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Abstract

Partly interval-censored time-to-event data often occur in biomedical studies of diseases where 

periodic medical examinations for symptoms of interest are necessary. Recent decades have seen 

blooming methods and R packages for interval-censored data, however, the research effort for 

partly interval-censored data is limited. We propose an efficient and easy-to-implement Bayesian 

semiparametric method for analyzing partly interval-censored data under the proportional hazards 

model. Two simulation studies are conducted to compare the performance of the proposed method 

with two main Bayesian methods currently available in the literature and the classic Cox 

proportional hazards model. The proposed method is applied to a partly interval-censored 

progression-free survival data from a metastatic colorectal cancer trial.
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1 Introduction

Partly interval-censored data often occur in medical and health studies that include periodic 

examinations. With partly interval-censored data, the failure times are exactly observed for 

some subjects, while only known to be within certain time intervals for the rest. In cancer 

clinical trials, progression-free survival, defined as time from study entry to disease 

progression or death due to any cause, is often used as the primary endpoint. It is actually 

partly interval-censored as the exact date of death is normally known while the date of 

disease progression is only known to be between two assessment visits. The mainstream 

methods in pharmaceutical industry are to ignore this so-called arbitrary censoring attribute 

of the data and continue to treat it as right-censored by assuming that the event occurs at the 
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study day when it is detected. This strategy can induce bias in the estimation especially 

when the intervals are wide and varied.1,2 The standard error of the estimation is also 

underestimated since it assumes that failure times are exactly known when they are not.3

The current literature for partly interval-censored data is limited. From the frequentist 

perspective, Huang4 developed the asymptotic properties for the nonparametric maximum 

likelihood estimator (NPMLE) of the distribution function in Turnbull’s5 model. Kim3 

developed the maximum likelihood estimator for the proportional hazards (PH) model. Zhao 

et al.6 developed a class of generalized log-rank tests that perform survival comparison. Gao 

et al.2 developed semiparametric estimation of the accelerated failure time (AFT) model. 

From the Bayesian perspective, Zhou and Hanson7 developed a unified approach that fits 

PH, proportional odds, and AFT models to partly interval-censored and left-truncated spatial 

data. The two functions that implement their method for partly interval-censored data are 

survregbayes and survregbayes2 in their R package spBayesSurv.8 Komárek and Lesaffre9 

developed a mixed-effects AFT model for partly interval-censored data. This method is 

implemented by the bayessurvreg1 function in their R package bayesSurv.10

It is worth mentioning that there are R packages for interval-censored data that can also be 

used for fitting partly interval-censored data. They include the intcox package that 

implements Pan’s method11 which extends the iterative convex minorant algorithm to the 

Cox PH model for interval-censored data; the MIICD package12 that implements multiple 

imputation for PH regression with interval-censored data; the coarseDataTools package13 

that fits parametric AFT models to interval-censored data; the interval package14 that 

estimates the NPMLE of survival curve and performs log-rank and Wilcoxon type tests for 

interval-censored data; the SmoothHazard package15 that can fit semiparametric or 

parametric PH model to interval-censored data; the survBayes package16 that fits a PH 

model by a Bayesian approach to interval-censored data; the dynsurv package17 that fits 

Bayesian PH model to interval-censored data; and the icenReg package18 that fits Bayesian 

PH, proportional odds, and AFT models for interval-censored data.

However, there might be limitations with some of these packages. For instance, the intcox 
package does not provide standard error for an estimated regression coefficient. The interval 
package does not perform regression analysis. The MIICD package imputes exact times for 

finite interval-censored data and and then use the partial likelihood method. The survBayes 
package reduces the data to right-censored data by imputing an observed time for each finite 

interval-censored time. The dynsurv package also reduces the data to “augmented right-

censored data” through sampling exact times for finite interval-censored times. The 

coarseDataTools package uses the survreg function in the survival package19 or uses the 

general optimization function optim and reduces intervals to their midpoints. For Bayesian 

inference, the icenReg package fits parametric models only. Further evaluation of the 

performance of these packages under partly interval-censored data may also be helpful.

In this paper, we introduce an efficient and easy-to-implement Bayesian approach 

specifically developed for analyzing partly interval-censored data under the semiparametric 

PH model. The main differences between the proposed method and the two Bayesian 

methods we compare with are: (1) Zhou and Hanson used the transformed Bernstein 
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polynomial prior or mixtures of Polya trees prior to model the baseline survival function; 

while we use a mixture of basis I-splines to model the baseline cumulative hazard function. 

(2) Zhou and Hanson used an adaptive Metropolis sampler20 to sample regression 

coefficients; while we use the Metropolis-Hastings algorithm21 to sample regression 

coefficients. (3) Komárek and Lesaffre fit an AFT model with the error term specified as a 

normal mixture with an unknown number of components; while we fit the PH model. Zhou 

and Hanson has pointed out that models using the mixtures of Polya trees prior can suffer 

from poor mixing and the transformed Bernstein polynomial prior is preferred. According to 

the discussions by Diaconis and Ylvisaker22 and Perron and Mengersen,23 the 

approximation based on Bernstein polynomials can be poor for some nonlinear functions. 

On the other hand, the adaptive Metropolis algorithm samples a vector of parameters with 

proposal variance 2.42
d Ct + 10−10Id, where Ct is the sample variance of all previous draws, d 

is the dimension of the vector sampled, and Id is the identity matrix. As a multidimensional 

sampler, it poses more difficulty in achieving convergence to target distribution and good 

mixing. Simulation II in Section 3 demonstrates one scenario where the proposed method 

outperforms Zhou and Hanson’s method.

The remainder of the paper is outlined as follows. Section 2 describes the proposed method 

including spline approximation, data augmentation, prior specification, and posterior 

computation. Section 3 presents two simulation studies that evaluate the performance of the 

method and compares it with Zhou and Hanson and Komárek and Lesaffre for partly 

interval-censored data, and the classic Cox PH model.24 In Section 4, we derive partly 

interval-censored progression-free survival data based on the overall tumor responses from a 

phase III metastatic colorectal cancer trial and compared the analysis result by the proposed 

method with those from the other methods. Finally Section 5 provides conclusions and 

discussions.

2 Statistical method

2.1 Data structure and notation

Partly interval-censored data consist of exact event times and general interval-censored event 

times. Note that general interval-censored data include left-censored, interval-censored, and 

right-censored observations. The corresponding observed time intervals are (0, Ri], (Li, Ri], 

and (Li, ∞]. The proposed method can accommodate any of exact, left-censored, right-

censored, interval-censored times, and a mixture of them. Let n1 be the number of 

observations that are observed exactly and n2 the number of general interval-censored 

observations. We have a total of N = n1 + n2 observations. Without loss of generality, for the 

first n1 subjects, the failure times Ti, i = 1, …, n1 are exactly known, but for the other n2 

subjects, the failure times are only known to be within a time interval, denoted as (Li, Ri], i = 

n1+1, …, N, where Li can be 0 and Ri can be ∞. So the observed data are Ti, Xi i = 1
n1  and 

Li, Ri, Xi i = n1 + 1
N , where Xi is the ith subject’s covariate vector.

We assume that failure time T and examination times are independent given the covariate 

vector X.
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2.2 Model

Let λ0(ti) denote the unspecified baseline hazard function, β the p × 1 vector of regression 

coefficients, xi the p × 1 covariate vector. Under the Cox proportional hazards model, the 

hazard λ(ti|xi) of a failure time T is proportional to the baseline hazard:

λ ti ∣ xi = λ0 ti exp β′xi . (1)

For an exact observation, Ti is observed, and its likelihood function is

L1i β, λ0( ⋅ ) = f ti ∣ xi = λ0 ti exp β′xi exp −Λ0 ti exp β′xi ,

where Λ0(t) = ∫0
tλ0(s)ds is the cumulative baseline hazard function.

For a general interval-censored observation, (Li, Ri] is the observed time interval, and its 

likelihood function is

L2i β, λ0( ⋅ ) = F Ri ∣ xi
δ1i F Ri ∣ xi − F Li ∣ xi

δ2i 1 − F Li ∣ xi
δ3i, (2)

where F (t ∣ x) = 1 − exp(−∫0
tλ(s ∣ x)ds) is the cumulative distribution function given x and δ1, 

δ2, δ3 are the left-, interval-, and right-censoring indicators. So the overall likelihood 

function is:

L β, λ0( ⋅ ) = ∏
i = 1

n1
L1i β, λ0( ⋅ ) ∏

i = n1 + 1

N
L2i β, λ0( ⋅ ) . (3)

2.3 Estimation of Λ0(t) and λ0(t)

Following Cai et al., Pan et al., Lin et al., and Pan et al.,25–28 we model the cumulative 

baseline hazard function Λ0(t) with a linear combination of a set of basis I-splines:33

Λ0(t) = ∑
l = 1

K
γlIl(t) (4)

where {γl} is a set of non-negative coefficients and {Il(t)} is a set of basis I-splines.

To construct the set of basis I-splines, we need to specify the degree (1=linear, 2=quadratic, 

3=cubic, etc.) of each basis I-spline and an increasing sequence of knots within the data 

range. The set of basis I-splines are fully determined once the degree and the knots are 

specified. The number of basis I-splines (K) equals the degree plus the number of interior 

knots. In general, we recommend taking 2 or 3 as the degree value for adequate smoothness 

and 10–30 equally spaced knots for adequate modeling flexibility.

Note that knots and degree can be adjusted based on data. Together with the coefficients for 

the basis I-splines, a monotone spline created this way can provide great flexibility for 
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approximating a curve. Furthermore, the shrinkage prior for the spline coefficients γl as 

shown in Section 2.5 serves to: (1) keep those important basis functions and leave those 

unnecessary ones out; (2) avoid over-fitting problems that may be caused by using too many 

knots for flexibility.

For the baseline hazard function λ0(t), we model it with a linear combination of a set of 

basis M-splines:33

λ0(t) = ∑
l = 1

K
γlMl(t),

where {γl} is the same set of non-negative coefficients as in (4) and {Ml(t)} is a set of basis 

M-splines. I-splines are the integrated M-splines such that Il(t) = ∫0
tMl(s)ds . In our model, 

they share the same knots and an I-spline of degree k corresponds to an M-spline of degree k 
− 1.

2.4 Data augmentation

Although one may use the Metropolis-Hastings algorithm to sample all the parameters from 

their posteriors based on the original data likelihood (3), it is difficult to find good proposal 

distributions to obtain reasonable acceptance rates and well mixed Markov chain Monte 

Carlo (MCMC) chains. To facilitate posterior computation, we construct the following data 

augmentations.

For general interval-censored data, a two-step data augmentation is constructed by taking 

advantage of the PH model structure and the spline modeling form of Λ0(t) in (4). Assume 

that there is an underlying recurrent event E, for which the number of occurrences N(t) 
within time interval (0, t] is a nonhomogeneous Poisson process with cumulative intensity 

function Λ0(t) exp(β′x). Define T = inf{t : N(t) > 0}, time of first occurrence in the Poisson 

process. Then we have P(T > t) = P(N(t) = 0) = exp{−Λ0(t) exp(β′x)}, which is our survival 

function of interest. So T indeed follows the PH model in (1).

Now define two time points t1 and t2 such that 0 < t1 < t2. For left-censored observations (0, 

R], we set t1 = R and t2 undefined as long as greater than t1. For interval-censored 

observations (L, R], we set t1 = L and t2 = R. For right-censored observations (L, ∞), we set 

t2 = L and t1 undefined as long as less than t2. It is clear that N(t1) denotes the number of 

occurrences of E until time t1, and N(t2) − N(t1) denotes the number of occurrences of E 

during the interval (t1, t2]. By the properties of nonhomogeneous Poisson process, the 

random variable Z = N(t1) ~ Poi(exp(Λ0(t1) exp(β′x))), the random variable W = N(t2) − 

N(t1) ~ Poi(exp({Λ0(t2) − Λ0(t1)} exp(β′x))), and they are independent. For left-censored 

data, since t2 is some point greater than t1 = R, W can take any value and will not contribute 

any information about the failure time T. For interval-censored data, Z = 0 and W > 0. For 

right-censored data, t1 is some point less than t2 = L, so Z = W = 0. The augmented data 

likelihood function for subject i is
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L2aug1, i θ ∣ Zi, W i = Poi Zi Poi W i
δ2i + δ3i

× 1 Zi > 0 δ1i 1 Zi = 0 1 W i > 0 δ2i 1 Zi = 0 1 W i = 0 δ3i,

where θ = (β, λ0(·)) denotes the set of parameters, 1(·) the indicator function, and 00 = 1. 

Integrating out Zi and Wi will lead to the original likelihood function in (2).

Furthermore, based on the additive property of Poisson distribution and the linear 

combination form of (4), decompose Z and W respectively into K independent Poisson 

latent variables {Zl} and {Wl}, such that Z = ∑l = 1
K Zl with Zl ~ Poi(γlIl(t1) exp(β′x)) and 

W = ∑l = 1
K W l with Wl ~ Poi({γlIl(t2) − γlIl(t1)} exp(β′x)), with constraints ∑l = 1

K Zl > 0 if 

δ1 = 1, ∑l = 1
K Zl = 0 and ∑l = 1

K W l > 0 if δ2 = 1, and ∑l = 1
K Zl = ∑l = 1

K W l = 0 if δ3 = 1. 

Then for subject i, the further augmented data likelihood function is

L2aug2, i θ ∣ Zil′ s, W il′ s = ∏
l = 1

K
Poi Zil Poi W il

δ2i + δ3i

× 1 Zi > 0 δ1i 1 Zi = 0 1 W i > 0 δ2i 1 Zi = 0 1 W i = 0 δ3i .

The likelihood function is simply a product of Poisson probability mass functions, which 

leads to relatively straightforward posterior computation to be presented in Section 2.5.

For exact times, it will be challenging to sample the basis M-spline coefficients γl directly 

given the summation form in the likelihood function:

L1(θ) = ∏
i = 1

n1
{ ∑

l = 1

K
γlMl ti }exp β′xi exp −Λ0 ti exp β′xi .

We introduce latent variables ui = ui1, ui2, …, uiK Multinomial 1; 1
K , 1

K , …, 1
K , then we can 

derive the augmented data likelihood function for the part of exact observations as:

L1aug θ ∣ ui′s = ∏
i = 1

n1
{K ∏

l = 1

K
γlMl ti

uil}exp β′xi exp −Λ0 ti exp β′xi .

Integrating out ui’s will lead to the original likelihood function L1(θ). Under this format, we 

can obtain a Gamma posterior distribution for each γl, l = 1, …, K.

2.5 Prior specification and posterior computation

For spline coefficients, we assign an Exponential prior Exp(η) for γl and a Gamma 

hyperpiror Ga(aη, bη) for η. This specification leads to conjugate posteriors for both γl and 

η. For a numeric (continuous or count) covariate, we assign a Normal prior N 0, σ0
2  for βr. 

Since the corresponding posterior is not conjugate, the Metropolis-Hastings algorithm is 

used for sampling from the posterior. For a categorical covariate with c levels, we represent 
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it using c − 1 dummy variables. The Metropolis-Hastings algorithm as a general sampler can 

be used for sampling for its βr too. However, here we treat a categorical covariate differently. 

The reason is that by specifying a Gamma prior Ga(aϕ, bϕ) for ϕr = exp(βr), the resulting 

posterior happens to be Gamma which can be directly sampled from and renders better 

MCMC chains. Then we transform ϕr back to βr.

After initializing values for the parameters, the proposed MCMC algorithm proceeds in the 

following steps.

1. Let Zi = 0 and Wi = 0 for all i, Zil = 0 and Wil = 0 for all i and l. If δ1i = 1, then 

sample

Zi Poi Λ0 Ri exp β′xi 1 Zi > 0 ,
Zi1, …, ZiK Multinomial Zi; pi1, …, piK ,  

and  pi1, …, piK ∝ γ1I1 Ri , …, γKIK Ri .

If δ2i = 1, then sample

W i Poi Λ0 Ri − Λ0 Li exp β′xi 1 W i > 0 ,
W i1, …, W iK Multinomial W i; qi1, …, qiK ,

 and  qi1, …, qiK ∝ γ1 I1 Ri − I1 Li , …, γK IK Ri − IK Li .

2. Sample (ui1, …, uiK) ~ Multinomial(1; oi1, …, oiK) and (oi1, …, oiK) ∝ 
(γ1M1(ti), …, γKMK(ti)).

3. For βr corresponding to a numeric covariate, use the Metropolis-Hastings 

algorithm to sample from its full conditional distribution

p βr ∣ Zi′s, W i′s, β−r ∝ exp[ ∑
i = 1

n1
xirβr − Λ0 ti eβ′xi ]

× exp[ ∑
i = n1 + 1

N
xirβr Ziδ1i + W iδ2i −eβxi′ Λ0 Ri δ1i + δ2i + Λ0 Li δ3i ]p βr ,

where p βr = N 0, σ0
2  is the prior used for βr, and β−r denotes all the β’s except 

for βr.

4. For βr corresponding to a categorical covariate, let ϕr = exp(βr), sample ϕr from

Ga(aϕ + ∑
i = 1

n1
xir + ∑

i = n1 + 1

N
xir Ziδ1i + W iδ2i , bϕ + ∑

i = 1

n1
Λ0 ti eβ−r′ xi, − rxir

+ ∑
i = n1 + 1

N
eβ−r′ xi, − r Λ0 Ri δ1i + δ2i + Λ0 Li δ3i xir),

where xi, −r is the covariate vector except for xir for subject i.

5. Sample γl, l = 1, …, K, from
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Ga(1 + ∑
i = 1

n1
uil + ∑

i = n1 + 1

N
Zilδ1i + W ilδ2i , η + ∑

i = m1 + 1

N
eβ′xi Il Ri δ1i + δ2i + Il Li δ3i

) .

6. Sample η from Ga(aη + K, bη + ∑l = 1
K γl).

As we can see, latent variables and spline coefficients all can be sampled from standard 

distributions. Special sampling method (here Metropolis-Hastings) is only required for the 

regression coefficient of a numeric covariate.

3 Simulations

3.1 Simulation I

We evaluate the performance of the proposed method through a simulation study. A total of 

100 data sets were generated. For each data set, the failure times were generated from the 

following PH model:

S t ∣ x1, x2 = exp −Λ0(t)exp β1x1 + β2x2 ,

where Λ0(t) = log(1 + t), β1 = 1, β2 = 1, x1’s ~ N(0, 0.52), and x2’s ~ Bernoulli(0.5). Note 

that x1 and x2 were independently sampled and a new set of covariates were generated for 

each data set. We assume that the random number of medical examinations performed for 

each person is 1 plus a Poisson random number with mean 2. The gap times between 

adjacent medical examinations follow an Exponential distribution with mean 1. The 

observed interval is formed by the consecutive examination times (including 0 and ∞) that 

contain the true failure time. In each data set, there are N = 460 subjects, around 20% of 

which are set to have exact event times observed.

To construct the basis I-splines and basis M-splines, we set the degree as 2 for the basis I-

splines and chose 15 equally spaced knots within the range of observed times. For hyper-

parameters, we tried σ0
2 = 10, 10, 100, 1000, aη = bη = 0.01, 0.1, 1, and aϕ = bϕ = 0.01, 0.1, 1. 

The results were very similar and we chose to use σ0
2 = 100, aη = bη = 1, and aϕ = bϕ = 1. 

Fast convergence and good mixing were observed for all key parameters. For each MCMC 

chain, we set total number of iterations = 11,000, burn-in = 1000, and thin = 1.

We fit the proposed method, and compare it survregbayes and survregbayes2 in the 

spBayesSurv package, and bayessurvreg1 in the bayesSurv package. We also treat finite 

interval-censored data as exact data by taking the right endpoints as the event times, as has 

conventionally done by practitioners, and then fit the Cox PH model using the coxph 

function in the survival package. The purpose is to demonstrate the potential bias this 

conventional approach might introduce.
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Table 1 summarizes the simulation results. For each parameter, the point estimate is the 

average of the 100 posterior means, the sample standard deviation (SSD) is the sample 

standard deviation of the 100 posterior means, the empirical standard error (ESE) is the 

average of the 100 estimated standard errors, and the 95% coverage probability (95CP) is the 

percentage of the 100 credible intervals for each βr that contains the true parameter value. 

Effective sample size (ESS) and absolute value of Geweke’s Z-score were computed based 

on the MCMC chains using the coda package.37 Negative log-likelihood (NLLK) is the 

negative of log psuedo marginal likelihood from survregbayes and survregbayes2 and the 

negative of log-likelihood from coxph. Log-likelihood at each iteration from bayessurvreg1 

was averaged to calculate negative log-likelihood. Deviance information criterion (DIC) was 

not calculated for bayessurvreg1 because the error variance at each iteration was not 

available.

As seen in Table 1, the proposed method, survregbayes, and survregbayes2 all perform very 

well. The survregbayes and survregbayes2 functions have relatively high effective sample 

size, however, the proposed method shows lower absolute Geweke’s Z-score, deviance 

information criterion, and negative log-likelihood which indicate better MCMC convergence 

to the stationary distribution and better model goodness-of-fit. Note that bayessurvreg1 fits a 

Bayesian AFT model (log(Ti) = β′xi + ϵi), so it makes sense that the estimated regression 

coefficients are of negative signs and the coverage probabilities are not presented. The 

estimation from coxph shows large bias, low coverage probability, and large negative log-

likelihood, which illustrates the bias it can induce if we treat partly interval-censored data as 

right-censored data.

We also estimated baseline survival function S0(t) based on the 100 simulated data sets. The 

estimated baseline survival functions and the true baseline survival function are plotted in 

Figure 1. All four partly interval-censored methods provide good approximations to the true 

baseline survival. However, the estimated curve based on coxph deviates significantly from 

the true curve.

3.2 Simulation II

To explore more scenarios, we performed another simulation study where the true 

cumulative baseline hazard function is set to be Λ0(t) = t2. Compared to Simulation I where 

Λ0(t) = log(1 + t), the risk of failure is much higher under the new function. Other settings 

are exactly the same as in Simulation I.

Table 2 summarizes the simulation results. As we can see, the proposed method provides the 

best estimation with small biases and coverage probabilities close to the nominal level. The 

effective sample size from the proposed method is low compared to the other three partly 

interval-censored methods, indicating relatively high autocorrelation among the MCMC 

samples. The point estimates and coverage probabilities from survregbayes and 

survregbayes2 are not very good, even though they have high effective sample sizes. The 

estimation from coxph deviates even further from the true values compared to Simulation I, 

which indicates that the conventional method might lead to more bias for analyzing partly 

interval-censored data from diseases that have fast failure rate.
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We also plotted the estimated baseline survival function versus the true in Figure 2. The 

proposed method provides the best approximation to the true baseline survival, followed by 

bayessurvreg1, survregbayes, and survregbayes2. The estimated curve from coxph is still 

noticeably different from the true curve.

4 An application to progression-free survival data

We apply the proposed method to a randomized phase III study that compares the efficacy of 

FOLFIRI versus panitumumab + FOLFIRI in patients with previously treated metastatic 

colorectal cancer. FOLFIRI is a combination of chemotherapy drugs: fluorouracil, 

leucovorin, and irinotecan. Panitumumab is a fully human monoclonal antibody specific to 

the epidermal growth factor receptor. The primary endpoint is progression-free survival. Two 

binary covariates are of interest: treatment arm (FOLFIRI vs. panitumumab + FOLFIRI) and 

patient tumor KRAS mutation status (wild-type vs. mutant). KRAS stands for the gene 

Kirsten rat sarcoma viral oncogene homolog. It is one of a group of genes involved in the 

epidermal growth factor receptor pathway.

Both treatments were administered every 2 weeks. The visit schedule for tumor response 

evaluation was every 8 weeks until documentation of disease progression. Based on the 

overall tumor responses (e.g., complete response, partial response, stable disease, and 

progressive disease) at each visit across their on-study period, we derived the progression-

free survival for each patient. We set baseline assessment as Day 0. If a patient had disease 

progression at the first post-baseline assessment, then he is left-censored. If a patient had 

disease progression at a later assessment, then he is interval-censored. If a patient was alive 

without disease progression at the last on-study assessment, then he is right-censored. If a 

patient died while on-study, then his progression-free survival is exact. After excluding 30 

test failures and 61 missing values for KRAS mutation status, the final data set contains N = 

855 patients, among which 52 died on-study, 168 left-censored, 329 interval-censored, and 

306 right-censored. The FOLFIRI arm contains 427 randomly assigned patients with 234 

wild-type and 193 mutant, while the panitumumab + FOLFIRI arm contains 428 randomly 

assigned patients with 240 wild-type and 188 mutant.

The estimation results using the proposed method, survregbayes, survregbayes2, 

bayessurvreg1, and coxph are presented in Table 3. The proposed method, survregbayes, 

bayessurvreg1, and coxph all detect improvement of progression-free survival by adding 

panitumumab. The survregbayes2 function fails to detect a significant treatment effect. The 

four partly interval-censored methods have much lower negative log-likelihood than coxph, 

which indicates they fit the data better by taking into account that disease progression occurs 

between two visits instead of on a visit day.

Figure 3 presents the estimated survival curves for the four groups formed by treatment arm 

and KRAS mutation status based on the five methods compared in Table 2 and the classic 

Kaplan-Meier method.39 As indicated by the estimated regression coefficients, the survival 

expectation is the highest for wild-type patients receiving panitumumab + FOLFIRI, 

followed by mutant patients receiving panitumumab + FOLFIRI, wild-type patients 

receiving FOLFIRI, and finally mutant patients receiving FOLFIRI.
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Since panitumumab is an antibody targeted at the epidermal growth factor receptor and 

KRAS mutation status predicts the efficacy of such type of agents in metastatic colorectal 

cancer,40,41 we also compared the efficacy of panitumumab + FOLFIRI vs. FOLFIRI among 

patients with wild-type KRAS tumors as well as among patients with mutant KRAS tumors. 

Peeters et al.40,41 treated progression-free survival as right-censored and used the classic 

log-rank test and Cox PH model, but stratified by performance status, prior bevacizumab, 

and prior oxaliplatin exposure.

The results using the proposed method, survregbayes, survregbayes2, bayessurvreg1, and 

coxph are summarized in Table 4. For wild-type patients, when patitumumab was added to 

FOLFIRI, a significant improvement in progression-free survival was observed based on all 

of the five methods. The results are consistent with that from Peeters et al.40,41 For mutant 

patients, only the proposed method detects a weak improvement in efficacy. The 95% CI 

from Peeters et al.40 is (−0.386, 0.058), which indicates a non-significant trend toward 

increased progression-free survival. As in the first set of analysis, the proposed method has 

much higher effective sample size, indicating better mixing and more efficiency in 

generating effective samples.

5 Conclusion

In the past few decades, many statistical methods and R packages have been developed for 

interval-censored data. There have been limited research specifically developed for partly 

interval-censored data which also occur often in medical studies. The several methods 

developed from the frequentist perspective seem to be hard to implement by practitioners, or 

at least with no ready-to-use code available. The main Bayesian methods are the two R 

packages we have compared the proposed method to in this article: one fits PH, proportional 

odds, and AFT models to partly interval-censored data and left-truncated data and the other 

fits mixed effects AFT model to partly interval-censored data. We developed an efficient and 

easy-to-implement Bayesian semiparametric method under the PH model directly targeted at 

analyzing partly interval-censored data. The proposed method performs comparably well in 

terms of regression coefficient estimation and survival function estimation. It even 

outperforms the two R packages when the rate of failure is high as seen in Simulation II. Our 

developed method is a meaningful addition to the literature and we hope to provide 

pharmaceutical companies with another ready-to-use tool for analyzing partly interval-

censored data that are commonly encountered in cancer clinical trials, e.g. progression-free 

survival and disease-free survival.

Our simulation and real data analysis show that, when there is only one covariate, the 

effective sample size of the proposed method is pretty high. However, it may have less ideal 

mixing when there are more than one covariate. This is largely due to the component-wise 

updating of regression coefficients in our algorithm.30 A possible solution for this is to 

sample β simultaneously through the consideration of correlated proposals such as the 

Metropolis-Hastings algorithm based on the iterative weighted least squares.42 This could be 

an area to be explored in future research.
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Figure 1: 
Simulation I - Plot of estimated S0(t) based on 100 simulated data sets using the proposed 

method, survregbayes, survregbayes2, bayessurvreg1, and coxph compared to true S0(t) 
curve.
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Figure 2: 
Simulation II - Plot of estimated S0(t) based on 100 simulated data sets using the proposed 

method, survregbayes, survregbayes2, bayessurvreg1, and coxph compared to true S0(t) 
curve.
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Figure 3: 
Metastatic colorectal cancer trial (N = 855) - Estimated survival curves using the proposed 

method, survregbayes, survregbayes2, bayessurvreg1, coxph, and Kaplan-Meier method. 

Four curves are plotted for each method based on the four groups formed by treatment arm 

and mutation status.
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Table 1:

Simulation I - Estimation of regression coefficient, effective sample size, absolute value of Geweke’s Z-score, 

deviance information criterion, and nagetive log-likelihood based on the proposed method, survregbayes, 

survregbayes2, bayessurvreg1, and coxph.

R function True Estimate SSD ESE 95CP ESS |Geweke’s Z| DIC NLLK

Proposed method 1 1.012 0.125 0.130 0.94 557 0.7775 560 297

1 1.004 0.117 0.121 0.95 834 0.7790

survregbayes 1 0.993 0.120 0.130 0.97 1099 0.9755 688 344

1 1.017 0.118 0.124 0.96 1081 0.9323

survregbayes2 1 0.982 0.118 0.129 0.96 1120 0.8147 689 345

1 1.006 0.118 0.122 0.95 1109 0.8523

bayessurvregl 1 −1.379 0.169 0.184 - 1787 1.1591 - 769

1 −1.443 0.188 0.178 - 1019 1.0351

coxph 1 0.634 0.116 0.108 0.11 - - - 1801

1 0.702 0.126 0.110 0.23 - -
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Table 2:

Simulation II - Estimation of regression coefficient, effective sample size, absolute value of Geweke’s Z-score, 

deviance information criterion, and negative log-likelihood based on the proposed method, survregbayes, 

survregbayes2, bayessurvreg1, and coxph.

R function True Estimate SSD ESE 95CP ESS |Geweke’s Z| DIC NLLK

Proposed method 1 0.982 0.142 0.145 0.96 135 1.1637 422 210

1 0.989 0.144 0.145 0.94 188 0.9371

survregbayes 1 0.873 0.122 0.138 0.89 1028 1.1991 431 216

1 0.884 0.122 0.136 0.87 1022 1.1645

survregbayes2 1 0.804 0.125 0.138 0.69 997 1.3432 441 223

1 0.813 0.128 0.135 0.72 952 1.5399

bayessurvregl 1 −0.499 0.061 0.072 - 1536 0.9370 - 275

1 −0.504 0.075 0.072 - 784 1.1358

coxph 1 0.307 0.096 0.100 0 - - - 1998

1 0.324 0.102 0.101 0 - -
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Table 3:

Metastatic colorectal cancer trial (N = 855) - Estimation of regression coefficient, effective sample size, and 

negative log-likelihood based on the proposed method, survregbayes, survregbayes2, bayessurvreg1, and 

coxph.

R function Estimate SE 95% CI ESS NLLK

Proposed method Treatment −0.229 0.085 (−0.395, −0.062) 2657 1441

KRAS 0.131 0.086 (−0.037, 0.298) 3165

survregbayes Treatment −0.186 0.085 (−0.355, −0.019) 1294 1557

KRAS 0.149 0.085 (−0.018, 0.317) 1264

survregbayes2 Treatment −0.171 0.088 (−0.341, 0.003) 1158 1564

KRAS 0.140 0.089 (−0.035, 0.310) 1178

bayessurvregl Treatment 0.239 0.094 (0.059, 0.428) 1047 1280

KRAS −0.169 0.101 (−0.365, 0.034) 640

coxph Treatment −0.215 0.086 (−0.384, −0.046) - 3230

KRAS 0.163 0.086 (−0.006, 0.332) -

Stat Methods Med Res. Author manuscript; available in PMC 2021 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pan et al. Page 20

Table 4:

Metastatic colorectal cancer trial (N = 855) - Estimation of regression coefficient, effective sample size, and 

negative log-likelihood among patients with wild-type KRAS tumors and patients with mutant KRAS tumors, 

based on the proposed method, survregbayes, survregbayes2, bayessurvreg1, and coxph.

R function Estimate SE 95% CI ESS NLLK

Proposed method wild-type −0.473 0.108 (−0.685, −0.264) 3220 903

mutant −0.260 0.116 (−0.489, −0.032) 3250 663

survregbayes wild-type −0.306 0.119 (−0.537, −0.077) 1532 896

mutant −0.031 0.132 (−0.285, 0.227) 1591 663

survregbayes2 wild-type −0.291 0.120 (−0.525, −0.054) 1641 897

mutant −0.029 0.131 (−0.289, 0.228) 1675 659

bayessurvregl wild-type 0.377 0.130 (0.129, 0.636) 1127 744

mutant 0.059 0.135 (−0.200, 0.325) 675 496

coxph wild-type −0.336 0.117 (−0.565, −0.107) - 1590

mutant −0.057 0.128 (−0.306, 0.193) - 1265
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