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Abstract 

Near infrared (NIR) spectroscopy has been successful in non-destructive assessment of 

biological tissue properties, such as stiffness of articular cartilage, and is proposed to be used 

in clinical arthroscopies. NIR spectroscopic data includes absorbance values from a broad 

wavelength region resulting in a large number of contributing factors. This broad spectrum 

includes information from potentially noisy variables, which may contribute to errors during 

regression analysis. We hypothesized that partial least squares regression (PLSR) is an 

optimal multivariate regression technique and requires application of variable selection 

methods to further improve the performance of NIR spectroscopy-based prediction of 

cartilage tissue properties, including instantaneous, equilibrium and dynamic moduli and 

cartilage thickness. To test this hypothesis, we conducted for the first time, a comparative 

analysis of multivariate regression techniques, which included, principal component 

regression (PCR), PLSR, ridge regression, least absolute shrinkage and selection operator 

(Lasso), and least square version of support vector machines (LS-SVM), on NIR spectral 

data of equine articular cartilage. Additionally, we evaluated the effect of variable selection 

methods, including Monte Carlo uninformative variable elimination (MC-UVE), competitive 

adaptive reweighted sampling (CARS), variable combination population analysis (VCPA), 

backward interval PLS (BiPLS), genetic algorithm (GA) and jack-knife, on the performance 
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of the optimal regression technique. PLSR technique was found as an optimal regression tool 

(R2 
Tissue thickness = 75.6, R2 

Dynamic modulus = 64.9) for cartilage NIR data; variable selection 

methods simplified the prediction models enabling the use of lesser number of regression 

components. However, the improvements in model performance with variable selection 

methods were found to be statistically insignificant. Thus, PLSR technique is recommended 

as the regression tool for multivariate analysis for prediction of articular cartilage properties 

from its NIR spectra. 

Key terms 

Uninformative variable elimination (UVE), arthroscopy, multivariate regression, cartilage, 

near infrared (NIR) spectroscopy 
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Introduction 

Articular cartilage (AC) is a specialized type of hyaline cartilage found at the distal ends of 

bones providing smooth, low friction, load-bearing interfaces in joints. This cartilage 

comprises mainly of water (65-80%) and extra-cellular matrix (ECM) consisting primarily 

of collagen (10-30% w/w) and proteoglycans (PGs; 10-20% w/w).1 Degenerative joint 

conditions, such as osteoarthritis (OA), are generally characterized by disruption of the 

superficial collagen network and loss of PGs. These changes in biochemical composition 

results in alteration of the biomechanical properties of AC.2–5 Light-based imaging 

modalities, such as Fourier transform infrared (FTIR) spectroscopy,6 near infrared (NIR) 

spectroscopy,7–9 optical coherence tomography (OCT) and Raman spectroscopy have been 

proposed for arthroscopic evaluation of joint tissues.10–12  

Recent cartilage studies have advocated the use of NIR spectroscopy for in vivo 

evaluation of articular cartilage integrity,13–15 particularly due to its superior tissue depth 

penetration compared to other optical techniques. Furthermore, Afara et al. showed that the 

NIR diffuse reflectance spectrum of articular cartilage correlates with biomechanical,16 

biochemical and histological properties of non-calcified cartilage. NIR spectroscopy is a 
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vibrational spectroscopy with main contributing bonds in biological tissues being C-H, N-H, 

O-H and S-H. 

Regression techniques enable the development of mathematical models relating NIR 

spectra with reference parameters (e.g. tissue composition) of the studied tissue (e.g. 

cartilage). Multivariate regression techniques are primarily used to extract information from 

NIR data,17 due to non-specificity of the functional bands and overlapping overtones in NIR 

spectra unlike mid-IR,18 a single wavelength represents multiple components. Additionally 

each property, such as thickness, is best described by partial contribution from multiple 

variables. Hence, multivariate techniques would be an appropriate choice.19 The popular 

multivariate regression techniques utilized in NIR spectroscopy are principal component 

regression (PCR) and partial least squares regression (PLSR).20,21 PLSR is the most common 

regression technique used in NIR spectroscopic studies of articular cartilage. However, the 

potential of regression shrinkage methods, such as ridge regression and least absolute 

shrinkage and selection operator (Lasso),22 and least square version of support vector 

machines (LS-SVM) based regression,23 for NIR evaluation of articular cartilage has not been 

investigated. A comparison of the aforementioned multivariate regression techniques was 

undertaken to determine the best technique applicable for NIR spectroscopic evaluation of 

cartilage. A summary of these common techniques is presented in Table 1.  
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Selecting optimal variables for regression models is an essential step as the spectra 

may contain noisy or irrelevant variables that hinder the analysis. Conventionally, variable 

selection is done by restricting the spectral wavelength based on experimental knowledge or 

known restrictions (manual wavelength selection), which may lead to inconsistent results and 

is prone to human error. Statistical studies conducted by Xiaobo et al.,24 Westad et al. and 

Mehmood et al. have shown the significance of variable selection methods in multivariate 

regression techniques.25,26 In general, variable selection in multivariate regression is based 

on the principle of either choosing the most contributing variables or eliminating the 

noncontributing variables.24 Monte Carlo uninformative variable (MC-UVE), competitive 

adaptive reweighted sampling (CARS), variable combination population analysis (VCPA), 

interval selection methods (BiPLS), genetic algorithm (GA) and jack-knife are different 

variable selection methods available for analyzing NIR spectra. 

In this study, multiple multivariate regression and variable selection methods are 

utilized to determine the most optimal algorithms for analyzing articular cartilage NIR 

spectra. PLSR has been successfully applied in spectroscopy applications, such as paper,27 

food and mineral industries.28,29 Recent NIR and FTIR studies have demonstrated PLSR to 

be a capable technique for analysis of cartilage spectra.30,31 Additionally, a FTIR study 

demonstrated that variable selection further improves PLSR models in case of composition 



7 
 

and compressive properties of cartilage.32 Thus, we hypothesized that PLSR is an optimal 

regression technique for evaluation of cartilage NIR spectra, and its model performance may 

further be improved with variable selection. To test the hypothesis, calibration models 

relating the NIR spectra with reference properties of cartilage were developed and evaluated 

using independent group of areas of interest (AI). 

Materials and methods 

This study was conducted on NIR spectral data collected from equine cartilage, used in an 

earlier study.33 Equine metacarpophalangeal joints (N = 5) were obtained from a 

slaughterhouse and areas of interest (AI, N = 44) of intact and damaged cartilage were 

selected by experienced veterinary surgeons. The blind coded AIs were evaluated twice 

arthroscopically under independent settings by the surgeons according to the international 

cartilage repair society (ICRS) scoring system to differentiate healthy (N = 19) and damaged 

(N = 25) AIs. The AI grids, 15 × 15 mm were outlined with a felt-tip marker, which did not 

interfere with NIR spectroscopy measurements. In each AI, 25 equally spaced locations at 

inter-distance spacing of 2.5 mm were measured. Fully eroded cartilage surface locations 

were excluded. In total, the 44 AIs yielded 869 locations which were measured by NIR 

spectroscopy. 
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Measurements were performed using a customized NIR spectroscopy diffuse 

reflectance instrument coupled with a fiber optic probe was utilized. The instrumentation 

consisted of a halogen light source (wavelength 360 – 2500 nm, power 5 W, optical power 

239 μW in a dfiber = 600 μm, Avantes BW, Apeldoorn, Netherlands), a spectrometer 

(wavelength 200 – 1160 nm, Avantes BW, Apeldoorn, Netherlands) and a fiber optic probe 

(d = 5 mm) with seven fibers (dfiber = 600 μm) within the central window (d = 2 mm), six 

peripheral transmitting fibers and one central reflectance collector. 

Near infrared (NIR) spectral measurements were performed three times (with 

realignment of the measurement probe) on all 869 points, and the three measurements were 

averaged for each point. The biomechanical measurements were conducted once due to long 

protocol times. Instantaneous modulus was measured on all 869 points, and the dynamic and 

equilibrium moduli were measured for 202 points, as the measurement protocol and sample 

geometry limited conducting these measurements for all locations. Equilibrium, dynamic and 

instantaneous moduli were obtained via indentation testing.34 Additionally, cartilage 

thickness was determined using OCT.35 During NIR spectral measurements, the probe was 

in contact with and oriented perpendicularly to the cartilage surface. The physiological 

conditions of the tissue were maintained by periodically spraying phosphate-buffered 

solution (PBS) on cartilage and placing PBS soaked cloths around the other measurement 
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locations. Each spectrum was an average of three spectral measurements that consisted of 

eight co-added spectral scans (teight scans = 720 ms). NIR spectral measurements, thickness 

measurements and indentation testing were conducted on the same equidistant point locations 

within the AI grid. The central window of the NIR spectral probe is 2 mm within the 5 mm 

probe housing. The field of view of OCT (wavelength 1305 ± 55 nm) is 4 mm deep and the 

cartilage thickness was measured in the center of the image cross-section. In biomechanical 

indentation testing, a plane ended indenter (d = 0.53 mm) was utilized and both the thickness 

and indentation measurements were within the NIR measurement location.  

The NIR spectral data was preprocessed by smoothing and filtering using a third 

degree Savitzky-Golay filter with 25 nm window to remove background noise. Subsequently, 

second derivative pretreatment was applied on the smoothed and filtered data to eliminate 

baseline offset and dominant linear terms, and to highlight the subtle absorption peaks. This 

study builds on Sarin et al. where the effect of multiple preprocessing methods on the 

performance of PLSR were investigated.33 Therefore, further optimization with the 

preprocessing methods were not explored. However, changing the preprocessing methods 

will likely impact the prediction accuracy of the regression techniques and the selection of 

optimal method. The pretreatment of the dataset and subsequent splitting into training dataset 

and testing dataset were consistent with our earlier study. The first set (training set), 
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consisting of 41 AIs, was used for calibration model training, and the second set (test set), 

consisting of 3 AIs and independent of the training set, was used to evaluate the model 

performance.36 Test set was designed to include maximum locations (N = 25) within each AI 

grid and corresponding reference parameters to lie within the range of the calibration test set. 

All spectral analyses were done using MATLAB R2014a (Mathworks Inc, Natick, MA).  

Regression techniques 

Partial least squares regression (PLSR), PCR, ridge, Lasso and LS-SVM techniques were 

employed for multivariate regression comparative analysis. In this study, the tuning 

parameters as indicated in Table 1 for each regression technique were varied from minimum 

to maximum values resulting in a series of models with each model using k-fold cross-

validation (k = 10). The models were then tested on an independent test set. The model which 

performed the best, in terms of root mean square error of calibration (RMSEC), R2
Train and 

R2
Test from each series, was retained. Finally, the retained parameters of each model were 

compared. This protocol ascertained optimal settings for each regression technique. 

Variable selection methods 
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Monte Carlo uninformative variable elimination (MC-UVE), CARS, VCPA, BiPLS, GA and 

jack-knife methods were used for variable selection to further optimize the best regression 

technique. The algorithms for MC-UVE and CARS were obtained from Integrated library 

for PLS and discriminant analysis,37,38 VCPA  from Variable Combination Population 

Analysis toolbox,39 GA algorithm from PLS-Genetic algorithm toolbox  and jack-knife 

algorithm was coded in-house. 40,41 

The MC-UVE (mcuvepls) variable selection was optimized by first calculating the 

reliability index of all the wavelengths and then determining the optimal threshold for 

reliability index by finding the maximum correlation with the training set. CARS (carspls) 

and VCPA (vcpa) did not require additional input, as the respective functions auto-handled 

the optimization protocol. In interval selection BiPLS method, the algorithm was optimized 

by eliminating uninformative intervals and the three intervals with the lowest RMSECV were 

retained. In GA algorithm, the effective number of evaluation and number of variables were 

first determined, using the gaplsopt function in the toolbox and the main function gaplssp 

was invoked to perform variable selections for spectral data. In jack-knife method, the 

student’s t-statistics was used for variable selection by selecting variables with values less 

than the predefined threshold (t = 0.05). 
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Statistics and model comparison 

The calibration models developed were analyzed based on the following key parameters: root 

mean square error of calibration (RMSEC), R2 in training set, root mean square error of 

prediction (RMSEP), R2 in test set, error percentage in the test dataset and run times in 

seconds. Additionally, for PCR and PLSR models the number of components were recorded.  

In order to investigate statistically the difference in performance (correlation 

coefficient) of models developed with the different regression techniques, Zou’s confidence 

interval test,42 with dependent dataset condition, was conducted. The test was also applied to 

investigate the significance of variable selection methods on the performance of PLSR.  

 

Results 

The regression models were built and optimized for cartilage thickness, instantaneous 

modulus, equilibrium modulus and dynamic modulus. The statistical description of the 

dataset is given in Table 2. PLSR technique was found to be the best, with the highest R2 in 

test set and the lowest RMSEP and error percentages, amongst the investigated regression 
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techniques in the cases of cartilage thickness, instantaneous modulus and equilibrium 

modulus (Table 3). In the case of dynamic modulus, Lasso was found to have the highest R2 

for the training set; however, it presented a higher percentage error than PLSR. The 

computational times in Table 3 suggests that PLSR is quicker when compared to other 

regression techniques. Zou’s test showed that the differences between the best three 

regression techniques (with respect to test set R2) were not statistically significant. Similarly, 

the improvement in model performance with variable selection was not statistically 

significant when compared with traditional PLSR technique. 

PLSR models optimized using variable selection methods indicated improved model 

performance (Table 4). As evident from Table 4 in comparison with Table 3 the variable 

selection methods do not significantly add value to the calibration models in terms of R2 but 

there is improvement in terms of simplicity of the model with reduced number of 

components.  MC-UVE was found to improve the PLSR model performance consistently for 

all tissue parameters. The MC-UVE algorithm eliminated the wavelength variables (Figure 

1) depending on the relative importance of each variable in the calibration model. 

Discussion 



14 
 

The NIR spectra is affected by instrumentation noise (e.g. thermal noise and readout noise) 

and interference with the measurement environment. Longer acquisition times and averaging, 

and preprocessing methods, such as baseline correction, smoothing and normalizations are 

utilized to reduce the noise in the signal. In this study, for the first time a comparative analysis 

of multivariate regression technique for analysis of articular cartilage NIR spectral data is 

done.  

First, comparison of different optimized multivariate regression techniques, namely 

PCR, PLSR, Lasso, ridge, and LS-SVM, using key statistical parameters, was conducted. 

PLSR was found to be the most optimal regression technique for evaluation of cartilage NIR 

data based on its consistent performance across all the reference parameters of cartilage. 

PLSR showed better consistency in comparison to the other regression techniques 

investigated, which is in agreement with the findings of Yeniay et al.43 Second, the effect of 

variable selection methods on the performance of PLSR regression models was evaluated. 

MC-UVE algorithm, which was the best performing variable selection method in this study, 

consistently selected variables in the 730 to 780 nm (CH and OH bonds) and 925 to 980 nm 

(CH and OH bonds) spectral ranges retaining essential spectral information characteristic for 

AC. 24  The NIR absorption spectra in AC arise mainly from CH, NH, OH and SH bonds 

which form the molecular constituents of the cartilage matrix,44 and thus, the information in 
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this region indicates the biochemical composition of the tissue. Cartilage NIR spectrum 

(Figure 1) in the region between 800 to 1100 nm is due to 3rd overtone CH and NH bond 

vibrations, associated with the tissue’s solid matrix components (PGs and collagen), and 

absorption at 970 nm is due to the 3rd overtone OH bond vibrations resulting from the water 

content of the tissue.45 Application of MC-UVE method not only improved the performance 

of the prediction models, but also preserved the essential spectral information indicating the 

tissue condition. 

The PLSR technique has been shown to perform well with multicollinear data in NIR 

spectroscopy.46 PLSR probably performed best because the algorithm decomposes the 

predictor into latent variables (maximum co-variance first) with respect to reference 

parameters. This intrinsic property of the algorithm maximizes the variance, and thus 

relationship, between the predictor and response variables. As shown by Afara et al.,13 our 

results depict that the error associated with using NIR spectroscopy for predicting cartilage 

thickness are relatively low in comparison with the resolution of clinical MRI,47,48 currently 

used in diagnosis of joint defects.  

In the present study, cartilage thickness was predicted more efficiently (R2 = 75 vs. 

57 – 66) by PLSR in comparison to biomechanical properties of the tissue. This can be 

attributed to direct relationship between the NIR spectra and the tissue thickness since the 
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path length affects the light absorption as the rays traverse the tissue.13 The regression 

comparison highlighted some limitations of sophisticated regression techniques in modelling 

cartilage NIR data, as LS-SVM and PCR seemed to suffer from overfitting and under fitting, 

respectively (Table 3). While it is difficult to speculate on the acceptable error limit for NIR 

predicted values of cartilage mechanical parameters with respect to clinical diagnostics, a 

motivation of the current study was to provide a quantitative approach that could be 

complementary and add more value to traditional tissue palpation. With prediction errors 

between 11 - 13 % (Table 4), diagnosis of cartilage health based on NIR predicted 

equilibrium or dynamic moduli values may not be optimal, but still better than current 

qualitative and subjective arthroscopic assessment. In practice, orthopedic surgeons assess 

the stiffness of cartilage by palpating it with a metallic hook. This method, however, is 

subjective and unreliable compared to the gold standard of indentation testing performed in 

a laboratory.34,49 

Recent cartilage studies have favored projection regression techniques such as PLSR 

and PCR due to ease of implementation. However, the effect of variable selection methods 

has not been investigated. Following the previous study,33 the wavelength region of the NIR 

spectra was limited to 700 - 1050 nm.50 Thus, the variable selection methods had a relatively 

narrow spectrum of variables. Nonetheless, the results demonstrate the applicability of 
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variable selection methods in regression analysis, which is consistent with the findings of 

Abrahamsson et al. where NIR transmission spectroscopy was applied in intact tablets.51 The 

present results indicate that variable selection improves model performance and enhances the 

results of PLSR. In particular, MC-UVE is well suited for NIR spectroscopy of cartilage. 

Comparison of the present results with an earlier study on the corresponding equine 

data,33 encourages the use of variable selection methods for analysis of cartilage thickness 

and dynamic modulus from its NIR spectra. MC-UVE prediction models displayed 7 to 8% 

improvement of the R2 in the test set in thickness prediction and 15% lower RMSEP in 

dynamic modulus prediction. On the other hand, with instantaneous and equilibrium moduli, 

variable selection methods showed no improvements in R2 or RMSEP over the standard 

PLSR models. This may be due to the limited spectral range used in this study. However, it 

is worth noting that variable selection based prediction models required lesser number of 

PLSR components than the standard PLSR models, which reduces the possibility of 

overfitting. Although the variable selection methods presented only marginal improvement 

in PLSR models, the simplification of the model and potential improvement in computational 

times could be considered as advantages. 

Zou’s test showed the statistical significance between regression models only based 

on their R2. The test suggests that there are no significant differences between correlation 
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coefficients of the top performing regression techniques, and that variable selection methods 

did not significantly improve the performance of PLSR models. Nevertheless, a major 

drawback of the Zou’s test in this comparison is that certain factors specific to the different 

regression techniques, such as number of components, in the case of PLSR and PCR, are not 

taken into consideration. In addition, models based on fewer variables are computationally 

efficient and better suited for real time applications. 

             Chemometrics in horticultural studies,52 food engineering and fuel analytical studies 

found GA to be the most suitable variable selection method for PLSR.53,54 However, in the 

current study on articular cartilage NIR spectra, MC-UVE surpassed GA and VCPA, 

contradicting the results of Yun et al. regarding VCPA.39 The limited input wavelength range 

could have reduced the performance of the VCPA, as in a previous study VCPA performed 

better than other variable selection methods in multiple NIR datasets.39 Likewise, the narrow 

wavelength band and the resolution of the NIR system probably limited the performance of 

the other variable selection methods, as there are less relevant variables. It is worth noting 

that besides PLSR the interaction effects of variable selection on the other regression 

techniques were not investigated in this study, as the purpose was to investigate the potential 

of variable selection in further improving the performance of the optimal regression 

technique. In conclusion, the results of the present study recommend PLSR technique as the 
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multivariate regression tool for prediction of articular cartilage properties from its NIR 

spectra. Application of variable selection methods simplified the models by reducing the 

number of spectral variables and components; however, the improvements in model 

performance were statistically insignificant. 
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Table 1: Summary of regression techniques utilized in this study. 

 

* X is explanatory input data matrix containing NIR spectra. 

 ** Y is response data matrix containing reference data. 

 

 

 

 

Technique Summary Tuning Parameter(s) and 

Range utilized. 

Advantage(s) Disadvantage(s) Matlab function(s)/ 

Toolbox utilized 

PCR Linear projection method, 

reduces the dimensionality of 
the data using only explanatory 

data, X, * into uncorrelated 

subspace. Ordinary least 

squares applied to regress. 

Number of components:1 to 15 Dimensionality reduction, 

handles multicollinearity in X. 

As latent 

variables are 
based only on 

explaining the 

variance X, they 
are not optimal 

for every 

problem. 

pcrsse, pca 

PLS Linear regression technique 
based on dimensionality 

reduction method by projecting 
explanatory data, X, to 

subspace of latent components 

maximizing covariance 
between X and the response 

matrix, Y. ** 

Number of components:1 to 15 Dimensionality reduction, 

handles multicollinearity. 

Output is a 
linear 

combination of 

input. 

plsregress 

Ridge Shrinkage regression 

technique. Shrinks the 
dimensions with the least 

variance the most. 

Shrinkage penalty: 0 to 1000. Stable when p >> N. Selects all 

predictors in the 
final model 

instead of subset 

of variables. 

ridge 

Lasso Shrinkage regression technique 

by minimizing the sum of 

squared error and setting some 

to zero. 

Step size = 0.01 Solution is sparse. Covariate 

selection is 

arbitrarily done 
if the dataset is 

highly collinear. 

lasso 

LS-SVM Least squares version of 

support vector variant. Creates 
model based on newly formed 

support vectors from the 

training dataset. 

Lambda: 0 Can also model nonlinear 

relationships. 

Lack of 

sparseness. 

LS-SVM lab: 

initlssvm,tunelssvm 

and trainlssvm 
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Table 2: Reference data and NIR spectra. NIR wavelength in 700 – 1050 nm range was utilized. 

 

Reference parameter 
Training Dataset Testing Dataset 

Mean Range Mean Range 

Thickness (mm) 0.88 0.32 - 1.81 0.96 0.52 - 1.32 

Instantaneous 

Modulus (MPa) 
4.74 0.11 - 20.88 4.88 0.29 - 12.67 

Equilibrium 

Modulus (MPa) 
1.97 0.36- 5.38 2.96 0.30 - 4.96 

Dynamic Modulus 

(MPa) 
8.38 0.36 - 22.97 10.02 0.69 - 17.32 
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Table 3: Comparison of the different regression technique across different tissue parameters for equine 

articular cartilage.  Data is arranged in descending order of the test set R2 as highlighted in bold. The 

error percentage for prediction of the test set indicated in the table was calculated as the average error 

divided by the range of the respective reference variable. 

 
 Cartilage Thickness (mm)   

Regression 

techniques 

Train  Set Test Set Error 

Percentage 

Computation 

Time (sec)** R2  RMSEC R2  RMSEP 

PLSR (C* = 5) 70.28 0.13 75.57 0.11 5.94 2.50 

RIDGE 73.02 0.12 74.09 0.11 6.17 1200 

LASSO 72.90 0.12 68.63 0.12 6.90 170 

LS-SVM 77.55 0.11 67.87 0.13 6.89 0.30 

PCR (C= 13) 60.44 0.15 67.38 0.13 7.02 1.0 

 Instantaneous Modulus (MPa)   

PLSR (C = 6) 42.88 2.60 51.00 2.46 10.04 2.0 

RIDGE 46.69 2.51 49.76 2.49 10.24 1100 

LASSO 41.21 2.97 48.71 2.52 10.20 5800 

PCR (C = 5) 25.41 2.97 44.29 2.62 9.77 0.60 

LS-SVM 99.98 0.04 42.82 2.66 11.16 0.25 

 Equilibrium Modulus (MPa)   

PLSR (C = 5) 67.81 0.84 68.58 0.94 15.35 1.0 

LASSO 80.27 0.65 60.13 1.06 17.91 96 

LS-SVM 99.99 0.00 54.22 1.14 19.48 0.16 

RIDGE 80.69 0.65 54.12 1.15 20.23 505 

PCR (C = 15) 22.89 1.30 32.60 1.38 22.13 0.37 

 Dynamic Modulus (MPa)   

LASSO 69.16 3.44 66.35 3.56 13.85 102 

LS-SVM 99.69 0.34 65.90 3.58 14.67 0.15 

PLSR (C = 2) 37.27 4.90 64.88 3.63 13.05 1.0 

RIDGE 63.45 3.74 61.30 3.82 15.44 470 

PCR 27.02 5.29 60.34 3.86 14.55 0.33 

 

 

* Number of components for PLSR and PCR is indicated by C 

** The computation times were calculated on Intel(R) Core(TM) i5-2400 CPU at 3.10 GHz, 64 bit 

Operating System.
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Table 4: Comparison of variable selection methods. The data is presented in descending order of R2 for 

the test set as highlighted in bold. The error percentage for prediction of the test set indicated in the 

table was calculated as the average error divided by the range of the respective reference variable. 

 Cartilage Thickness (mm)  

Variable 

Selection 

method 

No. Of PLS 

Components 

Training set Test set Error 

Percentage R2 RMSEC R2 RMSEP 

MC-UVE 4 70.61 0.14 75.94 0.10 5.95 

None 5 70.28 0.13 75.57 0.11 5.94 

GA 8 69.55 0.14 74.86 0.11 5.93 

JK 1 59.64 0.15 74.05 0.11 6.13 

BiPLS 12 59.05 0.15 70.05 0.12 6.58 

CARS 5 72.33 0.13 69.77 0.12 6.68 

VCPA 5 63.67 0.14 65.59 0.12 7.22 

 Instantaneous Modulus (MPa)  

CARS 3 38.56 2.78 51.85 2.44 9.44 

None 5 42.88 2.60 51.00 2.46 10.04 

VCPA 4 34.90 2.81 49.07 2.51 9.57 

MC-UVE 2 34.20 2.85 48.35 2.53 9.46 

GA 4 36.69 2.81 48.33 2.53 9.94 

BiPLS 7 28.92 2.90 45.56 2.59 9.83 

JK 7 33.79 2.91 45.43 2.60 10.20 

 Equilibrium Modulus (MPa)  

None 5 67.81 0.84 68.58 0.94 15.35 

MC-UVE 5 70.95 1.27 65.53 0.99 16.30 

VCPA 6 48.95 1.12 54.76 1.13 19.08 

CARS 2 43.29 1.29 54.16 1.14 19.13 

GA 3 50.06 1.22 51.99 1.17 19.18 

JK 6 39.03 1.36 43.05 1.27 21.36 

BiPLS 6 34.85 1.19 38.29 1.32 20.50 

 Dynamic Modulus (MPa)  

CARS 3 61.36 4.69 77.82 2.89 11.04 

MC-UVE 3 63.60 4.78 73.92 3.13 12.46 

GA 3 50.66 4.85 72.79 3.50 13.49 

JK 5 43.63 5.40 67.47 3.50 13.49 

None 2 37.27 4.90 64.88 3.63 13.05 

BiPLS 7 38.73 4.85 55.98 4.07 14.87 

VCPA 1 37.85 5.04 50.59 4.31 17.12 
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Figure 1: Representative absorbance spectra of articular cartilage with different (A) thickness values, 

(B) instantaneous modulus values, (C) dynamic modulus values (D) equilibrium modulus values and 2nd 

derivative preprocessed spectra (top inset). The MC-UVE selection ranges (bottom inset) shows regions 

of wavelength selected (black bars) and empty (white) spaces indicates the eliminated variables. 


