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Abstract

Lung cancer is the leading cause of cancer-related death worldwide and this also stimulates the development of various computer-
aided diagnosis (CAD) systems. But the conventional lung segmentation methods can’t satisfy the needs of the clinicians in lung
cancer diagnosis and surgery. It is very important to provide a segmentation and visualization framework for the clinicians instead
of radiologists in outpatient service. Therefore we propose a visually guided method based on a 2D feature space and spatial
connectivity computation to reduce the dependence on the radiologists for lung segmentation and visualization. Our framework
consists of three main processing steps. Firstly, a 2D feature space of CT scalar versus gradient magnitude is constructed. Secondly,
the attribute distribution region of the lungs is selected in the 2D feature space, and then the lungs are extracted from the determined
voxels by spatial connectivity computation. Finally, the lungs and pulmonary nodules are visualized simultaneously with different
colors and opacities in volume rendering. Experimental results show that the proposed framework is efficient for outpatient service

and can provide an intuitive segmentation process and nodules information.
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1. Introduction

Lung cancer is the leading cause of cancer-related death
worldwide. In CT lung cancer screening, a large number of CT
scans have to be analyzed, which is an encumbrance for radiolo-
gists. In addition, the information they provide can not well sat-
isfy the needs of the clinicians. Therefore, a fast lung segmen-
tation and visualization framework that clinicians want will be
important for clinicians in outpatient service. This makes them
independent of radiologist. Hence, a fast and intuitive lung
segmentation and visualization method could have remarkable
practical significance and clinical value for optimize screening
efficiency. Thus far, many lung segmentation methods have
been studied by researchers, see [1, 2, 3,4,5,6,7, 8,9, 10, 11,
12, 13, 14, 15, 16, 17] and references therein. Here, we clas-
sify them simply into two classes: the automatic segmentation
methods and the interactive segmentation methods.

The automatic segmentation methods include mainly the
threshold methods, priori knowledge methods and machine
learning methods. The threshold method [2, 3, 4] is the sim-
plest and most conventional method, but it can’t separate the left
and right lungs without post-processing. Pu et al. [5] proposed
an adaptive border marching algorithm for fully automatic lung
segmentation in 2D sectional slice. Sun et al. [6] presented a
robust active shape model matching method. However, these
methods need to establish a complete shape dictionary model.
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Noor et al. [7] proposed an automatic segmentation method
based on morphology and texture paradigm that segregate nor-
mal and diseased lungs. Mansoor et al. [8] combined fuzzy
connectedness with a glossary of abnormal CT imaging pat-
terns to automatically segment pathological lungs. However,
excessive computation time and the glossary limit its appli-
cation. The atlas-based method [9] was also studied to seg-
ment lungs, but due to anatomical variability, it’s not available.
Moreover, the required computation time is long because of the
registration process. Recently, the machine learning methods
have also been studied by many researchers. For example, the
SVM method [10, 11] combines texture information with lo-
cal shape to generate a classifier for lung segmentation. Ceylan
et al. [12] presented a complex-valued artificial neural network
method with complex wavelet transform for lung segmentation.
In these machine learning methods, the most challenging task
is the selection of feature sets appropriate for different training
data. In addition, they are difficult to use for domain experts
such as physicians.

Currently, the interactive segmentation methods have been
developed because of the complex and time consuming na-
ture of the automatic segmentation methods. The interac-
tive methods include region growing methods [13, 14, 15],
boundary tracking methods [16, 17] and graph cuts methods
[19, 20, 21, 22]. The region growing method is widely used
in lung segmentation, but in many cases designing an appro-
priate rule to stop the growth of the region without causing
over-segmentation is a complex task. Although the edge trac-
ing methods can simplify threshold selection, but also face
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the problem of stop rules in tracing process. The graph-cuts
method is based on graph theory [18] and it has been studied by
many researchers as a new image segmentation method which
could have intuitive user interactions. Sun et al.[19] proposed a
graph-based approach for simultaneous segmentation of lungs
in 4D CT scans with an expert-guided computer-aided refine-
ment, but the user interactions in this method are complex and
time-consuming. Nakagomi et al. [20] proposed a novel graph
cuts algorithm by incorporating multiple shapes and prior in-
formation on neighbor structures and obtained high accuracy in
segmentation. Ali et al. [21] used graph cuts for unsupervised
segmentation of the lungs from low-dose CT scans images. Dai
et al. [22] proposed an improved graph cuts algorithm with
Gaussian mixture models. All these approaches applied the
graph cuts theory to lung segmentation to obtain high accuracy
and also to improve user interactions for the domain experts.
However, these approaches are time-consuming, which is prob-
lematic for outpatient service.

As discussed above, the automatic lung segmentation meth-
ods usually have low usability for domain experts due to require
excessive processing time. The conventional interaction meth-
ods have poor interactions or interfaces, and usually high com-
putation time; even the fastest method based on graph cuts [19]
needs approximately 4.3 minutes of interaction time. In ad-
dition, these two kinds of methods can’t provide visualization
results of pulmonary nodules, together with the lungs. In or-
der to provide a more intuitive method, while avoiding the high
computation time of the above mentioned methods, this paper
intends to present a visually guided framework to fast segment
the left and right lungs and visualize the pulmonary nodules in
volume rendering. This framework consists of three main pro-
cessing steps. The first step is to select a region of attributes
distribution of the lungs in 2D feature space. The second step
is to visually extract the lungs by spatial connectivity compu-
tation. The third step is to visualize the lungs and pulmonary
nodules simultaneously with different colors and opacity. The
framework provides a good guarantee in the outpatient service
for clinicians, especially in face of more and more patients with
pulmonology. Therefore, the clinicians are not limited to the re-
sults of what the radiologist provided in the diagnostic process.

The rest of the paper is organized as follows. Section 2 de-
scribes the framework for segmenting and visualizing the lungs
by combining the 2D feature space and spatial connectivity.
Section 3 provides many experiments. Section 4 presents an
evaluation of the method in terms of its accuracy and efficiency.
Section 5 summarizes our contributions and conclusions

2. Methods

In order to provide a segmentation and visualization frame-
work for the clinicians instead of radiologists in outpatient ser-
vice, we propose a visually guided framework to reduce the
dependence on the radiologists for lung segmentation and vi-
sualization. The flowchart of the framework is shown in Fig.1.
Below, we will introduce each step for lung segmentation and
visualization in detail.

/ Input the chest /
CT image
v

Construct 2D feature space of the chest CT
image with gray and gradient attributes

!

Determine @, by selecting the region U
from 2D feature space

I

Extract lungs from the determined voxels
@, by spatial connectivity computation

A 4
Visualize lungs and pulmonary nodules in
volume rendering

A\ 4
/ Segmented and /
visualized results

Figure 1: The flowchart of the framework.

2.1. Constructing and Analyzing the 2D feature space

When viewed on sectional CT slices, the anterior junctions
between the left and right lungs may be very thin with high
magnitude of gradient, as shown in Figs.2a. In many cases,
gray-scale thresholding fails to separate the left and right lungs
near these junctions [1, 3], as shown in Figs.2b. Therefore, we
joined in gradient attributes on the basis of the gray to construct
the 2D feature space. The 2D feature space based on scalar
value and gradient magnitude for visualization classification is
widely used in volume rendering [24]. However, lung segmen-
tation with 2D feature space is a novel approach in medical im-
age segmentation. The 2D feature space can be defined as a 2D
histogram which describes and counts the attribute distribution
of the gray and gradient value in the chest CT image. For scalar
data, the gradient is the first derivative measure. The gradient
magnitude is a scalar quantity which describes the local rate of
change in the scalar field. For notational convenience, this pa-
per uses ||V f(x,y,z)|| to indicate the magnitude of the gradient
of f(x,y,z), where f(x,y,z) is the scalar function representing
the chest CT image.

Here, 10 2D feature spaces can be constructed from 10 dif-
ferent chest CT images, as shown in Fig.3. The horizontal co-
ordinate represents the gray scale, and the vertical coordinate
represents the magnitude of gradient in the 2D feature space.
These 2D feature spaces have very similar histogram distribu-
tion. In fact, the attribute distribution of all chest CT images is
an arched shape in the 2D feature space. The consistency dis-
tribution of different chest CT images can provide a unified rule
in the choice of gray and gradient for lung segmentation in 2D
feature space.

Here, the arched distribution was divided into three parts:



Figure 2: (a) Original CT slice. (b) Segmented result using gray-scale thresh-
olding. (c) Segmented result using 2D feature space.

the left end of the arch (denoted by R1 represents the homoge-
neous regions of low gray gradient), the middle section of the
arch (denoted by R2 represents inhomogeneous regions of high
gradient) and the right end of the arch (denoted by R3 represents
homogeneous regions of high gray and low gradient), as shown
in Fig.4a. According to the statistic of Fig.4b showed that the
lungs corresponds to region R1, the soft tissues and bones cor-
responds to region R3, the small vascular structure and skin, as
well as the outer edge of the lungs corresponds to region R2
in 2D feature space. The statistic are further demonstrated in
Fig.4c. In addition, we also visualize the voxels of the three
divided regions determined in volume rendering; see Fig.4d, 4e
and 4f. In the following, we will introduce the application of
the 2D feature space and spatial connectivity to separate and
visualize the lungs in the chest CT images.
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Figure 3: The 2D feature space is a log-scale joint histogram of scalar value
versus gradient magnitude. Dark regions represent large numbers of data value
occurrences.

2.2. The visually guided framework for extracting and visual-
izing the lungs and pulmonary nodules

In this section, we will introduce a visually guided frame-
work for separating and visualizing the lungs with pulmonary
nodules in the chest CT images by combining the 2D feature
space and spatial connectivity. This framework includes pri-
marily region selection in the 2D feature space, visual extrac-
tion of the lungs by spatial connectivity computation and visu-
alization of the lungs and nodules in volume rendering.
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Figure 4: (a) Three divided regions in 2D feature space. (b) Original CT slice.
(c) Mapping the divided regions to sectional CT slices with pseudo-color. (d)-
(f) visualization of mapping results.

2.2.1. Selecting region Rl in the 2D feature space

In Section 2.1 of this paper we discussed the attributes dis-
tribution of the chest CT images and determined the distribu-
tion region of the lungs in the 2D feature space (Region R1 in
Fig.4a). Now, we only need to select region R1 to obtain the
voxel set of the lungs, as shown in Fig.5a. When selecting a
region U (this paper assumes U = R1, representing the selected
gray and gradient interval) from the 2D feature space of a chest
CT image f(x,y,z) for the lungs, a set of voxels (denoted by
@y, Eq.1) is determined from f(x,y,z). Although @ also con-
tains some uninteresting structures, they are not connected spa-
tially, as shown in Fig.2c and Fig.5b. Based on this property,
we can easily extract the lungs from @ by spatial connectivity
computation.

Oy = {(x,y,2) : (f(x,3,2), [IVf(x, y, 2)I) € U} ey
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Figure 5: (a) Select region U in 2D feature space and determine @y . (b) Visu-
alize all voxels of @y in volume rendering. (c) Visualize all connected sets of
@y with different colors after spatial connectivity computation.

2.2.2. Extracting the lungs from ®y using the spatial connec-
tivity

Each structure is a spatially connected structure in the chest

CT images. When a suitable region U is selected from the

2D feature space, each structure formed by numerous structure

voxels in @y will retain the connectivity as well. Furthermore,



different structures form different connected sets in ®;. These
different connected sets of voxels can be extracted from @y by
the following tracing algorithm:

Step 1 Mark all voxels in @ as not-visited ones.

Step 2 Perform the following operations (Step 2.1-Step 2.2)
circularly until all voxels in @y are marked as the voxels vis-
ited.

Step 2.1 Select a not-visited voxel from @y as a seed,
mark it as a visited voxel and push it into a stack denoted by H.

Step 2.2 Perform the following operation (Steps 2.2.1-
2.2.2) circularly until H is empty:

Step 2.2.1 Pop up a voxel from H.

Step 2.2.2 Consider all voxels in the 18 - neighborhood
of the voxel in the following way. If a voxel is not in @y or is
visited before, then skip it. If a voxel is in @y and not visited
before, then push it into H, and mark it as the visited voxel.

Finally, all connected sets in @ are extracted with different
colors, as shown in Fig.5c. Nevertheless, we are interested only
in the connected set of the lungs, instead of all connected sets
in @y. To extract all connected sets also cost remarkably more
time. So it is necessary to specify the seed point interactively
at Step 2.1 of the tracing algorithm to extract the lungs. The
algorithm will be terminated when the lungs are extracted. It
is important that the framework provides an intuitive and effi-
cient seed selection method in volume rendering results instead
of the 2D sectional slice.

Interactive 3D medical image cutting is widely used as a
flexible manual segmentation tool to extract regions of interest
in 3D CT images [23]. Similarly, it has also been modified as a
seed selection tool for selecting the seed points in volume ren-
dering result of @y in this framework. This principle functions
as a transformation between the object and screen coordinate
frames, and it can be used to project voxels of 3D CT data onto
the screen frame. That is, we can select a seed point on any
position of the lungs in the volume rendering result and extract
the lungs, as shown in Figs.6a and 6¢c. If we need to separate
the left and right lungs, and we only need to select two seed
points on the left and right bronchus, as shown in Figs.6b and
6d. To selectively extract the connected set requires very small
amount of time, resulting in a clinically more acceptable pro-
cessing time. Here, all operations are based on the visual re-
sults in volume rendering, and thus provide a fast and intuitive
framework for lungs segmentation.

2.2.3. Visualizing the lungs and pulmonary nodules in volume
rendering

Volume rendering [26, 27] is important visualization tech-
nique for exploring and visualizing structures in 3D images. By
observing volume rendering results, users can discover some
structures of interest and have intuitive understandings of their
visual properties, such as shapes, spatial positions and spatial
relations with other adjacent structures. This technique is very
meaningful to the general clinicians in diagnosis of pulmonary
diseases, because the lungs with pulmonary nodules can be
visualized intuitively, especially in the bronchoscopy, needle
biopsy procedure, and pulmonary segmentectomy. But the clin-
icians can’t get the satisfactory visualization results from the
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Figure 6: Seed points selection in volume rendering. (a) Select a seed point
on any position of the lungs. (b) Select two seed points on the left and right
bronchus. (c)-(d) Different extraction results from the selected seed points in

(a)-(b).

radiologists, who provided the static volume rendering results
by screenshot. Now we can provide a visualization module
for the clinicians in outpatient service. The radiologists only
need to provide the CT image and nodules information for the
clinicians, who can segment and visualize the lungs and nod-
ules with different colors and opacities in their own computers
at any time. In addition, the clinicians can also segment the
pulmonary nodules by region growing method for visualization
without waiting for radiologist report. Fig.7 list three different
chest CT image with nodules which distribute in different po-
sitions in chest CT images, see Fig.7a, 7b and 7c. We can find
that it’s not intuitive to observe the nodules locations and shapes
based on sectional CT slices. Here, the proposed method pro-
vided an intuitive display of the nodules in volume rendering.
By assigning low opacity values to the lungs, the occlusion of
the lungs to the nodules can be avoided. Consequently, the clin-
icians can easily observe the positions of the pulmonary nodules
by rotating the visualization results in their own computers, as
shown in Fig.7d, 7e and 7f. This system is very good for the
liberation of the clinician’s dependence on radiologists.

2.3. Repairing missing structures by a hole filling filter

In this paper, we only select the region R1 in 2D feature
space to exclude high gradient region of the anterior junctions
between the left and right lungs for separating the left and right
lungs, as shown in Fig.2c. However, most areas of small vascu-
lar structure have high gray, which are not included in selected
region R1 may be lost. Therefore pulmonary nodules having
high gray may also be lost. Besides, these small vascular struc-
tures and pulmonary nodules both contain small gradient mag-
nitude (inside of structure) that also contain large gradient mag-



Figure 7: (a)-(c) Lung segmentation results, in which the pulmonary nodules
are segmented by region growing with yellow color. (d)-(f) The segmented
lungs and pulmonary nodules are visualized simultaneously with different col-
ors and opacities in volume rendering.

nitude (boundary of structure). Therefore, these missing areas
are difficult to be repaired by simply selecting the region R2 or
R3. Here, we used a hole filling filter [25] to repair the pul-
monary nodules and small vascular structures from the deter-
mined areas by region R1 and avoid false diagnosis. This filter
can convert background pixels into the foreground only when
the number of foreground pixels is a majority of the neighbors.
The size of the neighborhood is defined along every dimension
of the voxel, and the value on each dimension is used as the
semi-size of a rectangular box. The hole filling filter can also
be used in an iterative way, by calling it repeatedly either until
no pixel changes or for a fixed numbers of iteration. In this pa-
per, the size of the neighborhood was set to 2, the neighborhood
had the size 5 X 5 X 5, and the majority value was set to 40 and
the iteration number to 7.

Fig.8 illustrates the effectiveness of the hole filling filter on
a chest CT image. Fig.8a is the binary results from the spatial
connectivity computation and Fig.8b is the segmentation result
with the binary mask. We can find that the proposed method lost
some structures of high gray gradient. These structures can be
repaired after applying the hole filling filter operation, as shown
in Figs.8c and 8d. The clinicians can also mark the pulmonary
nodules in the repaired lung as a supplement to the radiologist’s
results, and then visualize the lung and pulmonary nodules in
volume rendering. The results demonstrate the capability of
this filter for filling the holes and gaps as well as smoothing
the contours of the lungs. The hole filling filter is better than
morphological operations in edge preserving and smoothing.

3. Experiment results

The proposed method has been applied on 898 thorax CT
scans. Here, 888 CT scans were freely downloaded from http:
//grand-challenge.org/All_Challenges/, the others
were provided by the Ninth People’s Hospital of Shanghai Jiao-
tong University School of Medicine. In this paper, all 3D 16-bit
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Figure 8: Examples for illustrating the hole filling filter. (a)-(b) The binary
mask and segmented result before filling. (c)-(d) The binary mask and seg-
mented result after filling.
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Figure 9: Segmented lungs by the proposed method. From top to bottom are
2D sectional slices, 2D sectional slices with different colors, segmented results,
respectively.

images were converted into 3D 8-bit images by setting the win-
dow level at -600 and the window width at 1600, according to
the normal lung parenchyma (Hounsfield Units: -700 ~ -400,
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Figure 10: Comparisons of different segmentation methods. The bronchus is surrounded by blue squares in (f)-(j) and then is amplified in (a)-(e). The area pointed
by the arrow in (b) and (c) with pseudo-color indicates bronchus is not removed. The area with gray in (d) and (e) indicates the bronchus is removed.

mean =~ -550). The segmentation process is shown in Fig.9.
The upper row represents the original images that are the front-
end, intermediate, and rear-end layers of the chest CT image.
The middle row represents the segmented left and right lungs
with different colors. The lower row represents the segmented
results without other structures. We can find that the segmented
boundary is very similar to the human observation. All experi-
ment results were run on a PC with Intel Core 17, 24G RAM and
Nvidia GeForce GTX760. Here, the segmentation and visual-
ization of the lungs on each chest CT image only takes about
one minute.

4. Discussions

4.1. Comparison with other methods

In this section, we will present the segmentation results
of our method compared to other methods. In Fig.10, three
conventional methods (the threshold selection method, region
growing method and graph cuts method) are compared with
our method. Figs.10(f) and (k) represent the original CT im-
ages; Figs.10(g) and (1) are the segmented results of adaptive
threshold selection method, and Figs.10(h) and (m) are the seg-
mented results of region growing method. Obviously, the tra-
cheas cannot be removed by these methods, and also some vas-
cular structures are missed. On the contrast, as shown in Figs.10
() and (0), our method have similar performance to graph cuts
method (Figs.10 (i) and (n)), and post-processing to remove the

tracheas is not needed. In our framework, the left and right
lungs are segmented separately because they belong to differ-
ent connectivity sets, as shown in Fig.9 where the different col-
ors represent different connectivity sets. The adaptive threshold
and region growing methods can not segment the left and right
lungs separately. Although the graph cuts based method has
the ability to segment left and right lungs separately without
post-processing, its efficiency is low compared to our method;
see Section.4.2. Our method also provides visualization results
compared to other methods.

4.2. Quantitative evaluations
To get an accurate evaluation of the proposed method, the

criteria of dice similarity coefficient (DS C), sensitivity (Se),
and specificity (S p) are employed:

2TP
DSC=— " 2
SC = TP+ FPIFN 2)
TP TN
= — = —_— 3
Se=Tp+rn SPT TN+ FP 3)

The Se and S p metrics are the ratio of well-classified lung
and nonlung pixels, respectively. Where, T P (true positives) is
the total number of lung voxels which are correctly classified,
FN (false negatives) accounts for the number of lung voxels
which are incorrectly classified, and F'P (false positives) is the
total number of those voxels that are incorrectly classified as
lung voxels. Additionally, we also provide the 2D sectional



Figure 11: Comparison between the segmentation result and ground truth in (a), (b) and (c). The red regions represent the intersection of our segmentation results
and manual segmentation results, the blue regions represent the false negative and the green represents the false positive.

slices comparison and time performance comparison. Fig.11
provides the comparison between the segmentation results and
the ground truth. Both the blue and the green regions are very
small, which represent that the missing segmentation rate (1-
S e) and false segmentation rate (1-S p) are very low. In Table.1,
we provide the accuracy comparison between our method and
the graph cuts methods in [19, 22]. We can find that the Dice
similarity coefficient index of our method is higher than that
of the method proposed in [19] and a litter lower than that of
the method proposed in [22], but the computation time in our
method is the best compared to the other two methods. Our
method needs approximately 60 seconds to complete the lung
segmentation and visualization, which is significantly less than
in the other two methods. Thus, our framework can provide a
clinically more acceptable processing time. Both Se and Sp
are almost equal to 1, further demonstrating the effectiveness of
the proposed technique in segmenting the lungs with pulmonary
nodules.

Table 1: Time and accuracy comparison of different methods. DSC: Dice sim-
ilarity coefficient. Se: true positive fractions. Sp: true negative fractions. Total
time: computation time + interactions time. Time units: seconds

Method DSC  Se Sp Total time
Ref.[19] 0974 - - > 258
Ref.[22] 0987 - - > 600
Ours 0.981 0961 0997 =60

In Table.2, we list the statistics of the time required for the
different processing stages in our method. Here, both HCT and
CCT are less than 3 seconds providing a good guarantee for
fast lung segmentation. The AIT of 20 seconds includes the
time from the region selection of the 2D feature space to the
completion of the lung segmentation and visualization. This
interaction time is notably smaller than the 4.3 minutes of the

method proposed in [19]. The HFT is approximately 35 sec-
onds for iteration 7 times, about five seconds per iteration on
260 slices. In summary, our approach provides a good guaran-
tee in the outpatient service for clinicians, especially in face of
more and more patients with pulmonology.

Table 2: Time of different operations. Time units: seconds. HCT: histogram
computation time; CCT: connection computation time; HFT: hole filling time;
AIT: all interactions time.

HCT CCT HFT AIT Total time
2 3 35 20 60

4.3. Robustness analysis of R1 selection in 2D feature space

The proposed method requires selecting a region R1 to pro-
duce a primary segmentation of lungs, which is an intuitive
strategy to attributes selection in 2D feature space. Generally,
the appropriate region of lungs in 2D feature space is unknown.
So the users can only roughly select a region for lungs in the
2D feature space. In Section 2.1 of this paper, the region R1
of the lungs has been roughly determined in 2D feature space
according to the attribute analysis. Now, we adjust the size of
region R1 to get different segmented results to evaluate the ro-
bustness of R1 selection operation, as shown in Fig.12. Fig.12a
shows 10 different sizes of region R1, and then we can observe
that their errors of DS C, Se and S p are within 0.015 compared
with Table.1, see Fig.12b. In other words, the proposed method
can get a satisfactory result no matter how the region R1 is cho-
sen in relatively feasible regions. Consequently, Fig.12 further
demonstrates the effectiveness of the proposed method in lung
segmentation.

4.4. User interface and interactions
The user interface used in the method proposed in this pa-
per is simple and intuitive. It consists mainly of four parts: the
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Figure 12: Robustness analysis of R1 selection. (a) represents 10 regions R1 of
changing from small blue box to large red box gradually. (b) accuracy compar-
ison for 10 levels of region R1, which correspond to (a).

conventional user interface of the 2D feature space in Fig.13a;
a pop-up context menu in Fig.13b; a 3D view in Fig.13c, and a
sectional CT slice view in Fig.13d. Fig.13a is used for select-
ing and adjusting the region in the 2D feature space. Fig.13b
will pop up by right-clicking, and is used for selecting the seed,
computing the connected sets from @y and filling the holes
and gaps. Fig.13c is for displaying and operating the volume
rendering results. Fig.13d is used for displaying the original
sectional CT slices or the segmented sectional CT slices with
pseudo-color.

Based on the user interface and the method presented in
this paper, the user interactions for segmenting and visualiz-
ing the lungs in @y may become simple and more intuitive.
As an example of the steps of the process, we firstly select a
region in the 2D feature space, as shown in Fig.5a, and visual-
ize all voxels of @y in volume rendering, as shown in Fig.5b.
By right-clicking the lung in volume rendering result, and se-
lecting the “’SelectedSeeds” item in the pop-up context menu
of Fig.13b, a seed will be marked on that position, as shown in
Fig.6a. Then, by right-clicking the lung and selecting the ”Con-
nectivity” item in the pop-up context menu, the connected set
of the lungs can be automatically extracted from @y, as shown
in Fig.6c. Alternatively, if we select two seed points on the left
and right bronchus, as shown in Fig.6b, the left and right lungs
can be individually extracted and visualized with different col-
ors, as shown in Fig.6d. Then, we can right click the lung,
select the “FillingFilter” item in the pop-up context menu, and
automatically repair the missing small vascular structures and
pulmonary nodules. Finally, when the lung is separated from
the chest CT images, we can open the 2D view of the Fig.13d to
see the original sectional CT slices or the segmented sectional
CT slices, according to the color mode.

In additional, the lungs and pulmonary nodules can be vi-
sualized simultaneously with different colors and opacities in
volume rendering by adjusting the “Label” item and “Opacity”
item in Fig.13a. Here, the "Label” item and ”Opacity” item is
one-to-one correspondence, different labels represent different
structures, such lungs and pulmonary nodules.

As has been demonstrated, the user interface and the inter-
active mode are intuitive and simple in this CAD system. This
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Figure 13: The User interface of our framework. (a) The conventional user
interface of the 2D feature space. (b) A pop-up context menu. (c) A 3D view
for displaying and operating visual results. (d) A 2D view for displaying 2D
sectional slices.

enables the clinicians to segment and visualize the lungs and
pulmonary nodules easily from the chest CT images. More-
over, the processing time is more acceptable for the clinicians
in outpatient service.

4.5. Comments on CT images from different imaging systems

In this paper, we propose a visually guided framework for
lung segmentation and visualization in chest CT images. This
framework is robust to CT images from different imaging sys-
tems, such as plain CT image (e.g., Fig.7) and enhanced CT
image (e.g., Figs.6, 9, 10, and 11). Due to this framework
first segments the pulmonary tissue and then repairs the miss-
ing vascular structures, slight difference of CT images acquired
from different imaging systems does not affect the robustness.
Hence, this framework can be also applied in dual-energy CT
image (DECT)[28, 29, 30, 31]. In conclusion, this framework
is a robust tool in preoperative planning.

5. Conclusions

The graph cuts method is currently the latest and most intu-
itive lung segmentation method. However, the time consump-
tion seriously limits its application for the clinicians in outpa-



tient service. We propose a visually guided framework to seg-
ment and visualize the lungs and pulmonary nodules by com-
bining 2D feature space and spatial connectivity computation,
while avoiding the excessive time-consumption of the graph
cuts methods. As a result, this method can segment the left
and right lungs separately without post-processing. The lungs
with pulmonary nodules can be visualized simultaneously in
volume rendering, which provides a intuitive information for
the clinicians in outpatient service. In addition, we have asked
some clinicians to evaluate the usability by using the frame-
work. Experimental results also demonstrate the effectiveness
of the proposed method, which significantly improves the work
efficiency of the clinicians and reduce the dependence on the
radiologists for lung segmentation and visualization in outpa-
tient service, especially in face of more and more patients with
pulmonology.
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