
by which BCL11A represses g-globin expression.
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This transcription factor interacts with several DNA-bind-
ing proteins such as the co-repressors LSD1/CoREST,50

DNMT1,51 GATA1/FOG1/NuRD complex,52 and Sox653 to
facilitate g-globin gene silencing through binding in the
HbF silencing region located upstream of the d-globin
gene.54 Although much is known about the mechanism of
g-globin regulation by BCL11A, there are limitations to the
development of this protein as a therapeutic target since it is
required for B-lymphocyte maturation during normal hem-
atopoiesis.55 Recently, an erythroid-specific enhancer was
discovered in the second intron of BCL11A,56 which can
be targeted to achieve lineage-specific gene silencing
moving research efforts a step closer to gene therapy for
SCA directed at inhibiting BCL11A in erythroid cells.

Since SNPs in the BCL11A gene accounts for about 10%
of HbF variance in African Americans, efforts to discover
other biomarkers of the clinical severity of SCA are needed.
The ever-increasing number of potential disease-modifying
SNPs identified by GWAS and the lack of replication of
many of these loci underscores the concept that SCD sever-
ity and clinical phenotypes are not controlled by a single
genetic event that is both necessary and sufficient to deter-
mine clinical outcome. Instead, it is likely that numerous
genes each contribute a small amount toward overall clin-
ical severity in SCA. Undoubtedly, additional genome-wide
analyses will increase our understanding of SCD severity;
however, a limited number of patients with accurately rec-
orded phenotype data are available. Therefore, future stra-
tegies need to be established to identify true biomarkers of
disease severity that reflect objective measures of the cur-
rent state of illness and risk for complications.

Transcriptomics

Few efforts have been made to identify transcriptomic bio-
markers of SCD severity, but early efforts are promising. In
particular, Jison et al. found dysregulation of 112 genes in
peripheral blood mononuclear cells (PBMCs) from SCA
patients compared with normal subjects; many of these
genes were involved in heme biosynthesis and metabolism,
but this differential gene-set was also enriched with genes
associated with inflammatory functions,57 angiogenesis,
antioxidant and stress responses, and cell-cycle regulation.
In neutrophils isolated from severe versus mild SCA
patients, Kutlar and colleagues found differences in the
expression of genes involved in inflammatory responses
and cell-cycle progression, as well as genes involved in cel-
lular proliferation, growth, and maintenance, and in DNA
repair and replication.7 Most recently, Hounkpe et al. per-
formed a meta-analysis of four existing blood-based tran-
scriptomic studies of SCD, some of which included severity
scores derived from various factors including age and sex,
bilirubin level, history of blood transfusion, LDH level,
MCV, presence of pain, priapism, reticulocyte count,
sepsis, history of stroke, systolic blood pressure, and WBC
count. In the subgroup of 62 patients with severity scores
(44 in steady-state and 18 in acute VOC crisis), 384 differ-
entially expressed genes were identified, a majority of
which were up-regulated in the most severe cases (336
up-regulated and 48 down-regulated).58 These genes were

found, in turn, to be regulated by numerous transcription
factors (e.g. CREB1, FOXJ1, CEBPD, and ATF4, among
others) and kinases (e.g. MAPK1, MAPK3, GSK3B, and
others). Formal gene-set analysis of these data identified
numerous biological pathways that were enriched among
the list of differentially expressed genes, including path-
ways associated with heme metabolism, innate immunity,
proteasome degradation, and autophagy. Numerous ontol-
ogy terms were also significantly over-represented among
these transcripts, including cellular response to extracellu-
lar stimulus, protein ubiquitination, type I interferon signal-
ing pathway, porphyrin compound biosynthesis, myeloid
cell development, apoptotic mitochondrial changes, and
regulation of peptidase activity. Aside from the potential
of transcriptome profiling to identify dynamic biomarkers
of a dynamic disease state, gene-expression analyses can
also implicate genomic regions to inform the identification
of additional DNA variants acting to regulate those differ-
entially expressed genes in sickle cell patients with a severe
clinical phenotype. As gene expression levels are governed
by both DNA sequence variations (e.g. in promoters or
other regulatory elements) and environmental factors (e.g.
via epigenetic modifications), the dysregulation of a tran-
script in association with the SCA phenotype could arise
from either source of variation or a combination of both. For
some such transcripts, the observed dysregulation, if not
driven by some environmental factor, may therefore high-
light that gene’s promoter or other regulatory elements as
logical candidates for harboring symptom-associated gen-
etic variation, which subsequently could be sought and
found in a genetic study framework.

MicroRNAomics

The amounts and types of mRNAs produced by protein and
non-protein encoding genes are regulated at the transcrip-
tional level by inherited SNPs cis- and trans-acting regula-
tory elements or genes (e.g. in promoters, untranslated
regions, or other regulatory domains). Recent studies have
focused on posttranscriptional mechanisms of gene regula-
tion via microRNA (miRNA)-mediated processes. miRNAs
are small non-coding RNAs that regulate gene expression
by interfering with mRNA translation or disrupting mRNA
stability to promote degradation. The majority of miRNA
studies to gain insights into clinical severity have focused
on g-globin gene regulation. Miller and colleagues59 con-
firmed the ability of LIN28 to silence the miRNA let-7 to
mediate HbF induction in human primary erythroid cells.
Likewise, miR-15a and miR-16-160 enhance g-globin expres-
sion through inhibition of the repressor oncogene MYB.
Studies by Walker et al. correlated miR-26b with steady-
state HbF levels and miR-151-3p expression with the max-
imal tolerated dose of hydroxyurea in children with SCD.61

These studies demonstrate the potential of miRNAs as bio-
markers to predict SCD severity.

The role of miRNAs in determining the severity of
anemia in sickle cell patients has also been investigated. It
is known that sickle red blood cells are under oxidative
stress and have a deficiency of glutathione production lead-
ing to high levels of reactive oxygen species.62
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Recently, Sangokoya et al.63 performed a genome-wide
miRNA analysis using reticulocytes isolated from SCA
patients demonstrating that miR-144 expression correlated
with the level of anemia and tolerance of oxidative stress in
red blood cells. It is known that miR-144 target many genes
including NRF2, a transcription factor involved in regulat-
ing proteins critical for maintaining a normal cellular oxi-
dative stress response.64 Therefore, reduced NRF2
expression is associated with excess cell stress and hemoly-
sis supporting a mechanism for increased miR-144 levels
causing anemia in sickle cell patients. Pace and colleagues
recently completed genome-wide miRNA analysis of
reticulocytes from SCA patients with high and low HbF
levels and observed an eight-fold increase in miR-144 in
the low HbF group supporting a role of NRF2 in g-globin
regulation.65 Thus, miR-144 and NRF2 not only provide a
potential biomarker of severity but also support a putative
mechanism for a clinical complication in SCA. Currently,
miRNA mimics are being developed to treat a wide variety
of diseases.66 Therefore, the discovery of miRNAs involved
in the clinical severity of SCD provide potential targets for
the design of mimics and antagomirs to treat sickle cell
patients.

Proteomics

There are several excellent reviews on the proteome of
erythrocytes and how it changes in SCD.67–70 Therefore,
here we will focus specifically on the few proteomic studies
that were directed at defining candidate biomarkers for
clinical manifestations of sickle cell severity.

Goodman and colleagues performed the initial study to
identify proteomic biomarkers for sickle cell severity.71

Using a 2D-DIGE protein profiling approach, they found
21 of �1000 monocyte protein spots that had significant
positive or negative correlation with VOC rate. Vinculin,
leukotriene A-4 hydrolase, and phosphoglycerate kinase
were all highly predictive of VOC rate.71 Studies on the
plasma of subjects with SCD þ/� pulmonary hypertension
have implicated decreased apolipoprotein A-I (apoA-I) as a
potential marker for pulmonary hypertension risk.72 The
same group has demonstrated that elevation of the serum
amyloid A/apoA-I ratio may be a biomarker for increased
VOC rate.73

Future studies should focus on whether erythrocyte pro-
teins, which have already been shown to differ in the RBC
proteome of SCA versus normal hemoglobin A subjects also
differ when comparing SCA subjects with varying clinical
severity.74,75 Potential target biomarkers include heat shock
proteins, chaperonins, proteasomal subunits, and anti-
oxidant enzymes that are discussed further in the interac-
tomics section below.

Metabolomics

Red cell-specific or systemic metabolic derangements may
underlie the pathophysiology of SCA or at least contribute
to accompanying complications. A better understanding
of metabolism in patients should reveal novel therapeutic
avenues. In 2011, Darghouth and colleagues performed

metabolomic studies on red blood cells from 28 SCA sub-
jects versus 24 healthy controls.76 SCA metabolic signatures
included alterations of redox homeostasis as well as abnor-
mal levels of compounds from nitrogen metabolic path-
ways including citrulline, spermine, and spermidine.76,77

Comparison of normal old and young red blood cells
revealed similarities between the metabolic phenotypes of
SCA red blood cells and old erythrocytes, suggesting a role
for these compounds basic amino acids and polyamines in
the physiology or manifestation (biomarkers) of SCA path-
ology. In support of this view, correction of altered arginine
metabolism has been proposed as a therapy for SCD,78

though further metabolomics studies, both discovery
mode and pathway specific targeted investigations, are
necessary.

In the same year, Zhang et al. from Xia’s group per-
formed high throughput metabolomic profiling of whole
blood and plasma from SCD transgenic mice and demon-
strated that circulating adenosine levels and erythrocyte
2,3-biphosphoglycerate (2,3-BPG) concentrations were
highly elevated in the sickle cell versus erythrocytes from
control mice. They demonstrated that the same was true for
erythrocytes and plasma from humans with SCA.79 Further
mechanistic studies demonstrated that adenosine signaling
through the adenosine A2B receptor (ADORA2BR) under-
lies increased 2,3-BPG production in erythrocytes from SCD
transgenic mice and humans with SCA. Follow-up studies
demonstrated the detrimental role of ADORA2BR activa-
tion-mediated increase in 2,3-BPG. Accumulation of
2,3-BPG in sickle erythrocytes is damaging in that it leads
to increased sickling, hemolysis, and tissue damage. One of
the major explanation for the pathological role of elevated
adenosine signaling via ADORA2BR in sickling is repre-
sented by the role of this signaling axis in increasing
2,3-BPG. Increased 2,3-BPG mediates the stabilization of
the deoxygenated T-state of sickle hemoglobin, elevates
deoxygenated sickle hemoglobin, and thus promotes the
formation of polymers and eventually the induction of sick-
ling (Figure 1). Preclinical studies showed that lowering
elevated adenosine by pegylated adenosine deaminase
(PEG-ADA), a FDA approved drug, and ADORA2BR spe-
cific inhibitor significantly reduced sickling in SCA trans-
genic mice and cultured SCD patients’ erythrocytes
(Figure 1).79,80 Thus, exploratory metabolomics studies led
to the discovery and appreciation of the detrimental role of
elevated adenosine signaling via ADORA2BR in sickling
and revealed novel potential therapies for SCA.

Extending from adenosine, Xia’s group used a metabo-
lomic screening of blood and plasma and identified that
sphingosine-1-P (S1P) is elevated in SCA transgenic mice
and humans.81 They further demonstrated that elevated
Sphingosine kinase 1 (SphK1), an enzyme enriched in
erythrocytes adding phosphate to sphingosine to generate
S1P, underlies increased erythrocyte S1P production contri-
buting to sickling and disease progression.81 Inhibition or
shRNA knockdown of SphK1 significantly reduced sickling
by reducing S1P in the erythrocytes of SCA mice (Figure 1).
More recently, they have demonstrated that elevated
plasma adenosine signaling via ADORA2BR on normal
and sickle human and mouse erythrocytes contributes to
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increased SphK1 activity in a PKA/ERK-dependent
manner (Figure 1).82

Altogether, increased adenosine signaling via
ADORA2BR leads to increased 2,3-BPG and S1P and in
turn contributes to sickling in SCA. The molecular basis
underlying elevated SphK1-mediated S1P in red blood
cell sickling remains unknown. Identification of the specific
molecules and signaling pathways underlying SphK1-S1P-
mediated sickling in SCA will likely provide new insights
for erythrocyte pathology in SCA and identify potential
therapeutic strategies for preventing sickling and disease
progression. Overall, metabolomics studies have revealed
that adenosine, S1P, and 2,3-BPG contribute to red blood
cell sickling, a central pathogenesis of the disease
(Figure 1). These findings immediately implicate adenosine,
S1P, and 2,3-BPG as pathogenic metabolites and suggest
that lowering the elevated adenosine levels or interfering
with ADORA2BR and SphK1 activation are candidate
therapeutic interventions to treat SCA.

Interactomics

Goodman et al. published the first human RBC protein
interactomic map and defined the Repair or Destroy
(ROD) Box, which contains proteasomal proteins associated
with chaperonin, heat shock proteins, and antioxidant
enzymes.67 Kurdia et al. performed centrality measure-
ments on an interactome network built from 751 RBC pro-
teins known at that time.83 Centrality measurements
indicate those nodes which are most important to the net-
work. Of the 10 proteins altered in SCA RBCs that had the
highest centrality scores, for each form of centrality meas-
urement, nine were chaperonin, proteasomal, and anti-
oxidant proteins found within the ROD Box. Since their
article was published, hundreds more proteins were dis-
covered within the RBC. We mention that the centrality
software developed by Kurdia et al.83 is available and can
be used on the larger data set available at this time.

Ammann and Goodman utilized statistical cluster analyses
to measure the similarity of nodes within the RBC interactome
network using a method called Generalized Topological
Overlap Measure (GTOM).84 They demonstrated that mul-
tiple SCA altered proteins in the ROD Box group (proteasomal
subunits and chaperonins) fell within large clusters.84

In an effort to continue RBC interactome analysis and
enhance methods utilized by Kurdia et al.83 and Ammann
and Goodman,84 Daescu and colleagues85 proposed the use
of Voronoi diagram for graphs (VDG) as a tool for analyzing
SCD dependent changes in the RBC protein interactomic
map. VDG provided an efficient way to cluster nodes in
the network based on their distance to the members of a
predetermined subset of cluster centers called Voronoi sites.
As can be seen in Figure 2, of the proteins known to be
altered in SCD RBCs, chaperonins, antioxidant enzymes,
and proteasomal subunits are part of major clusters while
the ANK (Ankyrin) 1 and EPB 41(erythrocyte protein band
4.1) and 49 (erythrocyte protein band 4.9) clusters are smal-
ler and disconnected from the major clusters. This in silico
analysis suggests that the altered chaperonins, anti-oxidant
enzymes, and proteasomal subunits are the most likely
nodes (proteins) to be disruptive to the RBC network (struc-
ture-function). VDG is much faster than centrality measures
and clustering algorithms. The VDG approach proved to be
better at interpreting the influence that SCA affected pro-
teins have on the global networks since those proteins were
used as the Voronoi sites.85

Following the recent strides in the field of proteomics
analyses of red blood cells, D’Alessandro et al.86 and, more
recently, Daescu and colleagues85 compiled a list of 1789 and
1834 proteins, respectively, by assembling data from Roux-
Dalvai et al.,87 Pasini et al,88 and Goodman et al.67 Despite
technical differences in these analyses that may affect the
clinical validity of these datasets for diagnostic purposes,89

a few recurring patterns have been highlighted by all of the
in silico elaborations of red blood cell proteomics data. Again
the chaperonin, proteasomal, and anti-oxidant proteins
altered in SCA were all part of major clusters. Our recent
review of the erythrocyte proteome indicates that it contains
about 2300 unique proteins70 and this number could grow
further leading to enhanced interactome maps of the RBC.
The VDG software developed by Daescu and colleagues85

can be used to produce updated results whenever signifi-
cant changes are made to the network, either by addition of
newly discovered proteins or by changing the status of some
proteins to SCA affected proteins. Such a workflow may be
useful to elaborate and integrate90 data from various omics
platforms (e.g. proteomics, transcriptomics, metabolo-
mics91) with the goal of evaluating how the red blood cell
interactome can be affected by normal and SCD patho-
logical erythropoiesis. Defining key biological nodes is a
means of identifying which cellular components may
require verification and validation as biomarkers.

Integrated omics and validated
biomarker panels

So far there are no published validated individual or panels
of biomarkers for clinical manifestations of SCD.

Figure 1 Sickle cell anemia is characterized by increased plasma levels of

adenosine. Adenosine signaling through the A2B receptor (AORA2B) promotes

intracellular 2,3-biphosphoglycerate (2,3-BPG) accumulation and stabilization of

deoxy-sickle hemoglobin, which promotes polymerization and induces red blood

cell sickling. Sphingosine 1 phosphate (S1P) contributes to sickling, through

unknown mechanisms. Therapeutic intervention through adenosine conversion

to inosine by pegylated-adenosine deaminase or inhibition of sphingosine kinase

1 (SphK1) activity has been shown to reduce sickling and extend red blood cell

lifespan

776 Experimental Biology and Medicine Volume 241 April 2016
. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .



Therefore, longitudinal clinical trials to determine the effi-
cacy of biomarkers in predicting sickle cell severity early in
life have not been performed. The reason for needing vali-
dated individual or panels of biomarkers, which can predict
sickle cell severity over the first year of life, is that clinical
symptoms typically presents between 6 and 12 months
after birth when fetal hemoglobin reaches low levels.
An important step towards reaching the goal of early sever-
ity prediction is the development of a panel of diverse vali-
dated biomarkers derived from metabolomic,
transcriptomic, and proteomic studies. These omic layers
are not redundant, and a ‘‘multiomic’’ profile (multi-
biomarker test) may be required to explain maximal vari-
ance in clinical phenotypes.

The utilization of platforms that can integrate validated
biomarkers from proteomics, transcriptomics, metabolo-
mics, and other omic platforms should allow the identifica-
tion of functionally linked panels of validated biomarkers.
A recently developed systems biology visualization tool
called 3Omics can be used to integrate the transcriptomic,
proteomic, and metabolomic data into inter-omic networks,
as described by Kuo et al.92 This powerful web-based plat-
form may allow a look at how the sickle cell severity-related

transcriptomic, proteomic, and metabolomic expression
profiles can be integrated. Such an approach has already
increased the coherence and robustness of newly dis-
covered multiomic panels of validated biomarkers for
breast cancer.93 Simply stated, integrated interactomics
has the potential to allow the assembly of panels of vali-
dated functionally linked biomarkers for validation in
future longitudinal clinical trials to ascertain whether they
can be used as prognostic predictors of sickle cell severity
early in life; or for therapeutic intervention to prevent dis-
ease progression later in life.

Precision medicine for SCD

In this review, we have provided information on candidate
biomarkers for various clinical aspects of sickle cell severity.
All must undergo verification and then validation before
they can become clinically useful, but they do represent
progress toward the goal of precision medicine for SCD.

Rather than becoming involved in parsing the differ-
ences and similarities of terms between precision and per-
sonalized medicine; we use the term precision medicine in a
simple manner. To conduct medicine with precision one

Figure 2 Voronoi regions induced by the nodes corresponding to the proteins altered by sickle cell disease. Sixteen proteins (Voronoi sites) altered by sickle cell

disease74 yielded 16 Voronoi clusters. Each Voronoi site, shown as a square labeled with its gene symbol, and the nodes of its induced Voronoi region, are distinctly

marked. Chaperonins, antioxidant enzymes, and proteasomal subunits were part of major clusters while the ANK (Ankyrin) 1 and EPB 41(erythrocyte protein band 4.1)

and 49 (erythrocyte protein band 4.9) clusters were smaller and disconnected from the major clusters. Triangle shaped nodes belong to more than one cluster. Modified

from Zivanik et al.85 with permission of the copyright holder
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must understand the genetics and epigenetics of individ-
uals and as much as possible about the environment in
which they live. These factors will influence amounts and
modifications of components of the genome, transcriptome,
microRNAome, proteome, and metabolome. These changes
in amounts and modifications to DNA, RNA, protein, and
various metabolites can potentially explain the etiology or a
clinical manifestation of that disease; and may supply a way
to predict the occurrence or severity of a disease. So with
this simplified definition, we can discuss the components of
Precision Medicine. You need the use of multiomic technol-
ogies, sometimes called omics stacks, to measure disease
based changes in the amount and modification in the vari-
ous cellular molecules and macromolecules. You also need
a way to computationally assess how these biologic modi-
fications intersect with changes in the patient’s environ-
mental exposure (exposome) and medical history. This
requires analysis of big data with appropriate algorithms,
which in theory should lead to treatment of individuals or
groups with common characteristics, with greater
precision.

In the case of SCD, significant effort has gone into
attempting to define a composite measure of sickle cell
severity, which can be used to compare changes in either
individual or panels of biomarkers. There has been no con-
sensus in the field on a composite definition of sickle sever-
ity and this is reviewed in an accompanying article in this
thematic issue.34 Furthermore, we believe that each clinical
manifestation of sickle cell severity will have its own set of
non-overlapping biomarkers, in addition to those that are in
common, and that the former will be of greater interest for
prediction of severity and the application of appropriate
therapeutic approaches or precision medicine.

Conclusion

In conclusion to reach the point where we can offer preci-
sion medicine for infants, children and adults based on their
clinical manifestations of sickle cell severity will require a
consortium of researchers with expertise in all of the mul-
tiomic platforms, including integrated interactomics, and in
the utilization of algorithms, statistics, and computational
science for handling big data. It will also require many clin-
ical sites to obtain the necessary number of subjects. Finally,
it will need the financial support of national and inter-
national funding agencies that make reaching this goal a
high priority.
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