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ABSTRACT

Automated eddy detection methods are fundamental tools to analyze eddy activity from the large datasets

derived from satellite measurements and numerical model simulations. Existing methods are either based on

the distribution of physical parameters usually computed from velocity derivatives or on the geometry of

velocity streamlines around minima or maxima of sea level anomaly. A new algorithm was developed based

exclusively on the geometry of the velocity vectors. Four constraints characterizing the spatial distribution of

the velocity vectors around eddy centers were derived from the general features associated with velocity fields

in the presence of eddies. The grid points in the domain for which these four constraints are satisfied are

detected as eddy centers. Eddy sizes are computed from closed contours of the streamfunction field, and eddy

tracks are retrieved by comparing the distribution of eddy centers at successive time steps. The results were

validated against manually derived eddy fields. Two parameters in the algorithm can be modified by the users

to optimize its performance. The algorithm is applied to both a high-resolution model product and high-

frequency radar surface velocity fields in the Southern California Bight.

1. Introduction

Mesoscale eddies are ubiquitous features in the world’s

oceans, and they play a major role in ocean circulation

as well as in heat and mass transport (e.g., McWilliams

2008). They can have a profound influence on biological

productivity, upper ocean ecology and biogeochemistry,

and thus in elemental cycling and fluxes (i.e., Falkowski

et al. 1991; McGillicuddy et al. 1998; McNeil et al. 1999;

Benitez-Nelson et al. 2007). In the past decade, several

studies have focused on the statistical characterization

of mesoscale eddy activity within specific regions through

the analysis of satellite measurements or results from

numerical models (i.e., Isern-Fontanet et al. 2003; Morrow

et al. 2004; Chelton et al. 2007; Chaigneau et al. 2008;

Doglioli et al. 2007).

A suitable definition of an eddy and the implemen-

tation of an algorithm to automatically identify and track

mesoscale and submesoscale features are fundamental
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to study eddy activity from large datasets. A few methods

have been proposed, based either on the physical or

geometrical characteristics of the flow field. Methods

based on physical characteristics identify eddies using

the values of a specified parameter that exceed a chosen

threshold; methods based on geometrical characteristics

of the flow field identify eddies based on the shape or

curvature of the instantaneous streamlines (Sadarjoen

and Post 2000). Therefore, automated eddy detection al-

gorithms can be categorized into three types: 1) physical

parameter based; 2) flow geometry based; and 3) hybrid,

which involves both physical parameters and flow ge-

ometry characteristics.

The study by McWilliams (1990) represents one of the

earliest works in automated eddy detection. The algorithm

was developed to quantitatively measure the properties

specific of coherent vortices from a numerical solution

of decaying two-dimensional (2D) turbulence. Based on

the notion that rotation dominates within a vortex, rel-

ative vorticity j is the physical parameter used for de-

tection. Eddy centers are identified by local minima and

maxima of j, and eddy boundaries are defined by the

points around the center where j/jcen , 0.2 (jcen is

the center value). A series of constraints is applied to the

geometrical characteristics of the detected structures, and

only the structures that do not depart excessively from

axisymmetry are considered representative of a vortex.

For this reason, this method belongs to the last category.

In the category of eddy detection algorithms based

on physical parameters, one of the most widely used is

based on the properties of the Okubo–Weiss parameter W

(Okubo 1970; Weiss 1991). This parameter is computed

from the horizontal velocity field as W5 s2
sh 1 s2

st � j2,

where ssh and sst are the shear and strain deformation,

respectively, and j is the vertical component of vorticity.

Here, W quantifies the relative importance of deforma-

tion with respect to rotation. Because the velocity field

within a vortex is dominated by rotation, ocean eddies

are generally characterized by negative values of W. For

this reason, it is possible to identify these features by

closed contours of W 5 W0, where W0 is a chosen neg-

ative threshold value. Despite this method being fre-

quently used to detect eddies from sea level altimetry

(SLA) data (i.e., Isern-Fontanet et al. 2003; Morrow

et al. 2004; Chelton et al. 2007), the velocity derivatives

induce extra noise in the W field. This is usually reduced

by applying a smoothing algorithm, which, however, might

also remove physical information. A few studies have

evidenced some limitations of this method (Sadarjoen

and Post 2000; Chaigneau et al. 2008): a tendency toward

excess of eddy detection (i.e., identifying a feature as an

eddy when it is not) seems to persist even after smoothing

the W field; furthermore, when long time series are an-

alyzed, the value of the threshold parameter W0 needs to

be continuously adjusted according to the varying eddy

properties of the velocity field.

Another method that belongs to the first category is

the one proposed by Doglioli et al. (2007). As in the

method proposed by McWilliams (1990), the physical

parameter used for eddy detection is j. To highlight

eddy features, a two-dimensional wavelet analysis is

applied to the j field: relative vorticity is first expanded

into wavelet bases, and then a smoothed field is recon-

structed using only the wavelets with the largest coef-

ficients. Vortices can be identified by the connected

regions where the reconstructed j 6¼ 0. Sometimes small-

scale filaments can be detected as vortices. To minimize

this error, filaments are automatically excluded from the

analysis by imposing a constraint on the minimum width

of a detected structure.

A different approach is adopted in the winding-angle

method proposed by Sadarjoen and Post (2000), which

belongs to the second category. It was developed under

the assumption that vortices can be defined as features

characterized by roughly circular or spiral instantaneous

streamlines around their cores (Robinson 1991). As a

first step, instantaneous streamlines are derived from the

velocity field; then, the cumulative change of direction

of the segments that compose a given streamline (wind-

ing angle) is computed for each streamline. Eddies are

identified by streamlines with a winding angle jaj $ 2p,

which corresponds to a closed or spiral curve.

This method was used by Chaigneau et al. (2008) to

analyze eddy activity in the eastern South Pacific from

SLA data. Comparison with the results obtained with

the Okubo–Weiss method on the same dataset showed

that the winding-angle method has a higher chance of

successfully detecting mesoscale eddies and most im-

portantly a much smaller excess of detection error. The

price for this is paid in terms of more expensive com-

putational requirements (Sadarjoen and Post 2000).

Chaigneau et al. (2008) found a way around this problem

by applying the method only within those regions of the

domain where vortices were identified by local maxima

and minima of SLA. For this reason, their method can

be classified as hybrid (third category): a physical quan-

tity (SLA) is used to identify the eddies, and then the

geometrical characteristics of the flow field (stream-

lines) are used to define eddy boundaries.

In this study, we present a new method for the au-

tomated detection and tracking of ocean eddies. This

method falls into the second category because it is entirely

based on the geometry of the flow field. The algorithm was

developed to investigate mesoscale and submesoscale

eddy activity in the Southern California Bight (SCB)

from the results of a 1-km-resolution numerical experiment
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using the Regional Ocean Modeling System (ROMS) [for

interested readers, the detection algorithm presented in this

paper is freely available upon request to the author (it

consists of a set of routines in MatLab)].

The SCB extends from Point Conception to San

Diego, and it is bounded to the west by the Santa Rosa

Ridge (Fig. 1). This region is characterized by the pres-

ence of eight islands: the islands of San Miguel, Santa

Rosa, Santa Cruz, and Anacapa (called the Channel Is-

lands) form the outer limit of the Santa Barbara Channel,

south of Point Conception; Santa Catalina Island is lo-

cated south of Palos Verdes Peninsula; and San Nicolas,

Santa Barbara, and San Clemente Islands are farther

offshore, to the south and to the west. Previous studies

based on in situ and remote sensing data (Caldeira et al.

2005), as well as on numerical modeling (Dong and

McWilliams 2007), have shown that because of the pres-

ence of the islands, the SCB is characterized by an in-

tense eddy activity. This region is therefore ideal for

developing and testing our new detection method.

With the support of direct observations from field

experiments (i.e., Nencioli et al. 2008), we have derived

a series of constraints that allow us to identify vortices

directly from the characteristics of the velocity field. The

algorithm is proposed as an alternative to other existing

methods, particularly for the analysis of eddy activity

from the results of high-resolution numerical experiments.

The velocity field from these types of experiments is

more ‘‘complex’’ than from satellite altimetry or from

numerical simulations at lower resolutions because high-

resolution models can reproduce small processes down

to the submesoscale. Furthermore, in the SCB domain,

the presence of the islands has a big impact on the rel-

ative vorticity field. As shown by Dong and McWilliams

(2007), j increases both close to the islands and in the

islands’ wakes, mainly because of lateral stress and cur-

rent shear. Preliminary results using the Okubo–Weiss

method (not shown) revealed that strong frontal regions

as well as shear regions in the island wakes are often

associated with values of W similar to or lower than eddy

features, making it hard to choose threshold values ca-

pable of distinguishing between the two. Another im-

portant consideration is that, in our case, the velocity

field is not directly derived from the SLA field; there-

fore, not all the eddies are characterized by an SLA

minimum or maximum. For these reasons, we decided

to develop an algorithm in which the eddy detection is

completely independent from parameters derived using

velocity derivatives as well as from the SLA field.

This paper presents an accurate description of both

detection and tracking methodologies, and particular at-

tention is dedicated to the validation of the detection

algorithm. After eddies are detected, several physical

parameters can be computed, and spatial and temporal

statistics can be derived. However, a complete char-

acterization of the eddy activity in the SCB from the 8

years of high-resolution ROMS simulation is beyond the

scope of this paper and will be presented by C. Dong

et al. (2010, unpublished manuscript). The algorithm can

be used to detect eddies from any velocity field. Here,

we briefly present the results from the application to high-

frequency (HF) radar velocities in the Santa Barbara

Channel (Emery et al. 2004). HF radars are widely used

to measure surface ocean currents close to the coastline.

An algorithm capable of automatically detecting meso-

scale and submesoscale vortices from these recorded

velocity fields would represent an important tool for the

analysis of eddy activity in the nearshore region.

The paper is organized as follows: section 2 gives a

brief description of the numerical model and the HF

radar dataset; section 3 describes in detail the method

used for eddy detection and tracking and discusses the

results from the algorithm validation; section 4 shows

preliminary results from the application of the algorithm

to HF radar datasets; and final conclusions are presented

in section 5.

2. Data

a. Ocean model

The algorithm was developed to analyze eddy activity

from a high-resolution numerical model product from

Dong et al. (2009a) and Dong and McWilliams (2007).

ROMS, which solves the rotating primitive equations

(Shchepetkin and McWilliams 2005), was used to gen-

erate daily velocity fields for 8 years, from 1996 to 2003.

The model domain covers the whole SCB region with a

horizontal grid spacing of 1 km (258 3 386 grid points) and

40 vertical levels. The fine resolution allows all of the eight

islands in the SCB to be represented in the domain. The

model is forced at the surface by reanalyzed meteorological

FIG. 1. The SCB: model domain and bathymetry.
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fluxes from the fifth-generation Pennsylvania State

University–National Center for Atmospheric Research

(PSU–NCAR) Mesoscale Model (MM5; Conil and Hall

2006). Global oceanic data [Simple Oceanic Data As-

similation (SODA)] are used for boundary conditions at

the four open boundaries (Carton et al. 2000). The model

results have been extensively assessed against observa-

tional data, both in situ and remote sensed. The compar-

isons show that the model is able to reproduce realistic

conditions, including both seasonal and interannual fluc-

tuations. The eddy-scale dynamics are also well resolved

in the product. For more details about the model config-

uration and the model validation, please refer to Dong

et al. (2009a). ROMS uses a C grid and vertical S coor-

dinates. Both meridional u and zonal y components of

velocity were interpolated on the same grid at 5-m depth

before the algorithm was applied.

b. HF radar dataset

Since 1997, near-surface currents in the Santa Barbara

Channel have been measured using an array of HF ra-

dars (SeaSondes, manufactured by CODAR Ocean Sen-

sors, Mountain View, California) along the mainland

coast and on Santa Cruz Island. The number of radars

operating in the channel has increased from two to six

since measurements began. The HF radars used in this

study operate at 12–13 MHz and measure currents over

the upper 1 m of the water column. The radars measure

surface currents using the Doppler shift associated with

Bragg scattering of radio waves from surface gravity

waves with wavelengths equal to half the transmitted

wavelength (’24 m). The radial components of current

velocity are measured every 10 min, and the spatial res-

olution of radial currents is 1.5 km in range and 58 in

azimuth. Surface current vectors are interpolated onto

a 2-km square grid based on all radial currents within

3 km of each grid point using a least squares fit. Emery

et al. (2004) discuss data processing procedures and per-

formance of the HF radar array in more detail.

3. Eddy detection and tracking

a. Detection algorithm

An eddy can be intuitively defined as a region in which

the velocity field exhibits a rotary flow: that is, a region in

which the velocity vectors rotate clockwise or counter-

clockwise around a center. This definition is consistent

with the ones assumed for the Okubo–Weiss and the j

methods (McWilliams 1990; Doglioli et al. 2007), where

a vortex is defined as a region where rotation dominates,

as well as with the definition assumed for the winding-

angle method, where, following Robinson (1991), a vor-

tex is defined as a region where instantaneous streamlines

spiral around a center.

In the past two decades, several studies have shown

that eddy velocity fields are generally characterized by

some typical features (e.g., Olson 1991; Dickey et al.

2008), such as minimum velocities in the proximity of

the eddy center and tangential velocities that increase

approximately linearly with distance from the center be-

fore reaching a maximum value and then decaying. A

recent study of a mesoscale cyclone (Cyclone Opal) sam-

pled on the lee of the Big Island of Hawaii showed that

these features can be successfully used to estimate the

location of an eddy’s center from its acoustic Doppler

current profiler–based velocity field (Nencioli et al. 2008).

The eddy detecting algorithm developed for this study

is based on similar concepts. Four constraints were de-

rived in conformance with the eddy velocity field defi-

nition and characteristics described above. Eddy centers

are determined at the points where all of the constraints

are satisfied. The four constraints follow:

(i) along an east–west (EW) section, y has to reverse in

sign across the eddy center and its magnitude has to

increase away from it;

(ii) along a north–south (NS) section, u has to reverse

in sign across the eddy center and its magnitude has

to increase away from it: the sense of rotation has to

be the same as for y;

(iii) velocity magnitude has a local minimum at the eddy

center; and

(iv) around the eddy center, the directions of the ve-

locity vectors have to change with a constant sense

of rotation and the directions of two neighboring

velocity vectors have to lay within the same or two

adjacent quadrants (the four quadrants are defined

by the north–south and west–east axes: the first

quadrant encompasses all the directions from east

to north, the second quadrant encompasses the di-

rections from north to west, the third quadrant en-

compasses the directions from west to south, and

the fourth quadrant encompasses the directions from

south to east).

The constraints require two parameters to be specified:

one for the first, second, and fourth constraints and one

for the third one. The first parameter, a, defines how

many grid points away the increases in magnitude of y

along the EW axes and u along the NS axes are checked.

It also defines the curve around the eddy center along

which the change in direction of the velocity vectors is

inspected. The second parameter, b, defines the dimen-

sion (in grid points) of the area used to define the local

minimum of velocity. These two parameters give flexi-

bility to the algorithm: they set the minimum size of the
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detectable vortices and allow the algorithm to be ap-

plied to grids with different resolution (i.e., Dong et al.

2009b). On the other hand, their values need to be ac-

curately tuned depending on the characteristics and spa-

tial resolution of a given dataset in order to optimize the

algorithm performance. Success and excess of detection

can significantly vary, and few sensitivity tests had to be

performed in order to specify optimal values of those two

parameters. For eddy detection from a high-resolution

ROMS simulation, we used a 5 4 and b 5 3. Motivations

for these choices are given in section 3b, where results

from sensitivity experiments are discussed.

In the paragraphs below we will use the vortex within

the box in the top-left corner of Fig. 2 as an example to

describe the algorithm in more detail and to better vi-

sualize how the four constraints are used to identify eddy

centers. Starting from the first row of the surface velocity

matrix, latitudinal sections (east–west) of y are analyzed,

looking for contiguous points of opposite sign. An exam-

ple is represented by the dashed line on Fig. 3a; the two

black dots along the section indicate contiguous points

with opposite values of the y component. For each pair,

the algorithm analyzes sign and magnitude of y at a 5 4

points away (4 km for the present model resolution). The

two crosses indicate such points relative to the pair along

the dashed line in Fig. 3a. Following the first constraint,

only the pairs for which y is still opposite in sign but higher

in magnitude are considered indicative of the presence of

a vortex and thus retained in the analysis (the circles in

Fig. 3a). From the east–west variation of y, it is already

possible to determine the sense of rotation of the eddy:

if y changes from negative to positive (progressing from

the east toward the west) as the center is crossed, then

the rotation is anticyclonic; if it changes from positive to

negative, then it is cyclonic (Northern Hemisphere; it is

the opposite in the Southern Hemisphere).

For the next step, the second constraint is applied to

the longitudinal sections (north–south) of u across the

points for which the first constraint was satisfied. From

the pairs in Fig. 3a, we take as an example the one in-

dicated by the two dots in Fig. 3b. Values of u at a 5 4

points away northward and southward are inspected

(indicated by the two crosses in Fig. 3b). The magnitude

of u at those points has to be larger than at the starting

point, whereas its sign has to be consistent with the sense

of rotation determined from the longitudinal variation

of y for the same point: that is, u has to change from

negative to positive (progress from south to north) if the

rotation is anticyclonic and from positive to negative if it is

cyclonic (again, Northern Hemisphere; the opposite in the

Southern Hemisphere). The circles in Fig. 3b indicate the

points among the ones in Fig. 3a that also satisfy the sec-

ond constraint. Being based on the variation of the two

velocity components along different directions, the first

two constraints are independent from each other. There-

fore, the points for which both are satisfied are inde-

pendent from the order with which the two are applied.

The third constraint is applied to the points for which

both constraints on y and u are satisfied, and it requires

the presence of a local minimum of velocity close to

them. If an eddy is present, these points are usually close

to the velocity minimum (as can be seen in Fig. 3b) and

therefore the searching area can be small. It is defined by

moving 6b points away from a given point along both

FIG. 2. Surface velocity field for day 51 (20 Feb 1996). Vectors are plotted every four grid

points. The eddy within the box in the top-left corner is used as an example in Fig. 3 to show how

the four constraints are applied. Velocity vectors within the larger box are plotted in Fig. 4.
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latitudinal and longitudinal directions. Because b 5 3 in

our case, the resulting area is 7 3 7 grid points. The point

marked by a dot in Fig. 3c is used as an example: the solid

square indicates the searching area centered around it,

and the cross indicates the velocity minimum found within

the area. To make sure that the minimum is local, a

second search is performed within a searching area with

same dimensions centered around the first minimum

(dashed square). If the second minimum coincides with

the first one, then it is a local minimum (as in Fig. 3c) and

the point is assumed to be the possible location of an

eddy center.

The velocity minima detected with the first three con-

straints are not necessarily associated with eddy struc-

tures and therefore cannot be automatically assumed to

be eddy centers. In fact, the first three constraints can be

also satisfied in regions characterized by either strong

opposite currents or well-developed meanders. Both

situations are represented in Fig. 4, which is an enlarged

map of the region delimited by the larger box in Fig. 2. If

only the first three constraints were used, then the two

points indicated by the dots would be identified as eddy

centers. However, the circulation around them is only

partial because they are associated with a meander (the

point closer to the southwest corner) and with a region

of shear between opposite currents (the point closer to

the northeast corner). A fourth constraint is thus needed

to prevent this detection error. Overall, the first two

constraints of the algorithm are used to identify the re-

gions in the domain where local minima of velocity could

represent eddy centers, and the third constraint is used

to identify those minima. The fourth constraint ensures

that the detected velocity minima are characterized by

a closed circulation around them and thus, according to

our definition, identify eddy centers.

The last constraint is applied to the velocity vec-

tors along the boundaries of the area defined by moving

6(a 2 1) grid points away from the velocity minimum in

FIG. 3. (a) First, (b) second, (c) third, and (d) fourth constraint applied to the vectors within

the box in the top-left corner in Fig. 2. The first constraint is applied to all latitudinal sections

(the one indicated by a dashed line is used as example in the text). The second and third

constraints are applied only to the points for which the previous one is satisfied. The point for

which the fourth constraint is satisfied [the dot in (d)] indicates the position of an eddy center.

More details are provided in the text.
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both directions. The resulting area for a 5 4 is 7 3 7 grid

points. These dimensions are chosen so that the distance

between the four corners of the area and the velocity

minimum is close to a grid points. For small values of a,

the fourth constraint is thus applied to vectors within

a similar distance from the center as the first two.

The vectors along the boundaries of the square in

Fig. 3d are used to apply the fourth constraint to the

velocity minimum from Fig. 3c. In Fig. 5a, the same

vectors are plotted on the Cartesian plane (with the pos-

itive x and positive y axes oriented eastward and north-

ward, respectively), proceeding counterclockwise from

the southwest corner. This plot better illustrates the

rotation of the velocity vectors around the eddy center.

The sense of rotation is counterclockwise. Because of

the gradual change in direction, any given vector lays

either within the same quadrant as the previous one (i.e.,

first and second vectors in Fig. 5a) or within the next

quadrant counterclockwise (i.e., fourth and third to last

vectors in Fig. 5a). When this condition is satisfied by

all the vectors along the boundaries of the searching

area, there is a closed circulation around the velocity

minimum; therefore, the point is recorded as a center of

an eddy. It is important to notice that, in plots such as the

one in Fig. 5a, the sense of rotation of the vectors is only

dependent on the direction along which the vectors are

plotted and it is independent of the sense of rotation of

the eddy. Since in our case we proceed counterclockwise,

vectors will rotate counterclockwise either in the pres-

ence of a cyclone or an anticyclone (the only difference

between the two cases will be represented by a different

orientation of the first vector).

In situations such as the ones in Fig. 4, where the local

minimum of velocity is not associated with an eddy, the

fourth constraint is not respected by all vectors. As an

example, the vectors along the two squares from Fig. 4

are plotted in Fig. 5b (southwest square, representative

of a well-developed meander) and Fig. 5c (northeast

square, representative of a region of shear between

opposite currents), similarly to Fig. 5a. The three boxes

in the figures indicate vector pairs that do not respect the

fourth constraint. This can occur for two distinct rea-

sons. In the first case, evidenced by the box in Fig. 5b and

the left box in Fig. 5c, the directions of consecutive vec-

tors do not lay within consecutive quadrants (i.e., they

rotate from the third to the first quadrant in Fig. 5b

and from the second to the fourth quadrant in Fig. 5c).

In the second case, evidenced by the right box in Fig. 5c,

the directions of consecutive vectors do lay within con-

secutive quadrants (the third and second quadrants), but

the sense of rotation of the vectors has changed from

counterclockwise to clockwise. Therefore, the fourth con-

straint can be successfully used to distinguish between

local velocity minima associated with eddies and local

minima that are not, reducing the excess of detection.

Once eddy centers are detected, the boundaries of

each eddy are computed. In existing algorithms, these

are derived using different methods, which depend on

the eddy definition on which a specific algorithm is based

(e.g., contours of relative vorticity or the Okubo–Weiss

parameter, instantaneous streamlines). Results can sig-

nificantly vary depending on the method; however, be-

cause a universal definition of eddy boundaries does not

FIG. 4. Examples of points not associated with eddy structures

for which the first three constraints are satisfied. The vectors along

the two squares are used in Fig. 5 to describe the fourth constraint.

FIG. 5. (a) Vectors from the square in Fig. 3d and (b),(c) vectors

from the two squares from Fig. 4 on the Cartesian plane (y direction

pointing north and x direction pointing east). The vectors are

plotted starting from the bottom-left corner of the squares and

moving counterclockwise around their edges. Vectors associated

with the eddy gradually rotate counterclockwise, and the fourth

constraint is respected. Vectors not associated with eddies can

rotate less gradually [box in (b) and left box (c)] or can change

sense of rotation [right box in (c)].
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exist, each method is equally acceptable, as long as its

criteria are very precisely specified and the results are

tested. In our algorithm, we propose an alternative eddy-

edge detection procedure, in which eddy boundaries are

defined from contour lines of the streamfunction field.

We decided to use these contours because, to a first

order, they are tangential to the velocity vectors (see

Fig. 6a) because eddy velocity fields are characterized by

weak divergence. A description of the method used to

compute the streamfunction can be found in the ap-

pendix. Eddy boundaries are defined as the outermost

closed streamline around the center, across which ve-

locity magnitudes are still increasing in the radial di-

rection (thicker contour in Fig. 6a). The eddy interior is

therefore the region where velocity magnitude increases

radially from the center. The variation of velocity across

the closed contour is checked only at the four extremes

of the line (i.e., the northernmost, easternmost, southern-

most, and westernmost points). This represents a good

compromise between algorithm efficiency and accuracy:

checking the velocity variation for each point of the closed

contour would drastically increase the computational

requirements of the method; the four extremes are the

points that are more distant from the eddy center along

each of the main directions, regardless of the ellipticity

and orientation of the eddy, and thus, for a given con-

tour, they are the points where a decrease in velocity

magnitude is most likely to occur.

Figure 6 shows a comparison between eddy dimen-

sions derived using our method, instantaneous stream-

lines, and contours of the Okubo–Weiss parameter W.

The instantaneous streamlines in Fig. 6b are analogous to

the ones used in the winding-angle method by Chaigneau

et al. (2008). They are different from contours of the

streamfunction: they represent the trajectories of the

particles advected maintaining the velocity field constant

with time. Clustering the trajectories that rotate around

the center would define eddy dimensions. In Fig. 6c W

was computed using the equation introduced in section 1.

Following Chaigneau et al. (2008), eddy dimensions are

defined by the closed contour of 20.2sw (thicker line),

where sw is the spatial standard deviation of W. Eddy

dimensions derived from our method are slightly smaller

than the ones derived from instantaneous streamlines,

but they are very similar to the ones obtained from the

Okubo–Weiss method; eddy shape is similar in all three

cases. This confirms that contours of the streamfunction

can be also used to define eddy dimensions.

FIG. 6. (a) Contour lines of the stream-

function computed for the velocity field as-

sociated with the detected eddy from Fig. 3.

The cross indicates the eddy center. The

thicker line represents the eddy limits com-

puted by the algorithm. (b) Instantaneous

streamlines (analogous to the ones used for

the winding-angle method) and (c) contours

of the Okubo–Weiss parameter for the same

velocity field. The thicker line in (c) repre-

sents the 20.2sw contour. In (a)–(c), vectors

are plotted every two grid points.
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Because the velocity field outside the eddy can be

characterized by larger divergence, the streamfunction

is first computed within a small area around the eddy

center. The parameter a defines the minimum dimen-

sions of detectable eddies. The area is thus defined by

moving 2a grid points in each direction from the eddy

center. The resulting area for a 5 4 is 17 3 17 grid points.

Because eddy size can be larger than this area, if the

contour line that defines the eddy limits is too close to

one of the edges (less than 1.5 grid points away, corre-

sponding to 1.5 km in the SCB domain), the area is

further enlarged by a grid points in each direction and

the streamfunction and the eddy boundaries are com-

puted again in the larger domain. This is repeated until

the computed eddy limits are far enough from the edges

of the area. The streamfunction can be computed only if

all the grid points within the area are ocean points. For

this reason, every time land points are found within the

area, its size is reduced until only ocean points are pres-

ent. After this, the area will be no further increased, even

if the eddy limits are close to its edges.

Velocity fields associated with small eddies can be

often characterized by stronger divergence. Therefore,

it is possible that some eddies have no closed contours of

the streamfunction around their centers. In those cases

(which represent ’4.8% of the total detected eddies),

eddy dimensions are assumed to be circular in shape

with a radius of a 2 1 grid points (3 km in our case). This

value represents the minimum distance where a closed

circulation around the eddy center is observed (fourth

constraint). After eddy dimensions are derived, the ra-

dius of each eddy is computed as the mean distance

between the center of the eddy and all the points de-

fining the contour line adopted as eddy limit. After eddy

positions and sizes are computed, eddy trajectories are

retrieved comparing successive eddy maps, as described

in section 3c.

Figure 7 shows the eddies detected by the algorithm

from the velocity field from Fig. 2. Larger eddies are

characterized by larger contours, confirming good ac-

curacy and consistency of the method. Figure 8 shows

contours of 20.2sw for the same day. The several closed

contours in the figure confirm the limitations of the

Okubo–Weiss method when applied to our case (spe-

cifically, high excess of detection), as already discussed

in section 1. Furthermore, the figure evidences that W

contours are not always tangential to the velocity vec-

tors, as it occurs for the case of the eddy in Fig. 6c. This is

particularly evident in the case of the large eddy southeast

of the Channel Islands and the smaller eddy within the

black square (enlarged in the right panel). It is because

of this undesired feature that we decided to develop an

alternative method to determine eddy boundaries.

b. Validation of the detection algorithm

How to make an objective assessment of the eddies

detected by an algorithm is not a trivial task (Chaigneau

et al. 2008). As already discussed in the previous section,

the presence of the two parameters a and b gives flexi-

bility to the algorithm but also requires few sensitivity

tests to choose the combination of values that will return

the best results possible. Algorithm performance can be

qualitatively evaluated only if the eddy distribution is

known. Therefore, eddy fields automatically detected

FIG. 7. Eddy field detected for day 51 (20 Feb 1996). Eddies with different shape, symmetry, and

orientation can be successfully detected. Vectors are plotted every four grid points.
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for different values of a and b were compared to ‘‘true

eddy’’ fields for 10 days randomly selected among the

2922 records available from the simulation. For each of

these days, true eddies were manually detected from

a vector map of the surface velocity field, using the eddy

definition adopted in this paper as a selection criterion.

This procedure is similar to the one used in Chaigneau

et al. (2008). However, in our case, true eddy maps were

reconstructed directly by the authors and not derived

from the results of a group of ‘‘oceanographic experts.’’

As already evidenced in Chaigneau et al. (2008), manual

eddy detection shows a wide range of results among the

experts. In our case, the discrepancies among true eddy

fields reconstructed by different experts (not shown) were

even greater, most likely because of the dimensions and

the resolution of the domain, which made it particularly

challenging to identify the smaller features. For this rea-

son, we considered the experts’ results to be an unreli-

able scientific calibration standard.

Although larger eddies could be easily recognized in

the velocity field, manual detection of the smaller eddies

was facilitated by displaying in the vector maps the

points for which the first three constraints of the algo-

rithm were satisfied, setting a 5 2 and b 5 1 (minimum

values for the two parameters). This made it possible to

narrow down the regions in the domain where smaller

eddies could have occurred, reducing the probability of

not including these eddies in the true eddy fields. The

presence of an eddy was determined by inspecting the

velocity field on enlarged vector maps around each one

of those points. Because the algorithm was developed

with the intent of investigating mesoscale and sub-

mesoscale activity, eddies with a radius of two grid points

(2-km radius) or smaller were removed from the true

eddy maps (61 total), and they were not included in the

statistical parameters used to evaluate the algorithm per-

formance. A total of 197 true eddies were identified in the

10 maps selected for the validation. The center of each

eddy was defined, consistent with our definition, as the

grid point of minimum velocity. True eddy centers for

days 1787 and 352 are displayed in the two vector maps

in Fig. 9.

As in Chaigneau et al. (2008), the algorithm efficiency

was validated defining two different parameters: the suc-

cess of detection rate (SDR) and the excess of detection

rate (EDR). These rates are defined as

SDR 5
N

c

N
te

3 100 and (1)

EDR 5
N

oa

N
te

3 100, (2)

where Nte (true eddies) is the total number of true eddies

detected for a given day, Nc (common) is the number of

true eddies also detected by the algorithm (a true eddy is

detected by the algorithm when the position of the eddy

center determined by the algorithm coincides with the

center position in the true eddy map), and Noa (only

algorithm) is the number of points identified as eddy

centers by the algorithm that do not correspond to a true

eddy center.

The algorithm was tested for different values of the

two parameters: a varying from 2 to 10 and b varying

from 1 to 10. The SDR and EDR were computed for

each different combination of the two parameters, and

the results are shown in Fig. 10. As evidenced in the top

panel, for a given value of a, the SDR decreases with

increasing values of b. The parameter b controls

FIG. 8. (left) Contours of the Okubo–Weiss parameter W 5 20.2sw for day 51 (20 Feb 1996). Vectors are plotted

every four grid points. (right) Contours of W in an enlarged map of the square from (left). All vectors are plotted. The

thicker line represents the 20.2sw level.
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the dimension of the area within which the minimum of

velocity is searched when the third constraint is applied:

if the area is larger than the eddy dimensions, the top

center might not satisfy the third constraint because

points outside the eddy can be characterized by smaller

velocity. For this reason, only larger eddies are likely to

be detected for large values of b, thus explaining the

decrease in the SDR. On the other hand, for a given

value of b, maximum values of the SDR occur for a be-

tween 3 and 4. A decrease in the SDR for large values of

a is somehow expected because the first two constraints

will be satisfied only by the larger eddies. Reducing the

value of a will increase the numbers of smaller eddies

that are detected. However, at the same time, the number

of larger eddies that are detected can decrease because

of the last constraint. In fact, larger eddies are often char-

acterized by a broader region of small velocities around

the eddy center. In such regions, the circulation around

the center is sometimes not well developed, so that the

rotation of the velocity vectors closest to the center might

not satisfy the fourth constraint. This most likely explains

the decrease in the SDR for values of a 5 2 or 3.

The bottom panel in Fig. 10 demonstrates that the

algorithm is generally characterized by low EDR (below

10%) for any combination of a and b, except when b 5 1.

In this case, the algorithm performances are affected by

the small dimensions of the area used to define the ve-

locity minimum. This occurs for two main reasons: first,

a smaller searching area results in an increased number

of points detected as velocity minima so that there are

more points to which the fourth constraint is applied.

For this reason, on a purely statistical basis, the chances

to wrongly detect eddy centers are higher. Second, as can

be observed from Fig. 3b, in the case of larger eddies,

there are several points within an eddy for which the first

two constraints are satisfied. If the searching area is not

large enough, it is possible that two or more local min-

ima of velocity are found for the same feature so that

two or more centers are detected for the same eddy.

Both effects result in larger EDR. It is possible that

these two effects partially affect the EDR also for b 5 2

and b 5 3, especially when a , 3. Maximum values of the

SDR (.90%) occur for b ranging from 1 to 3 and a 5 3

and 4. The EDR within the same range of the two

FIG. 9. Comparison between true eddies (dots) and algorithm

detected eddies (circles) for days 1787 (21 Nov 2000) and 352

(17 Dec 1996). Large eddies are successfully detected. Only few

smaller eddies are sometimes missed. The two wrongly detected

eddies are both associated with almost closed meanders. Vectors

are plotted every four grid points.

FIG. 10. SDR and EDR for different combinations of a and b.

Optimal values for eddy detection from the SCB numerical simu-

lation are a 5 4 and b 5 3.
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parameters is below 10% for b 5 2 or 3 and drops below

5% when a 5 4. Despite the SDR being slightly higher

for a 5 4 and b 5 2, we decided that a 5 4 and b 5 3 was

the optimal combination because of the lower EDR.

Table 1 summarizes the algorithm results from the

10 days used for validation, with a 5 4 and b 5 3. The

average SDR is ’92.9%. This value is similar to the

SDR observed for the winding-angle method (’92.7%)

by Chaigneau et al. (2008) and higher than the SDR

observed for the Okubo–Weiss method (’86.8%) in the

same study. A direct comparison of the results from two

studies is not possible because of the differences in the

datasets to which the algorithms have been applied. Nev-

ertheless, it is important to remark that the SDR associ-

ated with our algorithm is well above the 80% limit, which

is indicated by Chaigneau et al. (2008) as the lower limit

for acceptable performance by automated algorithms.

Furthermore, this method is characterized by very low

values of EDR, which in our case is only ’2.9%, whereas

values from Chaigneau et al. (2008) are ’18.7% for the

winding-angle method and ’63.3% for the Okubo–Weiss

method. Such low values of the EDR are particularly

important for accurate eddy tracking, as will be discussed

in section 3c. It is important to underline that these values

are obtained excluding eddies with a radius of two grid

points or less from the analysis. Although the EDR would

not be affected, the SDR would be sensibly reduced if

these small features were included.

As shown in Table 1, among the 10 days used for

validation, days 1787 and 352 represent the best and the

worst algorithm performances, respectively. The eddy

centers detected by the algorithm for those two days are

represented by the circles in the two vector maps in

Fig. 9. In the same maps, true eddy centers are shown by

dots. Therefore, dots surrounded by circles indicate the

true eddies detected by the algorithm Nc; empty circles

indicate the points wrongly detected as eddy centers

Noa; and dots without circles indicate the true eddies not

detected by the algorithm (missed eddies). Missed eddies

are usually small eddies that form close to the coastline

or between the islands. This is expected because setting

a 5 4 and b 5 3 drastically reduces the chances that all

four constraints will be satisfied for eddies with radius

,4 grid points. On the other hand, larger eddies farther

away from the coast are rarely missed. As will be dis-

cussed in section 3c, this is another characteristic that is

particularly important for accurate eddy tracking. Wrongly

detected eddies are most commonly induced by elon-

gated or almost entirely detached meanders; however, as

evidenced by Table 1, wrong detection does not occur

frequently.

c. Tracking algorithm

Our method for eddy tracking is analogous to that

proposed by Doglioli et al. (2007) and Chaigneau et al.

(2008). Being a well-established procedure, we present it

on this work without any formal validation. However,

accuracy and performance of the tracking algorithm will

be discussed in C. Dong et al. (2010, unpublished man-

uscript), where a complete eddy characterization of the

SCB will be presented. After eddy centers are detected

for the entire length of the simulation, eddy tracks are

determined by comparing the centers at successive time

steps, starting from day 1. The track of a given eddy at

time step t is updated by searching for eddy centers of

the same type (cyclonic/anticyclonic) at time t 1 1 within

a searching area of 29 3 29 numerical grid points cen-

tered around the eddy location at time t.

The size of the searching area strongly affects the

accuracy of the eddy tracking. In particular, to avoid

splitting a continuous track into multiple tracks, eddies

cannot travel outside the searching area from one time

step to the successive step. For this reason, the dimen-

sion of the searching area has to be accurately defined

depending on the spatial and temporal resolution of the

dataset, as well as on the characteristics of the mean flow

field. Because eddies are advected by the local currents,

a good estimate for the searching area dimensions can

be derived by multiplying the average current speed

by the dataset sampling period. In our case because our

dataset has a frequency of 1 day and the average current

velocity within the domain is ’0.2 m s21, a searching

TABLE 1. Algorithm results for the 10 days used for the validation: true eddies are the eddies identified by manual detection; Nc is the

number of true eddies detected by the automated method; and Noa is the number of eddy centers detected by the algorithm that do not

correspond to any true eddy. SDR and EDR are defined in Eqs. (1) and (2).

Day 115 352 705 811 820 1476 1626 1787 1833 1870 Total

True eddies 19 20 15 20 16 18 16 24 26 23 197

Nc 18 17 14 19 15 17 15 24 23 21 183

Noa 0 2 0 2 0 1 0 0 1 0 6

Missed eddies 1 3 1 1 1 1 1 0 3 2 14

SDR (%) 94.7 85.0 93.3 95.0 93.7 94.4 93.8 100.0 88.5 91.3 92.9 6 4.0

EDR (%) 0.0 10.0 0.0 10.0 0.0 5.6 0.0 0.0 3.8 0 2.9 6 4.2
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area with a radius of ’15 km is large enough to prevent

track splitting.

A single eddy track can be recorded as two or more

distinct tracks also in case the eddy center is not detected

by the algorithm for one or more days during its lifetime.

This can occur for several reasons, including errors asso-

ciated with the automated detection. As we have already

observed, larger eddies, which are usually characterized

by the longest lifetimes, are rarely missed by the algo-

rithm. This limits the chances that a single track might be

split and therefore increases the accuracy of the eddy

tracking. Nevertheless, to further reduce this type of

error, if a center cannot be located within the searching

area at t 1 1, a second search is performed at t 1 2, with

the searching area increased to 41 3 41 grid points. This

will prevent eddy tracks from being split not only in case

of a detection error but also in the eventuality that, during

a particular day of its lifetime, a given eddy becomes too

weak or too asymmetric to be considered an eddy.

The searching area at t 1 2 is increased only by half of

its radius at t 1 1 to avoid connecting two or more dis-

tinct eddy tracks into a single track. This second type of

error usually occurs if the dimensions of the searching

area are too large. The fact that the detected eddies are

also characterized by their sense of rotation reduces this

type of error because eddy tracks are updated only if the

eddy found within the searching area is of the same type.

The low EDR associated with our algorithm further

reduces it because there are low chances that the track of

a given eddy is altered by the inclusion of wrongly de-

tected features.

In case more than one eddy of the same type is found

within the searching area, either at t 1 1 or t 1 2, the

eddy track is updated with the closest center to the eddy

at t. When no centers are detected within the searching

area at t 1 2, the eddy is considered dissipated and the

track for that specific eddy is closed. On the other hand,

eddy centers at t 1 2 that were not connected to any

eddy center at t are considered newly formed eddies, and

their tracks will be updated starting from time step t 1 3.

Because this algorithm was developed with the intent of

detecting mesoscale and submesoscale vortices, we de-

cided to retain in the final dataset only eddies with life-

times that are consistent with the ones observed for these

features. Submesoscale eddies are characterized by time

scales on the order of a few days (Capet et al. 2008).

Therefore, a lower threshold of 4 days was introduced,

and all the recorded eddy tracks with a shorter lifetime

were discarded: ’17.1% of the tracks were characterized

by a lifetime shorter than 4 days. Including this threshold

in the analysis reduced the significance of the errors

coming from the algorithm limitations in detecting small-

scale eddies because such features are usually short lived.

Figure 11 shows the tracks for the eddies detected in

Fig. 7. Only 23 tracks are plotted on the map, meaning

that 10 of the 33 eddies had a lifetime shorter than

4 days. A comparison between the eddy tracks and the

eddy positions and dimensions from Fig. 7 confirms that

the larger eddies are associated with the longest tracks

(and thus characterized by longer lifetimes), whereas

the smaller eddies are the ones usually discarded be-

cause of the 4-day threshold.

4. Eddy detection from HF radar velocities

The application of the detection algorithm presented

in this work is not limited to high-resolution numerical

simulations. Being a purely geometrical method and be-

cause of the flexibility given by the two parameters a and

b, it can be used on a wide variety of velocity products:

from the global fields derived from satellite products, to

the regional fields obtained from lower-resolution nu-

merical simulations, and to the coastal fields directly

measured from high-frequency radar. In this section, we

briefly present the preliminary results obtained by ap-

plying the algorithm to HF radar velocities from the

Santa Barbara Channel for the year 2007.

To reduce the noise present in the hourly fields and to

highlight the more persistent features, the HF radar

velocities were averaged into daily means. For each grid

point, only the mean velocities computed averaging more

than six hourly records were considered significant and

included in the daily fields. Grid points where velocities

were not recorded or where the averages were not sig-

nificant were masked as land points. The algorithm was

validated for the HF radar velocities in a similar way as

FIG. 11. Eddy tracks for the eddies detected for day 51. Empty

circles and crosses represent the beginning and the end of each

track, respectively. The dots represent the eddy center positions at

day 51. The number of tracks is less than the number of eddies

detected in Fig. 7. Some of the eddies were removed from the

analysis because their lifetimes were shorter than the chosen 4-day

threshold.
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for the SCB numerical simulation. A total of 30 maps

were randomly selected among the 365 available, and

true eddy centers were manually detected for those maps.

More maps were inspected for validation to have a suf-

ficient number of eddies for the analysis of the algorithm

performance. A total of 35 true eddies were identified.

Automated eddy detection was performed assigning

different values to a and b, which ranged from 2 to 10

and from 1 to 10, respectively. The algorithm results

were validated for each combination of a and b com-

puting the SDR and EDR from Eqs. (1) and (2). Opti-

mal performance (not shown) was obtained for a 5 3

and b 5 1:28 eddies were correctly detected (SDR 5

80.0%), whereas three points were wrongly detected as

eddy centers (EDR ’ 8.6%). The EDR decreases for

higher values of b and a, but so does the SDR, which

remains below the threshold of 80.0% for any other

combination of the two parameters.

The fact that the best results are obtained for values of

a and b lower than for the SCB case is expected because

the HF radar domain is characterized by a larger grid

spacing. As already observed for the SCB datasets, even

in the case of HF radar velocities, larger eddies are de-

tected with relatively high SDR, whereas eddies that are

only one or two grid points in radius are characterized by

a much lower SDR. Because of the coarser spatial res-

olution, small eddies are frequent in the HF radar da-

taset. On the one hand, this explains why the highest

value of the SDR is obtained for b 5 1; on the other

hand, this explains why it is lower than in the SCB case.

The lower spatial resolution of the dataset is another

reason for the low SDR because it affects the detection

of larger eddies. In fact, it can occur that the center of a

given eddy is located between the recorded grid points, so

that the resulting velocity field is not characterized by a

local velocity minimum. In this case, no grid point can

satisfy the third constraint; therefore, the eddy is not de-

tected by the algorithm. This occurred for 2 of the 35 true

eddies used for validation. The EDR is relatively low,

although it is higher than the one observed for the SCB.

As already discussed in section 3b, the increase in the

EDR most likely results from setting the parameter b 5 1.

As an example of the results obtained from the HF

radar data, Fig. 12 shows the daily averaged surface

velocity field for 22 January. As in Fig. 9, true eddies are

indicated by dots and the eddies detected by the algo-

rithm are indicated by circles. The two large eddies at

the center of the domain were successfully detected by

the algorithm, whereas the small eddy (1 grid point in

radius) in the eastern part of the domain was not. The

solid lines indicate the eddy boundaries as computed by

the algorithm.

5. Conclusions

A new eddy detection algorithm based entirely on the

geometry of the velocity vectors of the flow field is pre-

sented. The method was developed to investigate eddy

activity in the SCB analyzing the velocity field from an

8-yr high-resolution numerical simulation using ROMS.

Eddy detection is based on four constraints derived from

the general characteristics of velocity fields in the pres-

ence of eddies. The constraints are applied to all the grid

points in the domain, and eddy centers are recorded

where all the four constraints are satisfied. Eddy bound-

aries around each detected center are determined by

closed contours of the streamfunction field. Once eddies

are detected, eddy tracks are reconstructed by connecting

eddy centers of the same type found within a specified

searching area at successive time steps.

The four constraints require two parameters, a and b,

to be defined. These parameters give flexibility to the

algorithm, but their values need to be chosen carefully

and are dependent on the spatial resolution of the data-

set. To validate the algorithm and determine the values of

the two parameters that maximize the SDR and minimize

the EDR, the eddy fields detected by the algorithm were

compared against manually detected ‘‘true eddy’’ fields.

The validation showed that our method is reliable, with

an SDR well above the lower threshold for acceptable

performance by automated detection. Moreover, it is

generally characterized by a very low EDR, which is

particularly important to improve the accuracy of the

eddy tracking. We also presented preliminary results

from the application of the algorithm to HF radar surface

velocities from the Santa Barbara Channel. Although the

results are worse than for the SCB numerical simulation,

both the SDR and the EDR remain within acceptable

ranges, indicating that the method might be used to

FIG. 12. Comparison between true eddies (dots) and detected

eddies (circles) from HF radar surface velocities for 22 Jan 2007.

The two large anticyclonic eddies are correctly detected by the

algorithm. The smaller (1 grid point in radius) eddy in the eastern

part of the domain was missed. The solid lines indicate eddy

boundaries.
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investigate eddy activity from this particular dataset

as well.

As can be observed from Fig. 7, eddy detection is not

particularly sensitive to shape, symmetry or orientation

of the eddies in the domain. However, it shows some

sensitivity to eddy size. In particular, eddies with a ra-

dius of only one or two grid points are characterized by

lower SDR than larger eddies. This occurs mainly be-

cause in the case of small eddies the last two constraints

are more difficult to be satisfied. In this respect, the al-

gorithm performance is dependent on the spatial reso-

lution of the dataset: 4-km radius eddies are commonly

detected from the SCB velocity field because at 1-km

resolution they are characterized by four gridpoint radii;

however, as can be seen from Fig. 12, they can be missed

when the algorithm is applied to the 2-km-resolution HF

radar velocities. Because it was first developed for eddy

detection from high-resolution velocity fields, further

studies on lower-resolution products are needed to im-

prove the method performance for those datasets. Still

maintaining the general concepts presented in this pa-

per, this might require a few minor modifications and

refinements of the algorithm. Preliminary results from

the analysis of the eddy statistics derived for the entire

length of the numerical simulation (not shown) indicate

that the tracking method as well as the method devel-

oped to derive eddy dimensions may still need further

refinement.

Future work will include the application of this method

to different velocity fields, ranging from regional to

global and derived from both remotely sensed quantities

as well as numerical model simulations [the algorithm is

currently tested on velocity fields derived from satellite

SLA and SST, as well as on global velocities from the

Estimating the Circulation and Climate of the Ocean,

Phase II (ECCO2) dataset]. From a more general point

of view, all the existing automated detection methods

are characterized by good SDR and relatively low EDR.

Nonetheless, all the methods, including the one pre-

sented in this work, have specific limitations. A direct

comparison among these methods on common datasets

could be extremely beneficial to further improve auto-

mated eddy detection, and it might lead to a new com-

mon algorithm in which the strengths of each individual

method can be enhanced and their respective limitations

can be minimized.
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APPENDIX

Streamfunction Computation

Assuming c(1, 1) 5 0, the streamfunction at a given

point (i, j) is computed as

c(i, j) 5
(c

xy
1 c

yx
)

2
, (A1)

where

c
xy

5��
i

x51
y(x, 1)Dx 1 �

j

y51
u(i, y)Dy and (A2)

c
yx

5��
i

x51
y(x, j)Dx 1 �

j

y51
u(1, y)Dy. (A3)

Here, u and y are the two components of velocity and Dx

and Dy are the longitudinal and latitudinal grid spacings,

respectively. The sums in Eqs. (A2) and (A3) are trap-

ezoidal sums.

Both cxy and cyx are discretized forms of the integral

ð(i, j)

(1,1)

c 5

ð(i, j)

(1,1)

(�ydx 1 udy). (A4)

The difference between the two is the path of integra-

tion: cxy is computed by first integrating y along the x

direction at y 5 1 and then u along the y direction at x 5 i,

whereas cyx is computed by first integrating u along the

y direction at x 5 1 and then y along the x direction at

y 5 j. Because the velocity filed is never divergent free,

the value of c is dependent on the path of integration,

and thus cxy is slightly different than cyx. By taking the

average of the two quantities in Eq. (A1), we reduce this

error so that that the resulting contours of c are as close

as possible to be velocity streamlines.
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