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In the present article, we propose a new approach for the segmentation of the MR images of the Multiple
Sclerosis (MS). The Magnetic Resonance Imaging (MRI) allows the visualization of the brain and it is widely
used in the diagnosis and the follow-up of the patients suffering from MS. Aiming to automate a long and
tedious process for the clinician, we propose the automatic segmentation of the MS lesions. Our algorithm of
segmentation is composed of three stages: segmentation of the brain into regions using the algorithm Fuzzy
Particle Swarm Optimization (FPSO) in order to obtain the characterization of the different healthy tissues (White
matter, grey matter and cerebrospinal fluid (CSF)) after the extraction of white matter (WM), the elimination
of the atypical data (outliers) of the white matter by the algorithm Fuzzy C-Means (FCM), finally, the use of a
Mamdani-type fuzzy model to extract the MS lesions among all the absurd data.
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1. INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinat-
ing disease of the central nervous system [l, 2]. This dis-
ease is associated with brain tissue damage (e.g., lesions) that
can be observed through Magnetic Resonance Imaging (MRI).
These lesions can appear as a hyperintense or a hypointense sig-
nal depending type of MRI sequence employed and observed
properties [3]. Magnetic resonance (MR) imaging has several
advantages over other medical imaging modalities, including the
high contrast among different soft tissues [4]. In this article, we
are interested in the brain MRI analysis conducted in a commu-
nity of patients suffering from Multipe Sclerosis (MS).

Diagnosis of magnetic resonance imaging (MRI) is usually
based on scanning of MRI. However, a challenge arises due
to the “normal-appearing white matter (WM)” problem, which
causes the lesions within the WM to appear the same as healthy
WMs. Even experienced neuroradiologist may not perceive the
differences [6].

Strictly speaking, MRI has brought in several benefits to the
study of Multiple Sclerosis (MS). It provides accurate measure-
ment of disease activity, facilitates precise diagnosis, and aid in
the assessment of newer therapies [5]. MRI also played a key
role in the patient’s follow-up state and the evaluation of the
prescribed treatment. Therefore, automatic extraction of potential
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quantifiers for the Multiple Sclerosis has many prospective appli-
cations in both clinical and pharmaceutical fields [7]. The appear-
ance of new lesions or the raising of ancient patches detected by
MRI constitute one of the acknowledged criteria for definitive
diagnosis [8]. Besides, MR imaging is often used to character-
ize and quantify multiple sclerosis (MS) lesions in the brain and
spinal cord. The number and volume of lesions have been used
to evaluate MS disease burden, to track the progression of the
disease and to evaluate the effect of new pharmaceuticals in clin-
ical trials. Accurate identification of MS lesions in MR images
is extremely difficult due to variability in lesion location, size
and shape in addition to anatomical variability between subjects.
Since manual segmentation requires expert knowledge; it is time
consuming and it is subject to intra- and inter-expert variabil-
ity, many methods have been proposed to automatically segment
lesions [9].

The segmentation of various tissues and structures in medical
images in a robust and efficient manner is of crucial significance
in many applications, such as the identification of brain patholo-
gies from Magnetic Resonance (MR) images [10]. Indeed, image
segmentation is generally the most important stage in the image
analysis system that straightforwardly guides the clinicians in
medical diagnosis. Related tasks such as primitive extraction,
position detection, or object recognition all strongly depend on
the quality of the segmentation. In this paper, we focus our stud-
ies to brain MR imaging where we propose a new automated seg-
mentation method that detects the lesions of MS. Our algorithm
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of segmentation is composed of three stages: segmentation of
the brain into regions using the algorithm Fuzzy Particle Swarm
Optimization (FPSO) in order to obtain the characterization of
the different healthy tissues (White Matter (WM), Grey Mat-
ter (GM) and CerebroSpinal Fluid (CSF)) after the extraction of
WM. In the second stage, we use a Fuzzy C-Means (FCM) algo-
rithm to eliminate the atypical data of the white matter. Finally,
in the third stage, a decision-making system that uses Mamdani-
type fuzzy model is employed in order to ascertain whether a
given voxel is MS lesion or not.

The paper is organized as follows. First, related works are
presented in Section 2. Next, our approach of automatic MS
lesion detection and its various steps are highlighted in Section 3.
Section 4 examines the results obtained on the MRI images.
Finally, a conclusion and perspective work are reported in
Section 5.

2. RELATED WORK

A variety of approaches to MS lesion segmentation have been
proposed in the literature. Generally speaking, they can be clas-
sified into two groups: outlier-based and class-based methods.

In outlier-based methods [1, 11-15] MS lesions are treated
and detected as the outliers to the normal brain tissue dis-
tribution, which is usually modelled with a Finite Gaussian
Mixture (FGM) of CSF, GM and WM classes. Van Leemput
et al. [11] pioneered this approach where an (iterative) robus-
tized expectation-maximization like method was promoted such
that contextual information were incorporated. Observed inten-
sity values whose Mahalanobis-distances exceed some empiri-
cally predefined threshold are marked as lesions. Bricq et al. [16]
applied neighborhood information during the inference pro-
cess using a Hidden Markov Chain model and outliers were
extracted using the Trimmed Likelihood Estimator (TLE) [17].
This approach was evaluated on real data including MS lesions
using T1 and FLAIR MR images.

Freifeld et al. [18] used a probabilistic model named Con-
strained Gaussian Mixture Model (CGMM) based on a mixture
of multiple gaussian distribution for each brain tissue from T1,
T2 and PD modalities. The parameters of this model were esti-
mated using the EM method. MS lesions were recognized as
outlier gaussian components and were grouped to form a new
class besides other tissues. A probability-based curve evolution
technique was utilized to refine the delineation of lesion bound-
aries. This method is automated and does not need an atlas for
parameter initialization. Experimental results on both simulated
brain MRI data and real data showed that this method outper-
formed many state of art approaches, especially in case of very
noisy data. To find the list of nearest gaussians for each voxel,
the K-Distance Transform (KDT) [19] was used. A rule-based
system was designed to distinguish the MS lesion Gaussians
from other tissue. Liu et al. [20] introduced a fully automatic
method for segmentation of MS lesions from T2-w and FLAIR
MR Images using the EM method to separate background, CSF,
and WM + GM. This approach assumed MS lesions as outliers
to the brain tissue WM and GM distribution, and the separation
was implemented by minimizing a statistically robust L2E mea-
sure, defined as the squared difference between the true density
and the assumed Gaussian mixture.

The approach proposed by Prastawa et al. [21] combines out-
lier detection and region partitioning together. The salient point

2

J. Med. Imaging Health Inf. 9, 1-12, 2019

of this approach lies in the way contextual information is incor-
porated: tissue typing is carried out based on regions (connected
groups of voxels) instead of individual voxels. Voxels label-
ing is conducted through maximizing overall relative entropy or
Kullback-Leibler divergence between neighboring regions. Sam-
ples with Mahalanobis distance greater than a manually chosen
threshold are treated as outliers. Souplet et al. [13, 14] also mod-
elled lesions as an outlier class. In their approach, a segmentation
of the brain into CSF, GM and WM was first performed on the
T1-weighted (T1w) and T2-weighted (T2w) sequences. Lesions
were then detected through a thresholding step on T2w 4+ FLAIR
sequences. A similar procedure was adopted in Garcia-Lorenzo
et al. [15]. Their solution consists of three steps: (1) robust esti-
mation of normal appearing brain tissue (NABT) parameters,
(2) refinement of outlier detection and (3) application of lesion
rule. After the NABT distribution is obtained through a robust
expectation maximization algorithm, each voxel in the image is
labeled as an outlier (candidate for lesions) if the Mahalanobis
distance for each class is greater eat than a given p-value. The
final lesion rule step refines the segmentation result by discrim-
inating White Matter Lesions (WML) from false positives and
pruning the latter. Manually chosen thresholds were involved in
both the outlier detection and WML separation steps.

Class-based methods [21-26] modeled the lesions as an inde-
pendent class to be extracted. In Ref. [22], a combination of
intensity-based k-nearest neighbor classification (k-NN) and a
template-driven segmentation (TDS) was designed to segment
different types of brain tissue. Lesions were modeled as one of
the expected tissue types, and the class parameters were obtained
through a supervised voxel sampling scheme on two randomly
selected scans. Since the manual training step is highly data-
dependent, it is expected to be conducted for each study or data
set. A similar approach was proposed in Ref. [12] where the seg-
mentation method determines for each voxel in the image the
probability of being part of MS-lesion tissue, and the classifi-
cation was conducted using K-NN algorithm. Voxel intensities
and spatial information were integrated as discriminative fea-
tures, and voxels were classified based on their proximity to the
pre-classified samples in the feature space. It should be noted that
manual or semiautomatic training is normally a required step in
k-NN based methods, and the value of k (number of classes) has
to be determined in advance, either interactively [22] or empiri-
cally [12]. Ideally, in order to obtain desired segmentation results,
the testing data sets are also expected to be highly similar to
the training sets. Outlier-based models [11-15] relax the training
requirement while using a thresholding-based technique. Such
thresholds, although critical to segmentation quality and system
reproducibility, often require some prior information to be set up
precisely, which is often difficult to be determined.

Among class-based methods, one distinguishes Atlas-assisted
segmentation framework proposed in Refs. [23—-25] which makes
use of the relatively consistent continuity property and the exist-
ing relationship among neighboring anatomical structures within
the same group of subjects. Lesions are treated as a subclass
within the white matter tissue, and a topology preservation cri-
terion is employed to guarantee strict topological equivalence
between the segmented image and the atlas. However, to ensure
the strict correspondence between atlas and the patient images,
an (augmented) atlas that accurately represents the group sub-
jects is likely to be required for each study. A summary of the
aforementioned techniques is highlighted in Table I.
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Table I. Comparaison of MS lesion segmentation methods.

Author Method Sequences Evaluation
Jain et al. [1] MSmetrix 3D T1-w Sen =0.57
3D FLAIR Pre=0.83
Leemput et al. [11] EM T2-w and Si=0.51
PD-w
Anbeek et al. [12] kNN T1-w, T2-w, Si=0.77
PD-w and
FLAIR
Souplet et al. [13] EM T1-w, T2-w Spe =0.99
and FLAIR Sen=0.26
Ait-ali et al. [14] Robust EM, OD T1-w, T2-w NA
and MLE and PD-w
Garcia-Lorenzo Modified EM T1-w, T2-w Spe =0.99
et al. [15] and PD-w
Freifeld et al. [18] Constrained T1-w, T2-w NA
Gaussian PD-w and
mixture and OD FLAIR
Prastwa et al. [21] Bayesian T1-w, T2-w Spe =0.99
classification and FLAIR Sen=0.03
Wau et al. [22] kNN T1-w, T2-w Sen=0.70
and PD-w Spe = 0.98
Zhang et al. [26] SWE +KNN MS image Spe =0.99
Sen=0.94

3. PROPOSED APPROACH

In our study, we use information from T1-weighted, T2-weighted
and proton density-weighted (PD) images. This is motivated by
the fact that T1-w, T2-w and PD images contain information
about white matter lesions [15]. Therefore, exploring the redun-
dancy and complementarity of such information through appro-
priate fusion scheme would undoubtedly enhance the efficiency
of multiple lesion identification. The overall approach involves
several steps. Prior to such processing, an initial registration step
that would ease the matching of the voxels of the various image
types (T1-w, T2-w, PD) given the differences in both time and
modality is required in order to ensure that the same voxel is
reproduced in T1-w, T2-w and PD images. Next, a multi-level
segmentation based approach is adopted. A generic workflow
of the approach is provided in Figure 1. More specifically, the
approach makes use of both unsupervised reasoning offered by a-
two step classification method as well as an approach that mimics
expert reasoning in order to identify whether a potential voxel is
a lesion or not. An optimization based approach involves first the
identification of WM class at each of the imagery type using a
Fuzzy Particle Swarm Optimization (FPSO) algorithm assuming
the voxels are WM, GM or CSF as hypothesized in Ref. [15].
The focus on WM is also rooted to related clinical studies, see,
e.g., Refs. [34, 35] which indicated that the infringement pre-
dominantly inflammatory present in the WM is likely in rela-
tionship with the mechanisms of degeneration and achievement
where the measurement of the load lesional provides insights
into the degree of achievement of the WM in the course of the
disease. Second, following the argumentation highlighted by Ait-
Ali et al. [39], WM tissue is often pervaded by atypical data,
which often weakens the detection of lesions. Therefore, discard-
ing the negative effect of atypical data becomes necessarily. For
this purpose, an approach based on Fuzzy C-Means algorithm
is employed in this paper. Finally, in order to decide whether a
given filtered WM voxel is a lesion or not, a fuzzy like reasoning
that imitates expert reasoning which gathers global information
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regarding image contrast as well as the signal type before mak-
ing such decision. Figure 1 summarizes the processing sequence
proposed for the segmentation of MS lesions, while details of the
different stages are provided in the subsequent subsections.

3.1. Segmentation of the Brain Tissues Using Fuzzy
Particle Swarm Optimization Algorithm

The segmentation of the brain tissues into different compartments
(white matter (WM), gray matter (GM) and cerebrospinal fluid
(CSF)) is a key step in our study. The outcome of this segmenta-
tion serves as the basis for implementing lesion-handling based
strategies. For this purpose, an optimization based approach using
Fuzzy Particle Swarm Optimization algorithm has been adopted
in our approach. This is motivated by its simplicity, ability to deal
with high dimension dataset, as well as its proven efficiency in
similar other segmentation tasks as pointed out in Refs. [36, 37].
The application of Fuzzy Particle Swarm Optimization (FPSO)
approach for clustering in our case yields three distinct classes
corresponding to white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF).

3.1.1. Particle Swarm Optimization (PSO)

The PSO is a population-based stochastic method inspired by
bird flocking and fish schooling to find optimal or near-optimal
solutions. It was first introduced in 1995 by social-psychologist
Eberhart and electrical engineer Kennedy [38], and nowadays,
has been used used in many fields involving large scale optimiza-
tion problems.

More formally, PSO starts starts with a population of particles.
Each particle i consists of potential solutions called positions X,
and velocities V and maintains the following information [30]:
e x;, the current position of the particle.

e v, the current velocity of the particle.

e y,, the personal best position of the particle (pbest); the best
position visited so far by the particle.

e 3, the global best position of the swarm (gbest); the best posi-
tion visited so far by the entire swarm.

In each iteration 7, the performance of each particle i is mea-
sured using a predefined fitness function f. The personal best
position (pbest) is obtained as follows [30]:

yi(0) if f(xi(1+ 1) = f(n:(0))
yi(t+1) = M
xi(14+1) i fOx(1+1) < f(3i(0))

There are two different topologies of PSO algorithm to find
best solutions: global and local topologies. In global topology, the
position of each particle is affected by the best-fitness particles
of the whole swarm in the search space while each particle is
influenced by the best-fitness particles of its neighbors in the
local topology. In this study we use the global topology whose
global best position y is obtained as follows [30]:

() € i yas v}

=min{f(y, (1)), f(3:(0), ..., f (3, (1))} (@)
The particle’s velocity and position are updated as follows:
vt +1) = wy;(1) + ¢, 1 (1) (5, (1) = x;(1))
+on(G0)-x@); i=12....p (3)
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Fig. 1. Details of the proposed method.

x;(t+ 1) =x,()+v;(t+1); i=1,2,...,p 4)

where, w is inertia weight that controls the impact of previous
velocity of particle on its current one, ¢l and c¢2 are positive
constants, called acceleration coefficients which control the influ-
ence of pbest and gbest on the search process, p is the number
of particles in the swarm, and r1 and r2 are random values in
range [0, 1]. The PSO algorithm is repeated until a specified
number of iterations has been exceeded or the velocity changes
are close to zero.

Particle swarm optimization (PSO) is a population-based opti-
mization tool, which could be implemented and applied easily
to solve various function optimization problems, or the problems
that can be transformed to function optimization problems [40].
However, the PSO algorithm suffers a serious problem that all
particles are prone to be trapped into the local minimum in the
later phase of convergence. The optimal value found is often a
local minimum instead of a global minimum [42]. Pang et al. [32]
proposed a version of particle swarm optimization for TSP called
fuzzy particle swarm optimization (FPSO).

3.1.2. Fuzzy Particle Swarm Optimization for

Fuzzy Clustering
Aiming at solving the shortcoming of the PSO algorithm, many
variations, such as Fuzzy PSO [42]. The FPSO algorithm was
initially proposed by Pang et al. [32] to solve Traveling Salesman
Problem (TSP). In which routine the position and velocity of par-
ticles redefined to symbolize the fuzzy family member between
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variables. In this sub-section, we present the FPSO algorithm for
fuzzy clustering problem [40].

In FPSO algorithm, X, the position of particle, represents the
fuzzy memberships of pixels {0, 0,,..., 0y}, to set of cluster
centers {Z,,Z,,...,Z.}, X can be expressed as follows:

Uy oo Uy

x=| o 5)
Uy = Uy

u;; is the membership function of the i-th pixel to the j-th cluster
with constraints stated in Eq. (11). Therefore, the position matrix
of each particle is similar to the fuzzy matrix U in FCM algo-
rithm. Also, the velocity of each particle is stated using a matrix
V with the size N rows and ¢ columns. Equations (6) and (7)
are used to update the positions and velocities [40].

V(i+1) = 0@ V()@ (cr) @ (yi(1) e X(1))
@ () @ (F(1) © X (1)) (6)

Xt+D)=X0eV(t+1) (7)

where the symbols @ and © denote the addition and subtraction
between matrices respectively. The symbol ® denote a multipli-
cation of all elements in the matrix by a real number.

After updating the position matrix X, it may violate the con-
straints given in Eq. (11). So it is necessary to normalize the



J. Med. Imaging Health Inf. 9, 1-12, 2019

Fig. 2. Diagram of fuzzy system of the MS disease.

position matrix X [40]. First, all negative elements in matrix X
are set to zero. If all elements in a row of the matrix X are
zero, they need to be re-evaluated using series of random num-
bers within the interval [0, 1] and then the matrix undergoes the
following transformation without violating the constraints [40]:

c c
”11/2”1/‘ ”1«/2”1,‘
J=1 J=1

mermal = : . . : (8)

c C
[ uyy [ Y Uy uye [ D Un;j J
J=1 J=1

Similarly to other evolutionary algorithms, in FPSO, we also
need a function for evaluating the generalized solutions called
fitness function. In this paper, Eq. (9) is used for evaluating the
solutions.

f(X) = K/Jlll (9)

Therein K is a constant and J,, is the objective function of
FCM algorithm. The FPSO algorithm for fuzzy clustering prob-
lem is therefore summarized in Algorithm 1 below.

ALGORITHM 1.

input original image.
1. Initialize the parameters including population size
P, cl, ¢2, w, and the maximum iterative count.
2. Create a swarm with P particles
(X, pbest, gbest and V are n*c matrices).
3. Initialize X, V, pbest for each particle and gbest
for the swarm.
. Calculate the cluster centers for each particle using Eq. (13).
. Calculate the fitness value of each particle using Eq. (9).
. Calculate pbest for each particle using Eq. (1).
. Calculate gbest for the swarm using Eq. (2).
. Update the velocity matrix for each particle using Eq. (6).
. Update the position matrix for each particle using Eq. (7).
10. If terminating condition is not met, go to step 4.
output segmented image

O 00 3N L K~

The termination condition in proposed method is the maximum
number of iterations or no improvement in gbest in a number of
iterations.

Table Il. Rules’ base in the form of a matrix.

T1-w T2-w PD-w
Hypersignal Low/Normal High High
Hopersignal Low High High
Hypersignal after injection Normal High High

of gadolinium
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Fig. 3. Fuzzy repartition of input variable of signal’s type.

3.2. Segmentation of the White Matter Using Fuzzy
C-Means Algorithm

The next stage in our methodology consists in eliminating the
atypical data in previously identified WM voxels in order to
highlight the different MS lesions. This is because the lesions
of the multiple sclerosis are not well contrasted due to the par-
tial volume in the surrounding tissues, which renders their seg-
mentation rather a difficult task. Motivated by the lack of a
fully comprehensive labeled database as reported in Ref. [28]
a non-supervised like strategy based on fuzzy c-means algo-
rithm has been advocated. This is backed by its reported suc-
cess in image analysis and medical diagnosis including magnetic
imaging regardless of the modality and the type of acquisition
(mono or multimodal) [27, 29, 31, 33] its reduced complexity,
easy implementation (especially for large and high dimension
dataset) [31].

3.2.1. Fuzzy C-Means Algorithm

FCM is a fuzzy clustering method based on the minimization
of a quadratic criterion where clusters are represented by their
respective centers [27]. More specifically, in our context, given
a grey-level image X = x;, x,,...,xy where x; corresponds to
the grey-level value of the ith pixel and N is the total number
of pixels of the image, the FCM algorithm allows us to parti-
tion the pixels of X into C classes (here C =3) pertaining to
WM, GM and CSF by calculating the centers ¢;(j = 1, C) of jth
class and the membership matrix (U), by minimizing an objective
function J.

cC N
J= ZZ (uij)md(xj’ Ci)2 (10

i=1 j=1

Fig. 4. Fuzzy repartition of the output variable giving the decision of the
MS disease.
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T1 MR Image T2 MR Image PD MR Image
Fig. 5. Original images.
. . (k) m

Under constraints: ® Y () x; .
¢ = N (k) ( )

C Zj:l (uij )m

Vje[l’N]:Zuijzl; . . . .

iz (11) The solution of the optimization problem (1-2) is obtained

Vie[l,C], Vje[l,N]u;€[0,1]

Where: U = [u;]¢c,y is the membership function matrix,
d(x;, ¢;) is the Euclidean distance from the jth pixel to ith class,
C is the number of clusters, N is the number of data, m is the
degree of fuzziness m > 1.

The membership functions and cluster centers are updated by
Eqgs. (3) and (4) respectively.

(k—1) 2/(m—1) 1

ul [i (ch’ 2 )> ] (12)

k—
o \d(x, e Y)

(a)

using Lagrange multiplier approach [27] through an itera-
tive based method whose algorithmic detail is summarized in
Algorithm 2. Especially, both centers of classes and mem-
bership degrees cannot be found directly at the same time,
so an alternating procedure is used. Firstly, the prototypes of
classes are fixed arbitrary to find the membership degrees,
secondly, the membership degrees are fixed to find the cor-
rected prototype centers. These two steps are alternatively
repeated until convergence is attained. The number of tissue
classes was assumed to be three, corresponding to gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF) tissue
classes.

Fig. 6. (a) Is the original images; (b) is the FPSO segmentation results; (c) is the white matter (WM) extraction.
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Table lll. Comparison of the results obtained by FPSO algorithm.
CSF WM GM
T1-w
Si 0.83 0.93 0.86
Ovrl 0.67 0.90 0.83
Sen 0.73 0.96 0.90
Spc 0.79 0.97 0.92
T2-w
Si 0.94 0.96 0.95
Ovrl 0.90 0.93 0.92
Sen 0.91 0.95 0.94
Spc 0.95 0.97 0.95
PD-w
Si 0.78 0.83 0.80
Ovrl 0.58 0.76 0.70
Sen 0.65 0.81 0.74
Spc 0.89 0.87 0.87

ALGORITHM 2.

Require. Set value Set values for the number of clusters C,
the degree of fuzziness m > 1 and the error €.

. initialize randomly the centers of clusters ci(o).

k< 1.

. repeat

. Update the membership function U®) according to Eq. (12)

. Update the centers c,-(k) according to Eq. (13)

k< k+1.

cuntil [P —c* V)< e

. return c; the centers of clusters and the
membership degrees u;;.

N AU AW~

3.3. Decision-Making

The last step determines whether a given WM voxel is MS lesion
or not. For this purpose, a Mamdani-type fuzzy inference sys-
tem has been adopted. In the latter, (global) information about
the image contrast and signal’s type are used as global vari-
ables. The outcome corresponds to the extent to which the MS
attribute is persistent in the underlying WM voxel. Especially, the
weighted images in T2 and PD underline the myelin component
in the lesions characterized by the edemas with hyper-intense
appearance in comparison to the white matter. Furthermore,
T1-w underlines the irreversible destruction of the tissues with
the appearance in the white matter of persistent “black holes”
(Hypo-signal) [39].

In this study, experts’ knowledge was used for the construction
of fuzzy rule base. It would not be possible to derive directly
all rules from the experts due to the combination of the input
variables and their linguistic values. To develop this rule base

(@) (WM) at T1

Fig. 7. WM of the image T1 segmented by FCM.

(b) WM
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it is always advised to hire a knowledge engineer who elicits
knowledge from the domain experts and transfer those elicited
knowledge into rule base. In this paper, the expert have been
defined seventeen fuzzy rules by observation on the data. Ten
of the rules keep the lesion and rest removes the FPs (False
Positive). An instance of fuzzy rules is described below.

1. If [(the image contrast is T1-w active) AND (the signal is
hyperintense)] then (MS is low).

2. If [(the image contrast is T1-w active) AND (the signal is
hyperintense)| then (MS is normal).

3. If [(the image contrast is T2-w active) AND (the signal is
hyperintense)] then (MS is high).

4. If [(the image contrast is PD-w active) AND (the signal is
hyperintense)] then (MS is high).

5. If [(the image contrast is T1-w active) AND (the signal is
hypointense)] then (MS is low).

6. If [(the image contrast is T2-w active) AND (the signal is
hypointense)] then (MS is high).

7. If [(the image contrast is PD-w active) AND (the signal is
hypointense)] then (MS is high).

8. If [(the image contrast is T1-w active) AND (the signal is
hyperintense after injection of gadolinium)] then (MS is normal).
9. If [(the image contrast is T2-w active) AND (the signal is
hyperintense after injection of gadolinium)] then (MS is high).

10. If [(the image contrast is PD-w active) AND (the signal is
hyperintense after injection of gadolinium)] Then (MS is high).

The quantification of image contrast, signal type and the MS
disease is described in the following:

For the fuzzification of signal’s type, we choose two fuzzy
intervals and Gaussian type membership function. Figure 3 shows
the fuzzy repartition of the input variable of signal’s type.

For the output variable, we choose three fuzzy intervals and
Gaussian membership functions, which define predicates: low,
normal and high of the MS disease in comparison to the white
matter. Figure 4 shows the fuzzy repartition of the output variable
of the decision of the MS disease.

The selected inference method is Mamdani’s method. Conse-
quently, the operator is realized by the calculation of the min-
imum, whiles the operator OR is realized by the calculation of
the maximum. The defuzzification step is done using the method
of calculating the center of attraction.

4. RESULTS AND DISCUSSION

4.1. Dataset

Framework using real dataset. The dataset was provided to us
as part of a collaboration agreement between LSI laboratory

(c) Atypical Data
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(a) (WM) at T2 (b) WM (c) Atypical Data
Fig. 8. WM of the image T2 segmented by FCM.
(a) (WM) at PD (b) WM Data (c) Atypical

Fig. 9. WM of the image PD segmented by FCM.

(Laboratory Intelligent Systems: image and signal team) Ferhat
Abbas University of Setif and LAMIH UMR CNRS 8201 (Labo-
ratory of Industrial and Human Automation control, Mechanical
engineering and Computer Science) University of Valenciennes.
The various images weighted at T1, T2 and PD corresponding
to relatively older patients and the images are in the form of
DICOM (Digital Imaging and Communications in Medecine).
The images were already preprocessed and spatially normalized.

4.2. Computational Requirement

The proposed algorithm was implemented in NetBeans IDE 8.2
and run on a laptop with 2.40 GHz Intel(R) Core (TM) i5-
4210U CPU and 4 GB RAM. The operating system was 64-bit
Windows 8.1.

Table IV. Comparison of the results obtained by FCM algorithm.

Atypical data WM

T1-w
Si 0.92 0.90
Ovrl 0.93 0.87
Sen 0.90 0.89
Spc 0.91 0.90

T2-w
Si 0.97 0.96
Ovrl 0.94 0.93
Sen 0.93 0.90
Spc 0.96 0.94

PD-w
Si 0.95 0.91
Ovrl 0.93 0.81
Sen 0.89 0.88
Spc 0.91 0.90

To compare the performance of these images, we compute
different coefficients reflecting how well two segmented volumes
match. Four measures are used as follows [43]:

Overlap (Ovrl) = TP+ ENLEP IZII\)I TP (14)
Similarity (Si) = 2"1"1’1%—{—1:1’ (15)
Sensitivity (Sen) = TPF:_7PFN (16)
Specificity (Spc) = % (17)

Where TP and FP stand for true positive and false positive,
which were defined as the number of voxels correctly and incor-
rectly classified as brain tissue by the automated algorithm. TN
and FN stand for true negative and false negative, which were
defined as the number of voxels correctly and incorrectly classi-
fied as non-brain tissue by the automated algorithm.

4.3. Analysis of the Results

The various images weighted at T1, T2 and PD corresponding
to relatively older patients and the images are in the form of
DICOM (Digital Imaging and Communications in Medecine).
The brain segmentation was successfully applied on some real
images shown in Figure 5.

Table V. Result of the defuzzification of the atypique data of the dif-
ferent sequences.

T1-w (%) T2-w (%) PD-w (%)
MS 48.76 56.79 49.56
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4.3.1. Step 1: Segmentation of Tissues (WM,
GM, and CSF) by FPSO

Figure 6 show the segmentation by the FPSO algorithm for
the T1-w, T2-w and PD weighted images in order to obtain

Fig. 10. Results of segmentation.

RESEARCH ARTICLE

a characterization of the different healthy tissues White mat-
ter, Grey matter and cerebrospinal fluid (see (b)) and afer a
segmentation by the FPSO algorithm, we extrated the WM

(see (c)).
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The comparative results are presented in Table III above.
The results in Table III show a considerable improvement for
all tissues using T1-w than T2-w and PD-w.

4.3.2. Step 2: Segmentation of the White
Matter by FCM

The use of FCM allows us to eliminate the atypical data of
the white matter for each image (T1, T2, PD) as exhibited in
Figures 7-9 for images T1, T2 and PD, respectively.

Table IV summarizes the segmentation outcome by FCM.

The results obtained by FCM are very satisfactory and well
confirm the validity of the algorithm, its ease of implementation
gives us a substantial advantage. We have made an improvement
in optimizing the white matter and atypical localization data.

4.3.3. Step 3: Decision-Making

The implementation of the Mamdani fuzzy inference system
makes use of min operator for AND connective and max for
OR connectives. The result of the implementation is shown in
Table V.

The decision-making depends always on the expertise, the
patient suffers from the multiple sclerosis and the MS lesions
are detected in all the sequences by a normal or a high
characterization.

4.4. Experimental Results

Figure 10 shows the results obtained after segmentation of the
different brain tissues of the images (a), (b) and (c) weighted
at T1-w, T2-w and PD-w on axial planes. The images (d), (e),
(f), (2), (h), (i), (), (k), (1), (m), (n) and (o) are the results of
segmentation realized by the expert, FPSO, FCM and FPSOFCM
successively.

The results of each stage of the segmentation are presented
on a sectional level (Fig. 5) in which the localization allows
distinguishing three separated classes of the tissue:

—GM (Pallidum, Putamen, caudate nucleus, thalamus and
cortex).

— WM (brain parenchyma).

—CSF (subarachnoid space, lateral ventricles and V3).

The interpretation of our results is done by an expert (hospital
center of Ain Naadja Algiers) on real images. All brain lesions
were identified by experienced MS neurologists. By analyzing
the images of Figure 10, the expert has established the following
statement:

e Image (f): The interpretation of the classes is totally improved
in relation to (FPSO, FCM), we notice the distinction between
the 03 classes of the brain and the class of the pathology SEP.
e Image (g): The detection of the pathology is indicated accord-
ing to the expert but the details are not well expressed.

e Image (k): The FCM does not bring much compared to the
FPSO.

Table VI. Comparison of the results obtained by different algorithms.

GM (%) CSF (%) WM(%) MS(%)
FPSO 80.2 64 85 70
FCM 71 55.9 79.6 74
FPSOFCM 88.7 66 89.7 96.4
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Fig. 11. Performance measures of the results obtained by different
algorithms.

e Image (1): FCM is unsuitable in this segmentation in relation
to the image (0).

e Image (0): the FPSOFCM brings a great performance to the
segmentation for the three classes and especially for the fourth
one which is the pathology that specifies well the size and the
details about this later.

Next, we compared in Table VI the segmentation of T2-w RMI
performed by the expert and that achieved using our automated
approach for a given time of acquisition.

Table VI and Figure 11 summarize the results of MS lesion
detection algorithms reviewed in terms of reproducibility and
agreement with the experts. The results highlighted figure under-
line the advantages of the proposed approach (FPSOFCM) in
comparison to the segmentation by FPSO and FCM for all tissues
CSF, WM, GM and MS lesions. We have shown a novel high
performance method for the segmentation of abnormal anatomy
in MRI data, such as MS lesions.

Next, we also investigated the results using the Receiver Oper-
ating Characteristics (ROC) curve. The latter is a pixel based

Fig. 12. The curve ROC of a MS by FPSO algorithm.
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Fig. 13. The curve ROC of a MS by FCM algorithm.

standard measure used to compare the ground truth image and
output image of segmentation method based on the use of
confusion matrix [41]. Factors involved in the confusion matrix
generation are true positives (TP) (MS patient is correctly iden-
tified as MS), false positive (FP) (Healthy case is incorrectly
identified as MS), the true negative (TN) means healthy people
were correctly identified as healthy, and the false negative (FN)
means MS patients incorrectly identified as healthy [26]. Sensi-
tivity and 1-specificity are two measures required for plotting the
ROC curve. The receiver operating characteristic (ROC) curve
and the area under the curve (AUC) parameter of FPSO, FCM
and FPSOFCM for the MS are highlighted in Figures 12-14.
The ROC curves for the three methods are shown in
Figures 12-14. It is obviously observed that the ROC curve
obtained by FPSO and FCM algorithms is much lower than
that obtained by the proposed approach (FPSOFCM). Therefore,
this comparison reveals that the proposed algorithm (FPSOFCM)

Fig. 14. The curve ROC of a MS by FPSOFCM algorithm.
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provides a better performance in terms of identifying more true
positives than FPSO and FCM algorithms.

5. CONCLUSION

The goal of the research presented in this article was to propose
a new automatic approach of segmentation of the MS lesions’
images. We have firstly split up the process of automatic seg-
mentation of the MS lesions into three fundamental stages:

Firstly, we segmented the brain into regions by using the
algorithm Fuzzy Particle Swarm Optimization (FPSO) in order
to obtain the characterization of the different healthy tissues
(White matter, Grey matter and cerebrospinal fluid (CSF) after
the extraction of white matter (WM). Secondly, we eliminated
of the atypical data of the white matter by the algorithm Fuzzy
C-Means (FCM). Finally, in the framework of our application on
the MS disease, we used a Mamdani-type fuzzy model to make
decision of the MS disease. We presented the results of our work
consisting in the use of an algorithm for the segmentation if med-
ical images in order to improve the quality of the MS lesions’
detection. The good quality of our solutions depends on the fact
that:

It is a method totally automatic due to the modeling of the
prior knowledge of the neuroradiology experts. The fuzzy theory
is important for modeling the human knowledge using the math-
ematical functions and to solve the effect of the partial volume
of the MRL

It satisfies the application’s constraints due to the automaticity
and the different final results which may be provided by the fuzzy
3D reconstruction.

Its performance is better than the performance of the super-
vised method.

It is a system based on fuzzy and optimization theory.

It is efficient on 2 types of tissues at least.
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