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A new technique for analyzing the probability distribution of output
spikes for the integrate-and-fire model is presented. This technique en-
ables us to investigate models with arbitrary synaptic response functions
that incorporate both leakage across the membrane and a rise time of the
postsynaptic potential. The results, which are compared with numerical
simulations, are exact in the limit of a large number of small-amplitude
inputs. This method is applied to the synchronization problem, in which
we examine the relationship between the spread in arrival times of the
inputs (the temporal jitter of the synaptic input) and the resultant spread
in the times at which the output spikes are generated (output jitter). The
results of previous studies, which indicated that the ratio of the output
jitter to the input jitter is consistently less than one and that it decreases
for increasing numbers of inputs, are confirmed for three classes of the
integrate-and-fire model. In addition to the previously identified factors
of axonal propagation times and synaptic jitter, we identify the variation
in the spike-generating thresholds of the neurons and the variation in
the number of active inputs as being important factors that determine
the timing jitter in layered networks. Previously observed phase differ-
ences between optimally and suboptimally stimulated neurons may be
understood in terms of the relative time taken to reach threshold.

1 Introduction

The integrate-and-fire model of neurons, in which the incoming postsy-
naptic potentials (PSPs) generate an action potential (spike) when their
sum reaches a threshold, is one of the oldest (Lapicque, 1907) and most
widely used models of neurons (Tuckwell, 1988a). It provides a conceptu-
ally simple description in terms of an electrical circuit in which the neu-
ral parameters (resistance and capacitance) are experimentally measurable,
and it is capable of predicting interesting phenomena that can be observed
in physiological experiments. A more detailed description of neurons is
given in terms of nonlinear differential equations, such as the Hodgkin-
Huxley model (Hodgkin & Huxley, 1952), in which four nonlinear dif-
ferential equations describe the membrane properties, intracellular and
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extracellular ion concentrations, input currents, and boundary-initial-value
conditions. These models possess such a degree of physiological detail that
in practice they are too cumbersome to address questions about the cooper-
ative behavior of large groups of neurons. They are also deterministic and
therefore do not naturally incorporate a description of stochastic (random)
processes, which predominate in neural systems since the input current is
rarely known with certainty. Moreover, a recent study (Kistler, Gerstner, &
van Hemmen, 1997) has shown that when a stochastic current is input to the
Hodgkin-Huxley model, the spike train that is generated can be described
to a very good approximation by modeling the neurons as threshold units.
Networks of integrate-and-fire units thus provide models that take into ac-
count a number of the essential neurophysiological features of neurons but
are still accessible with analytic techniques.

The important role that stochastic processes play in neural systems has
long been recognized (see Tuckwell 1988b, 1989, for a review of stochastic
processes in neuroscience). One of the earliest threshold models that incor-
porated stochastic inputs (Gerstein & Mandelbrot, 1964) approximated the
subthreshold potential of a spontaneously active neuron by a random walk,
described by a Wiener process with drift. This model was extended (Stein,
1965) to incorporate the exponential decay of the membrane potential us-
ing stochastic differential equations. Although considerable progress has
been made using these methods, there has been little progress in obtaining
analytical results for more realistic models.

In this article, we present a new technique for analyzing the integrate-
and-fire model in the presence of stochastic synaptic input. The technique
allows us to include incoming excitatory and inhibitory postsynaptic po-
tentials (EPSPs and IPSPs, respectively) that have arbitrary time courses,
so that we can incorporate such physiological features as the decay of the
membrane potential and rise time of the synaptic current. A central part of
the analysis is a Taylor’s series expansion in the amplitude of the incoming
postsynaptic potential. Only the linear and quadratic terms are retained,
and consequently the technique is accurate in the limit of small-amplitude
EPSPs, which necessitates a large number of inputs for the potential to
reach threshold. This small-amplitude expansion enables us to calculate the
probability density function of the membrane potential’s reaching thresh-
old and the probability density of output spikes, as discussed in the next
section.

In the study described here, this new technique is used to examine the
temporal relationship between the synaptic input and spike output of neu-
rons for the situation where the input is synchronized within some narrow
time interval, which is characterized by the standard deviation in the time
of arrival (denoted as the input jitter). The situation in which the inputs are
Poisson distributed can also be analyzed using similar techniques (Burkitt
& Clark, 1998a). The relationship between synaptic input and spike output
is of fundamental importance to our understanding of both the coopera-
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tive processes by which neurons process information and the information
contained in the neural code (Bialek, Rieke, de Ruyter van Steveninck, &
Warland, 1991; Abbott, 1994).

It is well established that the mean rate of firing of neurons plays a central
role in the encoding of information in the nervous system (Adrian, 1928).
However, the role played by temporal information contained in the timing
of individual spikes is much less certain and has been investigated only
relatively recently (Bialek & Rieke, 1992). Part of the motivation for these
studies has been the result of mathematical models of networks of spiking
neurons (Abeles, 1982; Judd & Aihara, 1993; Gerstner, 1995), which have
demonstrated that the spike timing may be used in coding information
(Hopfield, 1995; Gabbiani & Koch, 1996; Maass, 1996a, 1996b). Consider-
able evidence indicates that the encoding of the frequency of sound in the
auditory pathway uses temporal information, whereby the action poten-
tials become locked to the phase of the incoming sound wave (see Clark,
1996, for a review of temporal coding in the auditory pathway). In the pri-
mary auditory cortex, it has been found that features of acoustical stimuli
can be coded by the relative timing of action potentials of populations of
neurons, even when the mean firing rate remains unchanged (deCharms &
Merzenich, 1996). Synchronization of neuronal activity on the time scale of
milliseconds has been postulated to provide a mechanism by which spatially
distributed cells in the visual cortex are bound together in order to represent
components of a visual scene (Milner, 1974; Abeles, 1982). Recordings of the
cross-correlational activity of neurons in the visual cortex have provided
data that suggest that synchronization of neural activity does indeed play
a functional role (for reviews, see Engel, König, Kreiter, Schillen, & Singer,
1992; Singer, 1993).

The principal reason that synchrony of neuronal firing in groups of neu-
rons has attracted such attention is the belief that it provides an efficient
method to increase the reliability of responses: a neuron that receives many
inputs simultaneously is much more likely to generate a spike than one
that receives either fewer inputs or the same number of inputs distributed
over a longer time interval. The importance of synchronization for neu-
ronal information processing is on the level of groups of neurons, such
as proposed by the synfire model (Abeles, 1982, 1991) in which synchro-
nized input to a group of neurons is propagated to successive groups of
neurons, called a synfire chain. Synchronization provides the possibility of
establishing relationships between neuronal responses (Usher, Schuster, &
Niebur, 1993), such as grouping together (binding) neurons that respond to
the same features of a stimulus (Engel et al., 1992). By establishing a syn-
chronous firing pattern, the grouping of neurons is resistant to amplitude
fluctuations, and several such assemblies of neurons can coexist. Such a
mechanism would provide a neurophysiological correlate to the cognitive
phenomena of scene segmentation and feature linking (Eckhorn et al., 1988;
Engel, König, & Singer, 1991). Increasing the likelihood of firing for neurons
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associated with a particular feature enables the selection of responses for
further processing.

A number of theoretical studies address both the segmentation problem
and the effect of synchronized inputs on the response of a single neuron
(Bernander, Koch, & Usher, 1994) or a pool of neurons (Diesmann, Gewaltig,
& Aertsen, 1996). In a recent study (Maršálek, Koch, & Maunsell, 1997) the
relationship between the spread of times of the presynaptic input and the re-
sultant jitter of the spike output was examined using computer simulations
of both the integrate-and-fire model and a detailed model of a cortical pyra-
midal cell. In their study, they showed that under physiological conditions,
the synchronization of output spikes will be enhanced when the inputs are
synchronized; that is, the output jitter will be less than the input jitter under
a wide range of conditions. They also identified two sources of jitter in a
cascade of such neurons as being the inhomogeneous spike propagation
times between consecutive layers of neurons and jitter in the opening of the
synaptic channels. In our study we show how the integrate-and-fire model
may be solved analytically and give results for the perfect integrator, the
Stein model, and a model that has a synaptic response function incorporat-
ing both rise time and leakage of the postsynaptic potential. The variation
in threshold and the number of active inputs are both identified as also be-
ing important factors in the output jitter of a layered network. In addition,
we provide an interpretation of the systematic phase difference observed
between optimally and suboptimally stimulated neurons in the cat visual
cortex (König, Engel, Roelfsema, Singer, 1995).

In the next section our new method for calculating the probability den-
sity of the membrane potential is presented. This technique is used to obtain
the first-passage time to threshold, which is the first time that the sum of
the inputs reaches threshold and therefore gives the probability density of
the output spikes. The technique is then applied in section 3 to an analysis
of synchronization in three integrate-and-fire neural models: (1) the perfect
integrator model in which the decay of the potential across the membrane
is neglected, (2) the Stein model in which each arriving EPSP gives a step
increase in the potential that then decays, and (3) a model in which the in-
coming postsynaptic current is described by a more physiologically realistic
function. In each case, the results are compared with numerical simulations.
The method also enables inhibitory postsynaptic potentials to be included
in a natural way, and results are given for the Stein model with inputs that
are both excitatory and inhibitory. In the final section we discuss various
features of the method and draw some conclusions about the results of our
synchronization studies.

2 New Method for the Analysis of Integrate-and-Fire Neurons

Consider an integrate-and-fire neuron with a large number N of incoming
EPSPs, so that the resultant membrane potential at time t is given by the
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sum of the inputs

V(t) = v0 +
N∑
k

ak u(t− tk), (2.1)

where v0 is the resting membrane potential, N is the number of active in-
puts (i.e., number of afferent fibers that actually contribute a postsynaptic
input), and tk is the time of arrival of the EPSP from the kth fiber, which is of
amplitude ak and has a time dependence described by the synaptic response
function u(t) (which has a maximum magnitude of order one). Only the case
in which the amplitudes ak of all EPSPs have the same value a is considered
here. We analyze three types of integrate-and-fire models in which the neu-
ron generates a spike when the potential reaches the threshold. We wish to
calculate the relationship between the spread in the time of arrival of the
inputs, characterized by the standard deviation σin of the time of arrival of
the incoming EPSPs, and the spread in the timing of the output distribution
of spikes σout, also called the output jitter.

The situation we consider is where each of the incoming fibers contributes
an EPSP of the same amplitude and time course and the spread in arrival
times is the same for each fiber. The arrival times of the synaptic input
from each fiber over many such inputs are assumed to have a gaussian
distribution,

p(tk) = 1√
2πσ 2

in

exp

{
− t2

k

2σ 2
in

}
, (2.2)

which has mean tk = 0 and a spread in the time of arrival of σin (also called
input jitter or width of the input distribution). We are interested in the case
where the inputs produce one output spike (or equivalently, our analysis
is concerned only with the first output spike generated), and refractoriness
and reset effects are not included.

2.1 The Probability Distribution. In order to calculate the probability
that a spike is generated, we first calculate the probability distribution of
the sum V(t) of the incoming EPSPs, equation 2.1. The probability that this
potential V(t) exceeds the value v at time t is evaluated by considering the
proportion of cases for which this is true. This is given by integrating over
the distribution of arrival times for all incoming EPSPs,

Pr{V(t) ≥ v | V(−∞) = v0} =
{

N∏
k=1

∫ ∞
−∞

dtk p(tk)

}
H(V(t)− v), (2.3)

where we assume that the membrane potential is at its resting value v0
before the arrival of the EPSPs (V(−∞) = v0). The Heaviside step function
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H(x) gives a contribution of one for V(t) ≥ v and zero otherwise. Using an
integral representation of the Heaviside step function,

H(z− z0) =
∫ ∞

z0

dλ
2π

∫ ∞
−∞

dx exp{i x (λ − z)}, (2.4)

the contributions from the incoming fibers can be treated independently.
Since each incoming fiber has the same distribution of arrival times of EPSPs,
the above probability may be written as

Pr{V(t) ≥ v | V(−∞) = v0} =
∫ ∞

v−v0

dλ
2π

∫ ∞
−∞

dx exp{i x λ} [F(x, t)]N , (2.5)

where the function F(x, t) is given by

F(x, t) =
∫ ∞
−∞

dt′ p(t′) exp{−i x a u(t− t′)}. (2.6)

We consider the situation where the number of inputs N is large and each of
the inputs has an amplitude a that is small (in comparison to the threshold).
Expanding the exponential to second order in the amplitude a of the EPSP
and neglecting higher-order terms,

F(x, t) ≈ 1− i x a D(t)− x2 a2

2
E(t), (2.7)

where

D(t) =
∫ t

−∞
dt′ p(t′) u(t− t′)

E(t) =
∫ t

−∞
dt′ p(t′) u2(t− t′).

(2.8)

The probability distribution can then be evaluated (see appendix A for de-
tails),

Pr{V(t) ≥ v | V(−∞) = v0} = 1
2

[
1− erf

(
v− v0 −3(t)√

20(t)

)]
, (2.9)

with

3(t) = N a D(t)

0(t) = N a2 (E(t)−D2(t)).
(2.10)
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The probability density function of V(t) is given by

p(v, t | v0) = d
dv

Pr{V(t) ≤ v | V(−∞) = v0}

= 1√
2π 0(t)

exp
{
− (v− v0 −3(t))2

20(t)

}
. (2.11)

In the following analysis the threshold will be expressed in terms of
the threshold ratio R, which is ratio of the threshold Vth = θ + v0 to the
maximum possible value Vmax of V(t) (the value that would be attained if
all contributions arrived simultaneously), both with respect to the resting
potential v0,

R = Vth − v0

Vmax − v0
= θ

Na
, (2.12)

where there are N contributions each of amplitude a. We choose the units
of voltage to be set by the threshold, θ = 1.

The expansion of equation 2.7 to second order in the amplitude a of the
individual EPSPs is an approximation that is good for values of a that are
small in comparison to the threshold. Thus, in situations where a large num-
ber of small-amplitude EPSPs are required to reach threshold, frequently the
case in biological neural systems, this approximation is good. How large N
must be in order to provide accurate results will be examined in section 3 for
a number of neural models, and the results from the analytical expressions
are compared with numerical simulations. This expression for the probabil-
ity density, equation 2.11, can also be obtained using the usual method of
integration of the diffusion equation (Tuckwell, 1989).

2.2 Probability Density of Output Spikes. The neurons in the integrate-
and-fire model are endowed with a threshold condition in which a spike is
generated when the summed membrane potential reaches the threshold Vth
for the first time. The probability density of the output spikes is the density
of the first-passage time to threshold fθ (t), that is, the probability density of
the potential V(t) reaching the threshold Vth for the first time. This may be
obtained from the integral equation (for v > Vth),

p(v, t | v0) =
∫ t

−∞
dt′ fθ (t′) p(v, t | Vth, t′, v0), (2.13)

where the function p(v2, t2 | v1, t1, v0) is the conditional probability density
of V(t) taking the value v2 at time t2 given that it had taken the value v1
at time t1 (and also had the value v0 at time −∞). A similar expression
has been obtained (for v = Vth) in a study of the response of integrate-
and-fire neurons to periodic input using the Ornstein-Uhlenbeck process
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(Plesser & Tanaka, 1997). The conditional probability density may be eval-
uated using both the joint probability density and the probability density
(see equation 2.11) via the relation

p(v2, t2 | v1, t1, v0) = p(v2, t2, v1, t1 | v0)

p(v1, t1 | v0)
. (2.14)

The joint probability density p(v2, t2, v1, t1 | v0) is evaluated in a similar way
to the probability density (see appendix B). In terms of the sum-over-paths
formulation, the conditional probability density accounts for all paths that
connect v2 at t2 with v1 at t1 (i.e., including those that are not monotonically
increasing and have multiple crossings of any particular level). The resulting
expression for the conditional probability density is

p(v2, t2 | v1, t1, v0) =
1√

2πγ (t2, t1)
exp

{
− [v2−v0−3(t2)−κ(t2, t1)(v1−v0−3(t1))]2

2γ (t2, t1)

}
, (2.15)

where

γ (t2, t1) = 0(t2)− χ
2(t2, t1)

0(t1)

κ(t2, t1) = χ(t2, t1)

0(t1)
(2.16)

χ(t2, t1) = N a2 [G(t2, t1)−D(t2)D(t1)]

and

G(t2, t1) =
∫ t1

−∞
dt′ p(t′) u(t2 − t′) u(t1 − t′). (2.17)

The first passage-time density may be parameterized as a gaussian dis-
tribution,

fθ (t) = ρ√
2πσ 2

exp

{
− (t− tf )

2

2σ 2

}
, (2.18)

where ρ is the probability of a spike’s being produced, tf is the average time
of the first threshold crossing (and hence time of spike production, relative
to the distribution of inputs), and σ is the jitter of the output distribution
of spikes (i.e., the spread of the distribution in time), which will be labeled
σout.

Equation 2.13, which defines the probability density of output spikes, is
in general difficult to solve analytically. However, using the above gaussian
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parameterization (see equation 2.18) of fθ (t) it is straightforward to solve
for the parameters ρ, tf , and σout using the Newton-Raphson method for
nonlinear systems of equations (see, for example, Press, Flannery, Teukolsky,
& Vetterling, 1992).

The method of solution presented here is closely related to the standard
methods in which the stochastic input is modeled in terms of a random walk
of the potential (Gerstein & Mandelbrot, 1964; Tuckwell, 1988b). The case
in which the inputs have a Poisson distribution has also been investigated
using these methods (Burkitt & Clark, 1998a), and the results reproduce the
known expressions (Gluss, 1967). There are, however, two essential differ-
ences between equation 2.13 and the renewal equation. First, the renewal
equation relates the conditional probability density to the original probabil-
ity density, and this is a procedure that is valid only for a nonleaky neuron.
In general there is no such relationship between the conditional probability
density and the original probability density. Second, in equation 2.13 no
assumptions about the stationarity of the conditional probability density
p(v, t | Vth, t′, v0) are made; it does not have any time-translational invari-
ance, such as occurs for the renewal equation of the nonleaky model with
random inputs.

The next section presents the results for a number of neural models,
which give the relationship between the spread in the time of arrival of the
synaptic input σin and the jitter of the resultant spike time σout.

3 Synchronization in Integrate-and-Fire Neural Models

The simplest class of models of a spiking neuron that is capable of predicting
interesting experimental phenomena and in which the parameters have a
physical interpretation is the integrate-and-fire model, also known as the
Lapicque model (Lapicque, 1907). In these models, the arriving postsynaptic
potentials simply add together until they reach threshold, at which time
a spike is generated. The case in which the decay of the potential across
the cell membrane is neglected is called the perfect integrator or the leakless
integrate-and-fire model, which is analyzed in section 3.1. The version of the
model in which the potential decays back to the resting potential is called
the leaky integrator or the forgetful integrate-and-fire model. Stein (1965) was
the first to analyze this model with random synaptic inputs, and the Stein
model (also known as the shot-noise threshold model) is a leaky integrator
model in which an incoming EPSP produces an instantaneous jump in the
membrane potential, which then decays with a characteristic time constant τ
(analyzed in section 3.2). We also examine (section 3.3) the leaky integrate-
and-fire model for the case where the synaptic response function has a
physiologically realistic form that incorporates both rise time and decay.

The integrate-and-fire models are lumped (or point) models in which all
the parameters of the cell are lumped together into a single representative
circuit (see, for example, (Tuckwell, 1988a)). The potential difference across
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the membrane V(t) is modeled by a resistor R and capacitor C in parallel,
both of which are assumed to be constant. The input current I(t) causes a
depolarization of the potential V(t), which, by the conservation of current,
is given by

C
dV
dt
+ V

R
= I(t). (3.1)

For subthreshold potentials, the solution of this differential equation is
(Tuckwell, 1988a)

V(t) = exp
(
− t

RC

)∫ t

0

I(t′)
C

exp
(

t′

RC

)
dt′, (3.2)

where we assume that the cell is initially at equilibrium, V(0) = 0. This
model of the neuron is completed by imposing a threshold condition, so
that when the membrane potential reaches the threshold, a spike is gener-
ated. Immediately following the spike, the membrane potential is reset to its
initial value. Refractory effects may be included by allowing the threshold
to become infinite immediately following the generation of a spike, corre-
sponding to an absolute refractory period, and to have an elevated value
for some limited subsequent time, corresponding to the relative refractory
period.

3.1 Perfect Integrator Model. Within the family of integrate-and-fire
models, the simplest case to consider is that of the perfect integrator, in
which there is no decay of the potential with time. Although this is an un-
physiological assumption, it may provide a reasonable approximation for
situations in which the integration occurs over a time scale much shorter
than the decay constant, so that the membrane potential does not decrease
significantly between spikes. The model has been extensively studied be-
cause it is more amenable to analytical solution than the leaky integrate-
and-fire model.

In this leakless model, the individual EPSPs are each described by a
simple step function:

u(t) =
{

1 for t ≥ 0
0 for t < 0. (3.3)

The probability density of output spikes fθ (t) for this particular model may
be solved exactly by considering the distribution of arrival times of the
contributing EPSPs as a combinatorial problem in a manner similar to that
of Maršálek et al. (1997). If the threshold is crossed with the arrival of the
Mth input, then the resulting distribution of the output spikes is

fM(t) = N! M
M! (N −M)!

p(t) βM−1(t) (1− β(t))N−M , (3.4)
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where p(t) is the probability distribution of incoming EPSPs (equation 2.2)
and β(t) is given by

β(t) =
∫ t

−∞
dt′ p(t′) = 1

2

[
1+ erf

(
t√

2 σin

)]
. (3.5)

Since p(t) is an even function, it follows that fM(t) = fN−M+1(t) and hence
that σout(R) = σout(1 − R). For large N, both tf and σout may be evaluated
by analyzing the first and second derivatives of ln( fM(t)),

d
dt

ln( fM(t)) =
tf − t

σ 2
out

d2

dt2 ln( fM(t)) = − 1
σ 2

out
,

(3.6)

and thus tf and σout are given by the relationships

β(tf ) = R = M
N

σ 2
out =

R(1− R)
Np2(tf )

,

(3.7)

where we note that the expression for σout is again symmetric under change
from R to 1− R. For small R, it is possible to approximate σout as

σ 2
out =

σ 2
in

−2NR ln R
. (3.8)

This exact result is compared with the result obtained by the technique
presented in section 2. The functions3(t),0(t),γ (t2, t1),χ(t2, t1), andκ(t2, t1)

are given by

3(t) = N aβ(t)

0(t) = N a2 β(t) (1− β(t))
γ (t2, t1) = N a2 1− β(t2)

1− β(t1)
(β(t2)− β(t1)) (3.9)

κ(t2, t1) = 1− β(t2)

1− β(t1)

χ(t2, t1) = N a2 β(t1) (1− β(t2)) .

Since there is no inherent unit of time in this model, we choose the time
scale to be set by σin = 1. The results for the perfect integrator model are
shown in Figure 1 for a number of inputs N in the range 10 to 800. The
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threshold ratio R for a unit that sums the inputs from N afferent fibers is
given by equation 2.12. Both the exact solution (see equation 3.4) and the
analytic expression (see equation 2.13) were solved for σout at values of the
threshold ratio R = 0.1, 0.2, . . . , 0.9. The dotted lines connect the exact re-
sults of equation 3.4, and the solid lines connect the results of the numerical
solution to equation 2.13. These results clearly show that the output jitter
σout decreases with increasing N and that it is substantially less than the
input jitter (σin = 1) over the whole range of values of N. The results from
the analytical expression show extremely good agreement with the exact
results over a wide range of thresholds for 50 inputs, and the difference
diminishes for increasing N such that the error is less than 1% for 100 in-
puts. For N ≥ 200 the analytical results agree with the exact results over
the range of threshold ratios investigated. Note that the results indicate that
the minimum of σout occurs at R = 0.5, as expected from equation 3.7. For
large numbers of inputs, the exact output spike distribution, equation 3.4,
becomes gaussian, but for small N, there will be corrections to the gaussian
parameterization, equation 2.18, which will contribute to the differences
between the exact and the analytic expressions evident in Figure 1. In addi-
tion, for a fixed number of inputs, the small-amplitude approximation will
be least accurate for small threshold ratios (see equation 2.12). The exact
expression for σout at small R, equation 3.8, is a decreasing function of R
because the input distribution p(t) has a tail that extends to minus infinity.
General considerations indicate that very low-threshold-ratio neurons tend
to have high levels of spontaneous activity, whereas very high-ratio neurons
tend to have very low activity and be difficult to excite. Biological neural
systems would therefore be expected to function within the broad inter-
mediate threshold region, where the technique presented here provides an
accurate approximation for large numbers of input neurons.

3.2 Stein Model. Although the perfect integrator model may be ade-
quate to explain some phenomena, it is nevertheless necessary in general to
consider the effect of the leakage of the potential across the membrane. The
perfect integrator model serves as a first approximation to more realistic
models in which the passive membrane time constant is taken into account.
Stein (1965) was the first to analyze the integrate-and-fire model with leak-
age of the potential in the presence of random synaptic inputs. In the Stein
model the membrane potential has a discontinuous jump of amplitude a on
the arrival of an EPSP and then decays exponentially between inputs,

u(t) =
{

e−t/τ for t ≥ 0
0 for t < 0, (3.10)

where τ is the time constant of the membrane potential. The decay of the
EPSP across the membrane means that the contributions from EPSPs that
arrive earlier have partially decayed by the time that later EPSPs arrive.
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Figure 1: Results for the perfect integrator model. The dependence of the output
jitter σout on the threshold for a range of afferent fibers N is shown, with σin = 1.
The threshold ratio R is given by θ/Na. The solid lines connect the results of the
solution to equation 2.13, and the dotted lines connect the results of the exact
solution, equation 3.4. The two sets of results are indistinguishable for N ≥ 200.

The probability density function of the potential at threshold, equa-
tion 2.11, for values of the threshold potential vth that are small relative
to Vmax has a characteristic two-peak shape, as illustrated for the case of
N = 50 by the dotted and solid lines in Figure 2, which correspond to the
threshold ratios R = 0.2 and 0.4, respectively. Time is given in units of the
time constant of the membrane potential τ , which typically has values of 5
to 20 msec, and the time t = 0 corresponds to the center of the distribution
of incoming PSPs, equation 2.2. Since the input jitter is typically of the order
0.5 to 3.5 msec, then σin is small (< approximately 0.5). The first peak (on the
left) corresponds to a net upward passage of the potential through the value
vth as the incoming EPSPs summate. The second peak (on the right) corre-
sponds to the potential subsequently passing back through the same value,
as there are fewer incoming EPSPs on the tail of the distribution, with the net
effect being that the potential decays back to the resting value v0. The two
peaks of the probability density function merge as R increases, as shown by
the dashed line in Figure 2 for the case of 50 inputs with σin = 0.5, τ = 1.0,
and a value of R = 0.5. At higher values of R, the size of the peak diminishes
and eventually vanishes, which provides an effective upper limit Rcrit on
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Figure 2: Representative plots of the probability density, equation 2.11, at thresh-
old for the Stein model with 50 inputs and τ = 1.0, σin = 0.5 and three values
of the threshold ratio R: 0.2 (dotted line), 0.4 (solid line), and 0.5 (dashed line).
Time t = 0 corresponds to the center of the time distribution of inputs.

the threshold ratio at which a spike can be generated. For large numbers of
inputs N, the width of both peaks decreases.

For a unit that sums the inputs from N afferent fibers, the maximum
possible value of the potential V(t) if all inputs were to arrive simultane-
ously would be Vmax = v0 + Na, and the threshold ratio R is given by
equation 2.12, as for the perfect integrator model. As the threshold ratio
increases, the probability of an output spike’s being generated falls towards
zero. This dependence of the spiking probability, ρ, on the threshold ratio,
R, is illustrated in Figure 3, which shows this relationship for a value of the
input jitter σin = 0.2 and for various numbers of inputs N = 25, 100, 800.
The plot shows that for low-threshold ratios, R, an output spike is generated
with probability 1, and that for large values of R, the spiking probability de-
creases rapidly toward zero. The rate of decrease of the firing probability
depends on the number of inputs, with a more rapid falloff observed for
larger numbers of inputs. Note that the threshold ratio, R, is defined in a way
(see equation 2.12) that relates the number and magnitude of the incoming
PSPs. The value of the threshold ratio Rcrit at which the spiking probability
falls to zero also depends on both the number of inputs N and the input jitter
σin, as plotted in Figure 4. The results show that the effective maximum that
the potential achieves depends on the input jitter σin, with more input jitter
lowering the maximum value attained by the potential. The criteria used
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Figure 3: Probability of an output spike being generated, ρ, as a function of the
threshold ratio, R, for the Stein model with input jitter σin = 0.2 (in units of
the membrane time constant, τ=1). Results for three different values of N are
plotted: N = 800 (solid line), 100 (dotted line), and 25 (dashed line).

for determining Rcrit in Figure 4 were

max
t

∫ ∞
Vth

dv p(v, t | v0) ≤ 0.01. (3.11)

A dependence of Rcrit on the number of inputs N can be seen in Figure 4,
which is a consequence of the probability distribution p(v, t | v0) being less
sharply peaked for smaller values of N. It is straightforward to calculate
Rcrit in the large N limit, since the system is essentially deterministic in this
limit; the resulting values are plotted in Figure 4 as triangles on the vertical
axis. Also shown in Figure 4 for comparison are the results of numerical
simulations at the value σin = 0.5 for the probability of spike generation
falling below 0.01 (note that the probability distribution of the potential
at threshold and the probability distribution of spike generation are not
identical, although they are related for large N, as discussed in Section 4).

The relative output jitter (i.e., the ratio of the output jitter σout to the input
jitter σin) is plotted in Figure 5 for σin = 0.2 and a range of values of threshold
ratios R and inputs N. The integral equation 2.13 for the output spike density
was solved numerically, using the Newton-Raphson method as before, for
a range of threshold ratios below Rmax, R = 0.10, 0.15, . . . , 0.55, and the
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Figure 4: Dependence of Rcrit on the number of inputs N and the jitter of the input
σin for the Stein model (units of τ = 1). The lines connect points at which the
probability density, equation 2.11, obeys the criteria equation, 3.11. Also shown
for comparison are the results with σin = 0.5 of the numerical simulations for
the probability of spike generation falling below 0.01. The exact results for the
large N limit are indicated by triangles on the vertical axis.

results are connected by the solid lines. Also plotted are the results of a
number of numerical simulations, each point representing the average over
10,000 trials. In these simulations, a gaussian distribution of arrival times
for the N inputs was generated using a pseudorandom number generator,
and the potential was summed explicitly, taking into account the decay
constant τ . The error bars give the standard deviation over the trials, and
the results for each value of N are connected by a dashed line (for the larger
values of N, the error bars are roughly the width of the lines and therefore
are barely discernible). The relative output jitter is clearly substantially less
than the input jitter over the whole range of inputs and threshold ratios
investigated. The results from the analytical expression derived here are
very accurate for large numbers of inputs N, as shown by their closeness
with the results of the numerical simulations. As before, the expected error
of the method presented here decreases as the number of inputs N increases
and the amplitude a of each individual contribution decreases.

As the input jitter σin becomes smaller relative to the membrane time
constant τ , the importance of the decay of the potential across the membrane
diminishes and the results are increasingly well approximated by the perfect
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Figure 5: Relative output jitterσout/σin for the Stein model with various numbers
of input EPSPs and threshold ratios R. The jitter of the input σin is 0.2 in units
of the membrane time constant (τ=1). The solid line shows the value obtained
from the solution of equation 2.13, and the data points connected by the dotted
lines are each the result of 10,000 numerical simulations.

integrator model (see section 3.1). This is illustrated in Figure 6, in which
the ratio of the output jitter to the input jitter is plotted for a threshold ratio
of R = 0.25 and various numbers of inputs. Plotted on the vertical axis as
triangles are the results of the perfect integrator model, in which there is
no decay of the potential across the membrane (equivalent to the limit of
large τ ). The plots for a given number of inputs N show only a very slight
dependence on the ratio of the input jitter to the membrane time constant
over the range of values investigated, and the results in the limit σin/τ → 0
extrapolate smoothly to the results of the perfect integrator model.

The effect of inhibitory postsynaptic potentials (IPSPs) may be included
in a straightforward way. The functions 3 and 0 of equation 2.10 become

3(t) = NE aE DE(t)−NI aI DI(t)

0(t) = NE a2
E

(
EE(t)−D2

E(t)
)+NI a2

I

(
EI(t)−D2

I (t)
)
,

(3.12)

where DE,I and EE,I are given by equation 2.8 for the excitatory and in-
hibitory neurons, respectively. The amplitudes of the excitatory and in-
hibitory inputs are denoted by aE and aI, respectively (for simplicity in
the analysis below, we choose them to be equal, aE = aI = a). The effects
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Figure 6: Relationship between the relative output jitter σout/σin and the input
jitter σin for the Stein model with threshold ratio R = 0.25 and varying numbers
of inputs. The jitter of the input σin is given in units of the membrane time
constant (τ=1). The results for the perfect integrator model are indicated by
triangles on the vertical axis.

of including IPSPs in the Stein model are shown in Figure 7, in which the
relative output jitter is plotted as a function of the proportion of IPSPs to
EPSPs, for the case σin = 0.2 (in units of τ = 1). The threshold ratio in Fig-
ure 7 is fixed at the value R = 0.25, where R is defined in the analogous way
to equation 2.12,

R = θ

(NE −NI)a
. (3.13)

Note that for fixed R, the amplitude of the individual postsynaptic potentials
increases as NI increases, which ensures that the increase in relative output
jitter with increasing NI observed in Figure 7 is not an artifact of changing
the range of the potential relative to a fixed threshold. Also shown in the
figure are the results of numerical simulations for the cases N = 50, 100, 200,
each point representing the average over 10,000 trials, with the accuracy
indicated by error bars. As before, the simulation results agree well with
the analytical results for large N. We also examined the case where the
amplitude a is fixed and the threshold ratio increases as NI increases. The
results in this case showed the same pattern as in Figure 7, with an increase
in the relative output jitter of the same magnitude for each value of NI,
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Figure 7: Relationship between the relative output jitter σout/σin and the propor-
tion of inhibitory inputs for the Stein model with input jitter σin = 0.2 (in units
of τ ) and fixed threshold ratio R = 0.25. The magnitudes of the amplitudes of
the excitatory and inhibitory inputs are taken to be the same, and the threshold
ratio is given by equation 2.12, as described in the text. Also plotted are the
results of numerical simulations over 10,000 trials for NE = 50, 100, 200.

indicating that the increase is indeed due to the inhibition rather than the
parameterization. The results in Figure 7 are for the situation where both
the amplitudes and the postsynaptic functions of the EPSPs and IPSPs are
the same. However, the technique can be used equally well in the situation
where the EPSPs and IPSPs have different time courses and amplitudes. It
is also possible to extend the analysis to include reversal potentials (Burkitt
& Clark, 1998b).

3.3 General Leaky Integrate-and-Fire Model. Both the perfect integra-
tor model and the Stein model have discontinuous voltage trajectories; there
is an instantaneous jump of amplitude a in the voltage when the EPSP ar-
rives. A smoothly varying voltage similar to that observed in intracellular
recordings is provided by a synaptic input current whose time course is
given by the alpha function (Jack, Noble, & Tsien, 1985),

I(t) = kte−αt, α > 0, (3.14)
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Figure 8: Synaptic response function u(t) (see equation 3.15) for the general
leaky integrate-and-fire model for input currents of the form of an alpha function
(see equation 3.14) with k = B2C, τ = 1. Plots are shown for values of α of 2
(dashed line), 5 (solid line), 10 (dash-dot line), and 100 (dotted line).

which corresponds to delivering a total charge of k/α2 to the cell. The synap-
tic response function u(t) is, from equation 3.2 and assuming u(0) = 0,

u(t) = ke−t/τ

BC

[
teBt − (e

Bt − 1)
B

]
, B 6= 0

u(t) = kt2

2C
e−t/τ , B = 0,

(3.15)

where τ = RC and B = 1/τ−α. A plot of u(t) is given in Figure 8 for k = B2C
and four values of α, which shows the nonzero rise time and exponential
decay of a EPSP that is evident in intracellular potential recordings (Rhode
& Smith, 1986; Paolini, Clark, & Burkitt, 1997). The Stein model is recovered
in the limit α→∞. Models such as this that have a finite rise time provide
an approximation of the postsynaptic potential at the soma (or specifically
at the site at which the action potential is generated) that incorporates the
time course of the diffusion of the current along the dendritic tree (Tuckwell,
1988a).

Figure 9 shows the relative output jitter for the general leaky integrate-
and-fire model with α = 5 and σin = 0.2, where time is measured in units
of the membrane time constant τ . The value of α determines the rise time
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of the synaptic input current, which achieves its maximum at time t = 1/α.
The value α = 5 is therefore somewhat on the low side of physiologically
realistic values, but was chosen in order to contrast the results with those
of the Stein model (which has zero rise time, α = ∞). In order to provide a
direct comparison with the results for the Stein model, the threshold ratio
is defined to be the same: R = θ/Na. (Note, however, that the maximum
possible value of V(t) that could be attained if all contributions arrived si-
multaneously is Vmax = v0 + Naumax and that umax = 0.3826 for α = 5.)
The analytical expression (see equation 2.13) was numerically solved for
R = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and the results for each value of N are
connected by the solid lines in Figure 9. The error bars give the results
obtained from 10,000 numerical simulations, as described in the previous
section (again the error bars are barely discernible for the larger values of N
since they are of the same magnitude as the width of the lines). The critical
value of the threshold ratio R, above which no output spikes are generated,
range from 0.392 (for N = 25) to 0.363 (for N = 800) for the particular
model parameters in Figure 9. The results, which are slightly lower than
for the Stein model (see Figure 5), again indicate that the relative output
jitter is substantially less than one over the whole range of thresholds and
inputs studied and that it decreases with an increasing number of inputs.
The results also show excellent agreement with the numerical simulations
for large numbers of inputs, again indicating that the small-amplitude ap-
proximation required for the analytic expression is extremely accurate even
for quite modest values of N.

4 Discussion and Conclusions

In this study we have presented a new method for analyzing integrate-and-
fire neurons with a large number of small-amplitude inputs. This technique
allows the analysis of models with arbitrary synaptic response functions,
in particular models that incorporate both leakage and a finite rise time
of the postsynaptic potential, which has previously been possible in only
very restricted cases. The method has been used to examine the question
of the relationship between the temporal dispersion of synchronized in-
puts and the resulting jitter of the spikes that are generated. The analytic
method presented here gives the output spike distribution in terms of an
integral equation. The first three moments of this distribution, which give,
respectively, the probability of an output spike, the average time of spike
generation, and the output jitter, are solved using standard numerical tech-
niques. The results are compared with the exact solution for the perfect
integrator model and with numerical simulations for the Stein model and a
model that includes both the membrane time constant and the current rise
time. The computational resources required for the numerical simulations
increase with the number of inputs and the required numerical accuracy,
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Figure 9: Relative output jitter σout/σin for the general leaky integrate-and-fire
model with α = 5, various numbers of inputs, and a range of threshold ra-
tios R = θ/Na. The jitter of the input σin is 0.2 in units of the membrane time
constant (τ = 1). The solid line connects values obtained from the solution of
equation 2.13, and the data points with error bars are each the result of 10,000
numerical simulations.

and are typically many orders of magnitude larger than those required for
the numerical solution of the analytical equation.

The analytical method, which is exact in the limit of a large number of
small-amplitude inputs, is shown to provide an accurate solution when the
number of inputs exceeds the order of 100. This technique allows the anal-
ysis of the whole class of integrate-and-fire neural models, from the simple
perfect integrator to models that incorporate important physiological fea-
tures, and therefore it can be used to test and analyze a wide variety of neural
phenomena. Integrate-and-fire models form an important bridge between
simpler neural models, which may have unrealistic approximations, and
full-scale computational simulations of particular cells, which frequently
require massive computational resources and in which the results may be
specific to the cells studied. Thus, the models presented here represent a
compromise between the opposing goals of neurophysiological detail and
analytical transparency.

Since the individual inputs add linearly, it is possible to include a va-
riety of synaptic response functions in equation 2.1 in order to model the
effect of synapses at different parts of the synaptic tree (i.e., synapses nearer
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the soma having a synaptic response function with larger amplitude and
shorter rise time than synapses farther away). The technique also enables
a distribution of PSP amplitudes to be analyzed, including amplitudes that
fluctuate randomly about a mean value, which could be used to model the
effect of quantal fluctuations. Furthermore, it would be possible to examine
the situation in which the excitatory and inhibitory inputs have different
distributions, such as when inhibitory inputs arrive later than excitatory
inputs. The technique has been used to examine integrate-and-fire neurons
with Poisson-distributed inputs, as well as examine inputs in which the
amplitudes ak (see equation 2.1) of the synaptic response functions have a
distribution of values (Burkitt & Clark, 1998a).

The results of the analysis of the relationship between the input jitter and
the output jitter provide clear support for earlier studies (Bernander et al.,
1994; Diesmann et al., 1996; Maršálek et al., 1997) showing that the jitter
of the spike output is much less than the jitter on the incoming PSPs; the
temporal dispersion of the output spikes is less than the temporal disper-
sion of the inputs, σout < σin, over a wide range of physiologically realistic
conditions. Such a reduction in the temporal jitter has indeed been observed
experimentally in the anteroventral cochlear nucleus (Joris, Carney, Smith,
& Yin, 1994). In this study the synchronization (or phase locking) to low-
frequency acoustic tones was measured for both auditory nerve fibers and
cells in the anteroventral cochlear nucleus, the first stage of processing in
the auditory pathway. The synchronization coefficient (Johnson, 1980) of
cells in the output tract of the anteroventral cochlear nucleus was found to
be enhanced relative to the incoming auditory nerve fibers. This provides
evidence that a reduction in temporal jitter is possible in the nervous system.

The relationship of the relative output jitter σout/σin to the number of
inputs N is of particular interest, especially in the large N limit, and this
is illustrated in the log-log plot of Figure 10. This figure shows plots for
the exact solution of the perfect integrator model (shown by the solid line
with triangles for R = 0.5 and σin = 0.2) and the analytical solution of the
Stein model (the dotted line with squares shows the results for R = 0.3
and σin = 0.2), the Stein model including inhibition (the dash-dot line with
diamonds is the case NI/NE = 0.5, R = 0.25, and σin = 0.2), and a general
leaky integrate-and-fire model (the dashed line with circles are the results
for α = 5, R = 0.15 and σin = 0.2). All plots have a slope of −1/2 for
large N, indicating that the width of the output spike distribution decreases
with 1/

√
N for large N for all three models (for fixed threshold ratio R). The

effect of including both the time constant of the membrane and a rise time
for the synaptic response function is, for physiologically realistic values,
found to be relatively small. Including inhibitory postsynaptic potentials,
however, is found to cause a larger increase in the jitter of the output spikes,
in agreement with earlier studies (Maršálek et al., 1997). It is also interesting
to note that the three plots in Figure 10 in which only excitatory inputs
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Figure 10: Log-log plot of the dependence of the relative output jitter σout/σin

on the number of inputs N. The solid line with triangles is the perfect integrator
model with R = 0.5 and σin = 0.2; the dotted line with squares is the Stein
model with R = 0.3 and σin = 0.2; the dashed line with circles is the general
leaky integrate-and-fire model with α = 5, R = 0.15, and σin = 0.2; the dash-dot
line with diamonds is the Stein model with inhibition NI/NE = 0.5, R = 0.25,
and σin = 0.2.

are included have numerical values that are very close, indicating that the
values of

√
Nσout/σin are almost identical (the values are also found to have

only a small dependence on the value of the threshold ratio R).
As the number of inputs increases, it is also of interest to compare the

probability density function of the membrane voltage with the probability
density of output spikes. For models that include a membrane decay term,
the probability density function p(v, t | v0) has a characteristic two-peak
structure, as discussed in section 3.2 in relation to the Stein model. The first
peak of the probability density function at the threshold p(Vth, t | v0) is
expected to have an average and width of distribution that closely approx-
imates that of the probability density of output spikes fθ (t), since it corre-
sponds to the upward passage of the potential through the threshold. As
the number of inputs N increases, the peaks of the probability density func-
tion at the threshold p(Vth, t | v0) become increasingly sharp; for threshold
ratios R below the critical threshold ratio Rcrit, this approximation to fθ (t)
by the first peak improves. This is shown in Figure 11, where the ratio of the
width of the probability density distribution σpd at threshold and the width
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Figure 11: Ratio of the width of the probability density to the output jitter
σpd/σout as a function of the number of inputs N for the leaky integrate-and-
fire model with α = 5 and σin = 0.2. The solid line with squares shows the
results for R = 0.1, and the dashed line with triangles shows the results for
R = 0.2.

of the spike output distribution σout is plotted as a function of the number of
inputs N for the general leaky integrate-and-fire model of section 3.3 with
α = 5, σin = 0.2 and R = 0.1 (solid line with squares), and R = 0.2 (dashed
line with triangles). The results show that σpd converges toward σout and
that σpd therefore provides an approximation to σout, which becomes in-
creasingly accurate for large values of N. However, the equivalence is not
exact (the ratio is not exactly 1) since the probability density of the potential
contains information about multiple threshold crossings. A plot of the con-
ditional probability density p(Vth, t | Vth, t′, v0) shows a large peak at t = t′,
corresponding to the first threshold crossing (this would actually be a delta
function if p(Vth, t | v0)was equal to fθ (t), as is evident from equation 2.13)
followed by a tail, corresponding to the multiple crossings, and a second
more rounded peak, corresponding to the second peak in p(Vth, t | v0)

from the passage of the voltage back to the resting value after the burst of
inputs.

In a cascade of neurons, there are a number of sources of variability, in
addition to the jitter of the inputs, that determine the stability of the neuronal
firing pattern (Gerstner & van Hemmen, 1996) and prevent the output jitter
from converging to zero. Maršálek et al. (1997) identified two important
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factors that introduce timing variability to the arriving PSPs: the delay due to
different spike propagation times and the jitter associated with the synapses.
Another important factor is the variation in the spiking thresholds of the
neurons, which will cause different neurons to spike at different relative
times. This variability is illustrated in Figure 12, which shows the average
times of spiking (measured relative to the center of the incoming distribution
of arrival times, taken to be t = 0) for different threshold ratios and numbers
of inputs. There is only a small variation in the average time of the output
spikes for neurons with the same threshold ratio R (values given at the
top of Figure 12) and different numbers of inputs N. There are, however,
substantial differences in the average times at which spikes are generated
by neurons with different threshold ratios. Consequently, variations of the
spiking threshold over a layer of neurons will cause variations in the relative
timing of the output spikes produced by the population of neurons. In
such a layered network, this variation in the timing of the spikes from the
previous layer will represent jitter on the inputs to the subsequent layer,
which is additional to the inherent jitter associated with the production of
the spikes.

Equivalently, the results presented in Figure 12 indicate that if the neu-
rons in a particular layer have varying numbers of active inputs, then their
relative times of firing will depend crucially on their number of inputs.
Neurons with the same absolute threshold Vth but fewer active inputs N
have a larger threshold ratio, as defined by equation 2.12. The results in
Figure 12 therefore predict that units with the same absolute threshold but
fewer active inputs will have a relative lag in their response. Such a phase
lag has been reported in a study of the temporal relationship between re-
sponses of optimally and suboptimally stimulated neurons in area 17 of cat
visual cortex (König et al., 1995). A systematic variation of the orientation
of visual stimuli led to neurons with optimal input, having responses that
tended to have a phase lead compared to neurons with suboptimal input.
These results are consistent with an interpretation based on our results in
which the suboptimally stimulated neurons have fewer active afferents and
therefore take longer (relative to optimally stimulated neurons) to reach
threshold.

This investigation has highlighted the role of the threshold in relation to
the number and amplitude of the synaptic inputs in describing the distribu-
tion of output spikes. We have studied an idealized situation in which spon-
taneous activity is neglected, and investigations are currently underway to
analyze the integrate-and-fire model with Poisson distributed inputs using
methods similar to those presented above (Burkitt & Clark, 1998a). This
will enable the study of more complex systems of synaptic inputs involving
partial synchronization, together with spontaneous activity or systematic
phase delays, such as occur in auditory nerve fibers excited by a traveling
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Figure 12: Dependence of the average time of spiking (i.e., center of the spiking
distribution) on the number of inputs N and the threshold ratio, for the gener-
alized leaky integrate-and-fire model with α = 5 and σin = 0.2. The different
symbols correspond to different numbers of inputs, given on the right of the
figure. The results for each value of the threshold ratio R (given at the top of the
figure) show only a small variation in time over the entire set of input values N.
Time is measured in units of τ , with the center of the incoming distribution of
EPSPs at t = 0.

wave along the basilar membrane of the inner ear (Bruce, Irlicht, & Clark,
1998).

In conclusion, we have presented a new technique for analyzing integrate-
and-fire neurons with inputs that are synchronized (with some temporal
jitter). The results are highly accurate in the physiologically interesting do-
main in which a threshold unit sums a large number of small-amplitude
postsynaptic potentials. The technique allows us to investigate models with
arbitrary postsynaptic response functions. The results for the analysis of syn-
chronization in three classes of the integrate-and-fire model agree with both
known analytic results and numerical simulations. In a layered network, the
dramatic reduction in jitter that is observed in these neural models repre-
sents a balance between the various sources of input jitter (the variation in
thresholds of the neurons, their number of active inputs, propagation times,
and their synaptic jitter) and the large convergence of inputs that tends to
reduce the output jitter.
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Appendix A: Evaluating the Probability Distribution

The probability distribution is evaluated as follows:

Pr {V(t) ≥ v | V(−∞) = v0}
=
∫ ∞

v−v0

dλ
2π

∫ ∞
−∞

dx exp {ixλ+N ln F(x, t)}

=
∫ ∞

v−v0

dλ
2π

∫ ∞
−∞

dx exp
{

ixλ− ixNaD(t)− x2

2
Na2[E(t)−D2(t)]

}
, (A.1)

where the term ln F(x, t) has been expanded using the standard Taylor’s
series expansion. The x-integral is a gaussian integral that is evaluated by
completing the square, and the λ-integral likewise becomes a gaussian in-
tegral,

Pr {V(t) ≥ v | V(−∞) = v0} =
∫ ∞

v−v0

dλ√
2π0(t)

exp
{
− (λ−3(t))

2

20(t)

}
= 1

2

[
1− erf

(
v− v0 −3(t)√

20(t)

)]
, (A.2)

where 3(t) and 0(t) are given by equation 2.10.

Appendix B: Evaluating the Joint Probability Density

The joint probability density is evaluated (for t1 < t2) as

p(v2, t2, v1, t1 | v0)

=
N∏
k

∫ ∞
−∞

dtk p(tk) δ(V(t1)− v1) δ(V(t2)− v2)

=
∫ ∞
−∞

dx2

2π

∫ ∞
−∞

dx1

2π
exp{i x2(v2 − v0)+ i x1(v1 − v0)

+ N ln F(x2, x1, t2, t1)}. (B.1)

F(x2, x1, t2, t1) contains cross-terms in x2 x1,

F(x2, x1, t2, t1) = 1− i x2 a D(t2)− i x1 a D(t1)

−x2
2

2
a2 E(t2)−

x2
1

2
a2 E(t1)− x2 x1 a2 G(t2, t1), (B.2)

where D(t),E(t) are given by equation 2.8 and G(t2, t1) by equation 2.17. The
term ln F(x2, x1, t2, t1) is expanded in the amplitude of the synaptic response
function as before, and the cross-term x2 x1 is eliminated by the change of
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variable x1 → x1+κ(t2, t1)x2 where κ(t2, t1) is defined in equation 2.16. The
x1- and x2-integrals are now independent and may be evaluated. The x1-
integral yields exactly p(v1, t1 | v0), and the x2-integral gives the conditional
probability density (see equation 2.15).
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