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Abstract

Dengue fever is endemic in tropical and sub-tropical countries, and some of the important fea-

tures of Dengue fever spread continue posing challenges for mathematical modelling. We pro-

pose a model, namely a system of integro-differential equations, to study a multi-serotype in-

fectious disease. The main purpose is to include and analyse the effect of a general time delay

on the model describing the length of the cross immunity protection and the effect of Antibody

Dependent Enhancement (ADE), both characteristics of Dengue fever. Analysing the system,

we could find the equilibriums in the invariant region. A coexistence endemic equilibrium

within the region was proved, even for the asymmetric case. The local stability for the dis-

ease free equilibrium and for the boundary endemic equilibriums were proved. We have also

results about the stability of the solutions of the system, that is completely determined by the

Basic Reproduction Number and by the Invasion Reproduction Number, defined mathemati-

cally, as a threshold value for stability. The global dynamics is investigated by constructing

suitable Lyapunov functions. Bifurcations structure and the solutions of the system were shown

through numerical analysis indicating oscillatory dynamics for specific value of the parameter

representing the ADE. The analytical results prove the instability of the coexistence endemic

equilibrium, showing complex dynamics. Finally, mortality due to the disease is added to the

original system. Analysis and discussions are made for this model as perturbation of the original

non-linear system.

Keywords: distributed delay, multi-strain model, temporary immunity, antibody de-

pendent enhancement - ADE, integro-differential equations.
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Resumo

A Dengue é endêmica em países tropicais e subtropicais e, algumas das importantes caracterís-

ticas da dengue continua sendo um desafio para a modelagem da propagação da doença. Assim,

propomos um modelo, um sistema de equações integro-diferenciais, com o objetivo de estu-

dar uma doença infecciosa identificada por vários sorotipos. O principal objetivo é incluir e

analisar o efeito de um tempo geral de retardo no modelo descrevendo o tempo de imunidade

cruzada para a doença e o efeito do Antibody Dependent Enhancement (ADE). Analisando o

sistema, encontramos os equilíbrios, onde a existência do equilíbrio de coexistência foi provado,

mesmo para o caso assimétrico. A estabilidade local para o equilíbrio livre de doença e para

os equilíbrios específicos de cada sorotipo foi provada. Também mostramos resultados para a

estabilidade das soluções do sistema que é completamente determinada pelo Número Básico

de Reprodução e pelo Número Básico de Invasão, definido matematicamente como um valor

limiar para a estabilidade. A dinâmica global é investigada construindo funções de Lyapunov.

Adicionalmente, bifurcações e as soluções do sistema foram mostrados via análise numérica

indicando dinâmica oscilatória para específicos valores do parâmetro que representa o efeito

ADE. Resultados analíticos obtidos pela teoria da perturbação provam a instabilidade do equi-

líbrio endêmico de coexistência e apontam para um complexo comportamento do sistema. Por

fim, a mortalidade causada pela doença é adicionada ao sistema original. Análises e discussões

são feitas para este modelo como uma perturbação do sistema não linear original.

Palavras-chave: retardo distribuído, modelo de multi sorotipos, imunidade temporária

cruzada, antibody dependent enhancement (ADE), equações integro-diferenciais.
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CHAPTER 1

Introduction

Dengue fever is an endemic disease in tropical and sub-tropical countries. According to

World Health Organization WHO (2018), in 2016, more than 2.38 million cases were reported

in the Americas, where Brazil alone contributed with almost 1.5 million cases. In 2017, a

significant reduction in the number of cases in the Americas was reported, even though a recent

estimate indicates 390 million cases per year around the world (WHO, 2018).

Dengue fever constitutes a public health problem and it is caused by Dengue virus

(DENV), which is transmitted to a human population by the bite of infected mosquitos. So

far, it is known that there are four distinct virus serotypes circulating in the population (Gubler,

2014). A fifth variant (DENV-5) was discovered and isolated in October 2013, according to

Mustafa (2015), however it just follows wild cycle.

The disease is presented in two forms: asymptomatic or symptomatic form. The

symptomatic form can be presented as Dengue classic or Dengue hemorrhagic fever (DHF).

Antibody-Dependent Enhancement (ADE) was proposed to explain the more frequent occur-

rence of severity of Dengue fever and the Dengue hemorrhagic fever in secondary infections

(Guzman, 2013; Gubler, 2014). ADE happens when the antibodies acquired in a previous in-

fection fail in neutralizing the next distinct virus, favouring the increasing of the viral replication

(Guzman, 2013; Reich, 2013).

Another characteristic of Dengue virus is the cross immunity protection. It happens

when the infection with any of the four dengue serotypes leads to a short term protection for all
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serotypes. Long term protection occurs only for the serotype which the individual was infected

(Reich, 2013).

Motivated by the growing discussion about Dengue fever, since it is a public health

problem, we proposed a mathematical model, namely, a system of Integro-Differential Equa-

tions (IDE) that can be applied to describe and to study the propagation of Dengue fever in a

population, considering two main characteristics of the disease: ADE and cross immunity pro-

tection. The main purpose is to include and analyse the effect of the general time delay on the

model, which is described to represent the length of the cross immunity protection, as observed

in Dengue fever. In addition, a constant parameter will be added in the model in favour of

studying the effect of ADE.

In the next section, concerning to summarize the mathematical theoretical framework

and models that have been proposed to describe Dengue propagation, we are going to provide

a brief description of the main studies and the main results. After that, we are going to propose

the model.

The analysis of the time delay system is left for the second chapter, where we define

and analyse the limiting system as well as look for equilibriums and show local stability. Subse-

quently, we finish the second section with results of the stability of solutions of the delay system.

Afterwards, the last section of the third chapter is reserved to construct Lyapunov function, in

order to prove the global stability.

Numerical analysis will be made at chapter three, where the bifurcation structure and

stability of the coexistence equilibrium are numerically studied. At chapter four we prove ana-

lytically the instability of the endemic equilibrium using perturbation theory.

At chapter five, by adding a mortality term which represents small mortality due to the

disease, we present the improvement of the original system and we analyse it through perturba-

tion theory of non-linear systems.

At chapter six we are going to study a particular case of the model, as well as to perform

the qualitative analysis of the ODE model, describing the equilibriums of the system. Also, we

are going to show results about the local stability of the equilibriums, defining a threshold value

which is very important for the stability. Finally, comparison of the results, important remarks,

final considerations and conclusions will be made over the last chapter.
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1.1 Theoretical Background

Since Dengue virus remains a public health problem, a lot of researches have been done

about it. The first work in dengue modelling including the ADE effect and multi-strains was

done by Ferguson (1999a). In the paper, it has modelled the ADE consequences, where previous

exposure to one serotype increases the transmission probability for the second infection. The

Basic Reproduction Number was found, and it has explored two strains of dengue virus in the

simple model.

Johansson (2011), concerned about the impact of Dengue vaccine, previously made a

comparison table with the main studies in Dengue fever, from the first work in 1970 by Fischer

until 2010 with Otero. The comparison table contained the differences among models, like

number of serotypes included in the model, if it were described the vector population, and

if ADE effect and cross protection were modelled. This way the author could validate and

parametrize the models in order to evaluate the impact of immunization programs.

Another author made a review of mathematical studies in dengue transmission. An-

draud (2012) reviewed articles, discussed and explored these studies based on epidemiological

assumptions with focus on the impact of vaccination and also in relation to the impact of vector

control.

Some more sophisticated models were proposed by Adams (2006), Bianco (2009), Hu

(2013). Adams (2006) included the ADE effect in their two-strain model, he also described the

immunological distance among dengue serotypes through a function with the hypotheses that

this function reduces the probability of contracting a secondary infection. Numerical results

were presented in that study.

Bianco (2009) proposed a mathematical model and evaluated the parameters that de-

scribe the ADE effect and cross immunity in the system showing that weak temporary cross

immunity stabilizes the system, but strong cross immunity destabilizes the dynamics. Endemic

steady state, reproduction number and the predicted location of the Hopf bifurcation were writ-

ten assuming symmetry among all the strains. Numerical simulations were observed in order to

analyse the impact of different interaction in a multi-strain model.

Hu (2013) proposed two different models with different assumptions and also com-

pared their model with the model of Bianco (2009). The models included the cross immunity

class. At this class, the individuals are partially temporarily immune and the constant rate φ de-

scribes the ADE factor. The differences among Bianco (2009) model and the others two models

3



are that Hu (2013) proposed the model with vector population and included the exposure class

for human population. Numerical simulation and sensitivity analysis were made in order to plot

a Hopf bifurcation which occurs in both models.

Aguiar (2007) also proposed an Ordinary Differential Equations (ODE) system for two

serotypes of Dengue virus. Also, the total population was divided in classes which the individ-

uals are identified by its clinical disease states. The assumptions for the model were concerned

to the total population which remains constant in time, therefore the birth and the death rates

were constant and equal. And, as the other models summarized up to the present moment, φ

is the parameter that describes the ADE factor. In this model Ri describes the population class

that represents the individuals who are temporarily immune to the other serotypes once infected

by one serotype. Time series simulations were investigated and various bifurcation phenomena

were observed.

Theoretical mathematical analysis of the Aguiar (2007) model was made by Aguiar

(2008) and by Kooi (2014). Aguiar (2008) has quantified the attractor structure, limit cycle

and chaotic attractor by calculating Lyapunov exponents as a consequence from her previously

paper. Analytic formulations for the equilibrium and analysis of the bifurcation structure were

obtained for the symmetric case (when the strains are the same).

Kooi (2014) used the same model proposed by Aguiar (2007) to describe some numer-

ical and analytical results. As a consequence of the works done by Aguiar (2008), Kooi (2014)

made some numerical analysis to observe the dynamical behaviour of the model. Furthermore,

they described the analytic steady states and the stability for the Disease Free equilibrium and

for the boundary equilibrium, used on the numerical simulation to obtain the bifurcations.

These models aforementioned were formulated in terms of ordinary differential equa-

tions, without incorporating time lags. Therefore, there is no time delay in any state class for

human population, neither for recovery nor incubation time. They consider that the recovery

time acts instantaneously.

Even though these models consider the recovery time acts instantaneously, it is very

important to assume time delay as a mechanism to model the dynamic of Dengue fever, because

the immune response acts temporarily, protecting the body from second infections (Ferguson,

1999a; Hu, 2013; Guzman, 2013; Reich, 2013).

Simpler delay models are being used a lot in applications to describe biological models

and infectious diseases dynamics. Delay Differential Equations (DDE) are useful on attempt

to describe, for instance, the population or disease behaviour which intrinsically depends on
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a certain period of past time. Delay models were used in epidemiology by Cooke (1999) and

Hethcote (1981) in order to determine when the time delay affects in periodc oscillations, as

well as in models described by Hethcote (1989).

A SIR (susceptible, infected, recovered) model described by Kermack e McKendrick

assumes that the recovered period is exponentially distributed and this assumption results in,

obviously, an ODE system (Brauer, 2008).

Models with general time delay for recovery were used by Van den Driessche (1996).

In this work, Van den Driessche (1996) used the special case of step function for the recovered

period. Models with time delay in infected class were analysed by Cooke (1973) and on SIRS

model (susceptible, infected, recovered, susceptible) with general time delay for recovery by

Hethcote (1989).

Motivated by the spread of Malaria with focus and observation of the incubation time

of the parasite, Nah (2014) has recently described a mathematical model for Malaria transmis-

sion with time delay on exposure class and with a general incubation period. Whereas, previ-

ously authors as Xiao (2013) used exponential function and step function in order to describe

the incubation period, Nah (2014) assumed for the short term incubation period an exponential

distribution, while for the long term incubation a fixed length, as a consequence, the distribution

P (t) is a weighted sum of exponential and a step function.

A mathematical model describing a general multi-strain disease has also been recently

described by Chen (2016). The authors proposed a delay diffusive two strain disease model

considering the SIR structure, constant recruitment rate and constant time delay representing

the length of immunity period. In that work the stability of the model was determined by the

Basic Reproduction Number.

A model for Dengue fever that describes a time delay between infectious and infected

host was described by Sakdanupahp (2009). This model is relatively simple, with four equa-

tions, but brings two different constant time delays, one for infectious host to infected host and,

the other, for vectors population. The study included vector population, but does not model

different serotypes. Steady states were obtained, stability was proved and numerical analysis

and comparison data were made.

As well as the study presented by Chen (2016), the model described by Cai (2013)

preserves the SIR structure, models multi-strains, includes incubation period time, nevertheless

in the model of the Cai (2013) there is an equation describing the vector population dynamic. In

the paper, the authors were focused on the evolution of parasite or virus, once according to Cai
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(2013) the model could describe both: the dynamics of Dengue fever or Malaria. Also, an in-

terval time for maturation was added to the model and this distributed delay was placed in order

to describe the incubation period for the virus (or parasite). Moreover, the Basic Reproduction

Number was obtained by biological definition.

Guan (2017) also described a Dengue fever model with time delay. The time delay

included in the model refers to a time incubation of the virus in an infected population and in an

infected mosquito population. In this work, numerical simulations and analytical results were

obtained taking four cases for the constant time delay. They proposed a model containing only

one serotype, however it was added the dynamics of vector population.

Models including distributed delay were recently used to described different kinds of

epidemics. For instance, a SVEIR model with imperfect vaccination was formulated by Wang

(2016b) to study the impact of vaccination on the mumps transmission. The distributed delay

was used to describe a general latent distribution in the latent population class. Construct-

ing Lyapunov functional, the authors have showed global stability of the model and discussed

whether the disease will die out or becomes endemic depending on the size of the Vaccination

Reproduction number.

Taking into account a simpler SIR model, Huang (2016) considered an infinite dis-

tributed delay on complex population network in order to deliver some on insights biological

and social networks. Numerical experiments confirm that, in this case, the delay slows down the

extinction of the disease when the threshold value is smaller than 1, while the delay accelerates

the spreading if it is bigger than 1.

Distributed delay was also used by Xu (2017) in a SVEIR model with vaccination and

general incidence function. Based on a SVEIR model with continuous vaccination strategy,

Xu (2017) improved the model considering heterogeneity to understand the effects of infinity

distributed time delay and vaccination in the transmission of infection diseases. Results showed

that distributed delay has no impact on the qualitative behaviour and global dynamics.

1.2 Model Formulation and Application

In this section, based on the theoretical works that study epidemics disease aforemen-

tioned, we are going to propose a model, namely, a system of integro-differential equation to

describe a multi-strain disease, motivated by Dengue fever.

Let N(t) be the total population of individuals at time t in a region. We divided the
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population in disjoint classes according to the individual condition (status): susceptible for all

serotypes, infected by serotype i, temporarily immune for all serotypes after being infected by

serotype i, recovered for serotype i but susceptible to the others and, recovered for all serotypes,

represented at time t, respectively by S(t), Ii(t), Ci(t), Ri(t) e R(t). Furthermore, we in-

clude two more classes for the population, Iij(t), representing the sub-population reinfected by

serotype j after being infected by serotype i, with i, j = 1, 2, i 6= j.

Considering r the growth rate and k the carrying capacity, we assume the Ricker func-

tion (F (N) = rN(t)e−kN(t)) for birth in the susceptible class and d a constant natural mortality

rate for human population. We assume that the constant rate βi is the average number of effec-

tive contacts per infected individual, per unit time, by serotype i. Whereas the constant rate αj

is the probability of being infected again by different serotype, by serotype j.

It is important to note that the mosquito population is not considered explicitly in the

model. Consequently, the rate βi and αj will be the average number of bite and, the probability

of a susceptible individual being bite for an infected mosquito by serotype i and, the probability

of a recovered individual by serotype i being bite again for an infected mosquito by serotype j,

respectively. This way, βi = b
qi
V
bi, and αj = b

qj
V
aj , where b is the average number of bite per

mosquito per human, qi is the number of infected mosquitoes by serotype i, bi the probability

of a susceptible individual being bitten for an infected mosquito by serotype i, and aj the prob-

ability of a recovered individual by serotype i being bitten again for an infected mosquito by

serotype j and, V represents the total population of mosquitoes.

Individuals in the infectious classes, Ii(t), remain in this class with average time 1
γ

,

since we assume that the length in this class is exponentially distributed. Once in infected

class, the individual recovers and goes to the temporarily immune class Ci(t). In this class,

the individual gets temporary immunity for all serotypes. After that, the individual becomes

susceptible again to the other serotypes and permanently recovered to the one that became

infected.

Moreover, we assume for Ci class a more general length of immunity. Let P i(t) be the

function that describes the immunity period, the time that an individual remains in the Ci class,

t units time after getting in this class. It is reasonable to assume that

P i(0) = 1 and P i(∞) = 0, (1.1)
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and, satisfies that P i(t) is non-increasing and

∫ ∞
0

P i(s)ds =
1

ωi
<∞. (1.2)

Once in temporarily immune class, the individual recovers and gets long life immunity

to that serotype, even though it is still susceptible for the other serotypes. Hence, an individual in

the Ri class can be infected again with a probability αj , described previously. Only after being

infected by all dengue serotypes the individual becomes immune and recovers at a constant rate

γ and remains life long recovered.

Whenever the individual is infected again by a different serotype, an increase risk of

developing complications and aggravation for the disease happens. The pre-existence of dengue

virus antibodies is a significant risk factor for severe disease such as the Dengue hemorrhagic

fever (DHF) (Guzman, 2013; Gubler, 2014). This happens because the immune system re-

sponds to a different, but very similar serotype, increasing the infectiousness and enhancing

viral replication (Gubler, 2014; Hu, 2013). This effect is called Antibody-Dependent Enhance-

ment (ADE), when secondary infections are possible in the presence of low level of antibody,

which causes growth of the viral replication (Gubler, 2014; Guzman, 2013).

According to Ferguson (1999a), this viral growth is associated with the transmissibility

of the disease, therefore reinfected individuals are more infectious than during the first infection.

In this model, the epidemiological consequence ADE will be described through the constant

coefficient φ, which represents the degree of enhancement, where it is assumed that previously

exposure to one serotype causes the increase of the reinfection, therefore, an increasing of the

susceptibility for reinfection.

Thus, not considering possible deaths caused by disease, the model can be summarized

on the follow diagram:

Diagram of interactions among population classes for Dengue fever
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γ P 2(t) α1φ
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γ

Figure 1.1 Flowchart for the compartmental model. Each frame refers to a compartment in which individual can reside according to its clinical

disease state and, the arrows indicate the direction of movement of individuals among classes.

Based on works by Hethcote (1989), Wang (2016a), Cooke (1996), Van den Driessche

(2007b) and in the previous assumptions, the model uses that the force of infection is given

by standard incidence. The standard incidence is chosen, generally, for diseases which contact

cannot increase indefinitely and it is limited even if the population size increases (Martcheva,

2015). In addition, a small number of infected is initially introduced into a region where pop-

ulation is susceptible, S(0) > 0, Ii(0) > 0, Ci(0) = 0, I21(0) = 0, I12(0) = 0, Ri(0) = 0 and

R(0) = 0. Therefore, the model can be described as a system of Integro-Differential Equations

(IDE) as follows:
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dS(t)

dt
= rN(t)e−kN(t) − dS(t)− β1

S(t)

N(t)
I1(t)− β2

S(t)

N(t)
I2(t)− β2

S(t)

N(t)
I12(t)− β1

S(t)

N(t)
I21(t)

dI1(t)

dt
= −dI1(t) + β1

S(t)

N(t)
I1(t) + β1

S(t)

N(t)
I21(t)− γI1(t)

dI2(t)

dt
= −dI2(t) + β2

S(t)

N(t)
I2(t) + β2

S(t)

N(t)
I12(t)− γI2(t)

C1(t) =

∫ t

0

γI1(s)P 1(t− s)e−d(t−s)ds

C2(t) =

∫ t

0

γI1(s)P 2(t− s)e−d(t−s)ds (1.3)

dR1(t)

dt
= −dR1(t)− α2φ

R1(t)

N(t)
I12(t)− α2φ

R1(t)

N(t)
I2(t)−

∫ t

0

γI1(s)P 1
t (t− s)e−d(t−s)ds

dR2(t)

dt
= −dR2(t)− α1φ

R2(t)

N(t)
I21(t)− α1φ

R2(t)

N(t)
I1(t)−

∫ t

0

γI2(s)P 2
t (t− s)e−d(t−s)ds

dI12(t)

dt
= −dI12(t)− γI12(t) + α2φ

R1(t)

N(t)
I2(t) + α2φ

R1(t)

N(t)
I12(t)

dI21(t)

dt
= −dI21(t)− γI21(t) + α1φ

R2(t)

N(t)
I1(t) + α1φ

R2(t)

N(t)
I21(t)

dR(t)

dt
= −dR(t) + γI12(t) + γI21(t),

where N(t) is the total population on time t and the equation which describes the dynamics of

the total population is given by

dN(t)

dt
= rN(t)e−kN(t) − dN(t). (1.4)

Note that the population of temporarily immune individuals was expressed by the in-

tegral

Ci(t) =

∫ t

0

γIi(s)P
i(t− s)e−d(t−s)ds. (1.5)

Then, differentiating (1.5) gives

dCi(t)

dt
= γIi(t)P

i(0)− dCi(t) +

∫ t

0

γIi(s)P
i
t (t− s)e−d(t−s)ds (1.6)

where P i
t denotes the derivative of P i(t − s) with respect to t. Since P i(0) = 1, it give us the

differential equation for Ci.

Thus, the IDE system can be described as follows:
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dS(t)

dt
) = rN(t)e−kN(t) − dS(t)− β1

S(t)

N(t)
I1(t)− β2

S(t)

N(t)
I2(t)− β2

S(t)

N(t)
I12(t)− β1

S(t)

N(t)
I21(t)

dI1(t)

dt
= −dI1(t) + β1

S(t)

N(t)
I1(t) + β1

S(t)

N(t)
I21(t)− γI1(t)

dI2(t)

dt
= −dI2(t) + β2

S(t)

N(t)
I2(t) + β2

S(t)

N(t)
I12(t)− γI2(t)

dC1(t)

dt
= γI1(t)− dC1(t) +

∫ t

0

γI1(s)P 1
t (t− s)e−d(t−s)ds

dC2(t)

dt
= γI2(t)− dC2(t) +

∫ t

0

γI2(s)P 2
t (t− s)e−d(t−s)ds (1.7)

dR1(t)

dt
= −dR1(t)− α2φ

R1(t)

N(t)
I12(t)− α2φ

R1(t)

N(t)
I2(t)−

∫ t

0

γI1(s)P 1
t (t− s)e−d(t−s)ds

dR2(t)

dt
= −dR2(t)− α1φ

R2(t)

N(t)
I21(t)− α1φ

R2(t)

N(t)
I1(t)−

∫ t

0

γI2(s)P 2
t (t− s)e−d(t−s)ds

dI12(t)

dt
= −dI12(t)− γI12(t) + α2φ

R1(t)

N(t)
I2(t) + α2φ

R1(t)

N(t)
I12(t)

dI21(t)

dt
= −dI21(t)− γI21(t) + α1φ

R2(t)

N(t)
I1(t) + α1φ

R2(t)

N(t)
I21(t)

dR(t)

dt
= −dR(t) + γI12(t) + γI21(t)

dN(t)

dt
= rN(t)e−kN(t) − dN(t).

It is important to note that if we assume the length of immunity being exponentially

distributed, which means that the probability of temporarily immune individual remains in the

Ci class is P i(t) = e−ωit, with ωi > 0, for i = 1, 2, then the system of Integro-Differential

Equations becomes a system of Ordinary Differential Equations. Of course, this exponential

function satisfies the assumptions required for P i(t), then the ODE system can be described as

follows:
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dS(t)

dt
= rN(t)e−kN(t) − dS(t)− β1

S(t)

N(t)
I1(t)− β2

S(t)

N(t)
I2(t)− β2

S(t)

N(t)
I12(t)− β1

S(t)

N(t)
I21(t)

dI1(t)

dt
= −dI1(t) + β1

S(t)

N(t)
I1(t) + β1

S(t)

N(t)
I21(t)− γI1(t)

dI2(t)

dt
= −dI2(t) + β2

S(t)

N(t)
I2(t) + β2

S(t)

N(t)
I12(t)− γI2(t)

dC1(t)

dt
= γI1(t)− dC1(t)− ω1C1(t)

dC2(t)

dt
= γI2(t)− dC2(t)− ω2C2(t) (1.8)

dR1(t)

dt
= −dR1(t)− α2φ

R1(t)

N(t)
I12(t)− α2φ

R1(t)

N(t)
I2(t) + ω1C1(t)

dR2(t)

dt
= −dR2(t)− α1φ

R2(t)

N(t)
I21(t)− α1φ

R2(t)

N(t)
I1(t) + ω2C2(t)

dI12(t)

dt
= −dI12(t)− γI12(t) + α2φ

R1(t)

N(t)
I2(t) + α2φ

R1(t)

N(t)
I12(t)

dI21(t)

dt
= −dI21(t)− γI21(t) + α1φ

R2(t)

N(t)
I1(t) + α1φ

R2(t)

N(t)
I21(t)

dR(t)

dt
= −dR(t) + γI12(t) + γI21(t)

dN(t)

dt
= rN(t)e−kN(t) − dN(t).
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CHAPTER 2

Analysis of the Time Delay System

Over the previous chapter, we have proposed a model to study the spread of Dengue

fever in individuals in a region. Over the present chapter, we are going to analyse the system

which the cross-immunity protection time can be defined as any continuous function with some

additional properties, already defined in second section.

2.1 Limiting System

We are going to analyse the model (1.7) assuming the length of immunity P i(t) being

a general distribution satisfying the assumption (1.1) and (1.2). Observe that the equation that

describes the dynamic for individuals in the recovered class is decoupled, hence we can put

R(t) = N(t)− S(t)− I1(t)− I2(t)− C1(t)− C2(t)−R1(t)−R2(t)− I12(t)− I21(t).

Also, the equation that describes the dynamics of total population in time does not

depend on the individual disease state, in other words, the disease does not interfere on the

dynamic of total population. Thus, searching for the steady state of the equation

dN(t)

dt
= rN(t)e−kN(t) − dN(t), (2.1)
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it is found a unique positive equilibrium

N∗ =
1

k
ln
(r
d

)
, r > d.

Therefore, assuming that the size of population N(t) is constant in time, namely, the

total population reaches the equilibrium N∗, we search for constants functions S∗, I∗1 , I∗2 ,C∗1 ,

C∗2 , R∗1, R∗2, I∗12, I∗21, which satisfy:

0 = N∗d− dS∗ − β1S
∗(I∗1 + I∗21)− β2S

∗(I∗2 + I∗12)

0 = −(d+ γ)I∗1 + β1S
∗I∗1 + β1S

∗I∗21

0 = −(d+ γ)I∗2 + β2S
∗I∗2 + β2S

∗I∗12

0 = γI∗1 − dC∗1 + γI∗1

∫ t

0

P 1
t (t− s)e−d(t−s)ds

0 = γI∗2 − dC∗2 + γI∗2

∫ t

0

P 2
t (t− s)e−d(t−s)ds (2.2)

0 = −dR∗1 − α2φR
∗
1(I∗12 + I∗2 )− γI∗1

∫ t

0

P 1
t (t− s)e−d(t−s)ds

0 = −dR∗2 − α1φR
∗
2(I∗21 + I∗1 )− γI∗2

∫ t

0

P 2
t (t− s)e−d(t−s)ds

0 = −(d+ γ)I∗12 + α2φR
∗
1(I∗2 + I∗12)

0 = −(d+ γ)I∗21 + α1φR
∗
2(I∗1 + I∗21)

where βi = βi
N∗

and αi = αi
N∗

.

Clearly, the system (1.7) always has a disease-free equilibrium, namely,

D0 = (N∗, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and, R∗ = N∗ − S∗ − I∗1 − I∗2 − C∗1 − C∗2 −R∗1 −R∗2 − I∗12 − I∗21.

For the purpose of analysis of the dynamic behaviour and stability of the zero solution

of the delay system (1.7), we must note that we are working with an IDE system consisting of

Volterra Integro-differential Equations of convolution type of the form:

dx(t)

dt
= f(t, x) +

∫ t

0

h(t− s)g(s, x(s))ds, x(0) = ξ, (2.3)

where h is called kernel function of the equation.

According to Miller (1972), if kernel function is integrable, the asymptotic stability of

the zero solution of the linear system will be known just by looking if there are no solutions in
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the right half of plane Re z ≥ 0 of det(zI − A − Ĥ) = 0 , where A is the linear part of the

system and Ĥ denotes the Laplace transform of the linear part of h.

In Miller (1972), Miller (1971) and Brauer (1978) a whole theory can be found about

the Volterra Integral equations, as well as the Volterra Integro-differential equations, and those

will be useful for our purpose here. Also, Feng (2016) and Hethcote (1981) used the same

approach to demonstrate the results of stability theorems. According to Hethcote (1981), us-

ing Miller’s theorems, it is possible to show that the general problem is well posed and the

equilibrium of the system corresponds with those of their limiting equation. Also, according to

Miller (1971), the limiting system ensures that the initial system proposed involving non-linear

Volterra Integro-differential equations has an equilibrium.

Following the idea by Brauer (1978), we consider the following limiting system for

the initial system (1.7):

dS(t)

dt
= dN∗ − dS(t)− β1S(t)(I1(t) + I21(t))− β2S(t)(I2(t) + I12(t))

dI1(t)

dt
= −(d+ γ)I1(t) + β1S(t)(I1(t) + I21(t))

dI2(t)

dt
= −(d+ γ)I2(t) + β2S(t)(I2(t) + I12(t))

dC1(t)

dt
= γI1(t)− dC1(t) +

∫ ∞
0

γI1(s)P 1
t (t− s)e−d(t−s)ds

dC2(t)

dt
= γI2(t)− dC2(t) +

∫ ∞
0

γI2(s)P 2
t (t− s)e−d(t−s)ds (2.4)

dR1(t)

dt
= −dR1(t)− α2φR1(t)(I12(t) + I2(t))−

∫ ∞
0

γI1(s)P 1
t (t− s)e−d(t−s)ds

dR2(t)

dt
= −dR2(t)− α1φR2(t)(I21(t) + I1(t))−

∫ ∞
0

γI2(s)P 2
t (t− s)e−d(t−s)ds

dI12(t)

dt
= −(d+ γ)I12(t) + α2φR1(t)(I2(t) + I12(t))

dI21(t)

dt
= −(d+ γ)I21(t) + α1φR2(t)(I1(t) + I21(t))

dR(t)

dt
= −dR(t) + γ(I12(t) + I21(t)).

For this limiting system (2.4), it is necessary to define the Banach space with memory,

as Feng (2016), Wang (2012), Li (2010) and Röst (2008) have done in order to have a well-

posed system and solutions defined in (−∞, 0], since we have terms with infinite delay. We can

choose the space of bounded continuous functions on (−∞, 0], however for qualitative theory

will be useful to consider another space phase.

15



Let ∆1, ∆2 be positive constants, such that ∆i < d, satisfying, for i = 1, 2,∫ ∞
0

P i
t (u)e−due∆iudu <∞. (2.5)

Define the Banach space, for i = 1, 2,

X∆i = {Ψ ∈ C((−∞, 0],R) : Ψ(s)e∆is is uniformly continuous in (−∞, 0] and ||Ψ||e<∞},

where ||Ψ||e= sups≤0|Ψ(s)|e∆is. We consider X = R×X∆1 ×X∆2 ×R7 as the phase space

for the limiting system (2.4).

Denote Iit , for i = 1, 2, the solution Ii(t) at time t, which is Iit(s) = Ii(t + s),

s ≤ 0. We have interest in non-negative solutions, which corresponds to non-negative functions

of X∆1 and X∆2 , for this reason, functions in Λi = {Ψ ∈ X∆i
: Ψ(s) ≥ 0, s ∈ (−∞, 0] },

i = 1, 2.

Thus, for initial conditions, S(0) = s0 ∈ R+, I10 = Ψ1 ∈ Λ1, I20 = Ψ2 ∈ Λ2,

Ci(0) = ci ∈ R+, Ri(0) = ri ∈ R+, Iji(0) = θi ∈ R+, i = 1, 2, the solutions of the limiting

systems in X remain non-negative and, Iit ∈ X∆i
, for all t, for i = 1, 2.

Moreover, the following set ΩX = {(S, I1(.), I2(.), C1, C2, R1, R2, I12, I21, R) ∈ R+ ×

Λ1×Λ2×R7
+ : S+I1(0)+I2(0)+C1 +C2 +R1 +R2 +I12 +I21 +R ≤ N∗} is positively invariant

for system (2.4).

In fact, by standard theory of functional differential equations, it is possible to verify

that solutions of the system (2.4) with non-negative initial condition and Ii(0) ≥ 0, has solu-

tions (S(t), I1t , I2t , C1(t), C2(t), R1(t), R2(t), I12(t), I21(t), R(t)) which remain non-negative for

all t ≥ 0.

Also, adding the equations of the system we have

dS

dt
+
dI1t(0)

dt
+
dI2t(0)

dt
+
dC1

dt
+
dC2

dt
+
dR1

dt
+
dR2

dt
+
dI12

dt
+
dI21

dt
+
dR

dt
=

dN∗ − d(S(t) + I1t(0) + I2t(0) + C1(t) + C2(t) +R1(t) +R2(t) + I12(t) + I21(t) +R(t)).

Hence

lim sup
t→∞

(S(t) + I1t(0) + I2t(0) + C1(t) + C2(t) +R1(t) +R2(t) + I12(t) + I21(t) +R(t)) ≤ N∗.

This shows that solutions with initial conditions in R+ × Λ1 × Λ2 × R7
+ remain in ΩX for all

t ≥ 0.
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The trivial equilibrium D0 = (N∗, 0, 0, 0, 0, 0, 0, 0, 0, 0) is in the invariant set ΩX .

Now, in order to find the other equilibriums of the limiting system (2.4), in the invariant set ΩX ,

will be necessary to rewrite the term with the limiting expression as well as we will need the

following assumptions

∫ ∞
0

P i(s)e−dsds <∞ and,
∫ ∞

0

sP i(s)e−dsds <∞. (2.6)

Changing parameters in the expression we have, for i = 1, 2,

hi(t) =: −
∫ t

0

P i
t (t− s)e−d(t−s)ds = −

∫ t

0

P i
s(s)e

−dsds. (2.7)

Also, we have

hi(t) = −
∫ t

0

P i
s(s)e

−dsds = −[P i(t)e−dt − P (0) + d

∫ t

0

P i(s)e−dsds].

Since by assumption (2.6), the average time that an individual remains temporarily immune

before becoming susceptible again or die can be describe by

∫ ∞
0

P i(s)e−dsds := Ni, (2.8)

where 0 < Ni < 1/d, and Ni is constant, we have

hi(∞) = −
∫ ∞

0

P i
t (t− s)e−d(t−s)ds

= lim
t→∞
−
∫ t

0

P i
s(s)e

−dsds = 1− dNi := Mi.

Also the second assumption in (2.6) leads to a

∫ ∞
0

sP i
s(s)e

−dsds <∞. (2.9)

This result (2.9) will be necessary in order to use the stability theorems found in Miller (1972).

It is obtained by integrating by parts the left side of the expression above and using the assump-

tions in (2.6).

Then, the equilibriums of the limiting system (2.4) in ΩX are the same as those of the
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following system, in Ω,

dS

dt
= dN∗ − dS − β1S(I1 + I21)− β2S(I2 + I12)

dI1

dt
= −(d+ γ)I1 + β1S(I1 + I21)

dI2

dt
= −(d+ γ)I2 + β2S(I2 + I12)

dC1

dt
= γI1 − dC1 − γI1M1

dC2

dt
= γI2 − dC2 − γI2M2 (2.10)

dR1

dt
= −dR1 − α2φR1(I12 + I2) + γI1M1

dR2

dt
= −dR2 − α1φR2(I21 + I1) + γI2M2

dI12

dt
= −(d+ γ)I12 + α2φR1(I2 + I12)

dI21

dt
= −(d+ γ)I21 + α1φR2(I1 + I21)

and, R(t) = N∗ − S(t)− I1(t)− I2(t)− C1(t)− C2(t)−R1(t)−R2(t)− I12(t)− I21(t).

Since Mi is positive and smaller than one, in the case of the extinction of one of the

strains, the boundary equilibriums of the system (2.4) are

D1 =

(
d+ γ

β1

,
d

β1

[
β1N

∗

d+ γ
− 1

]
, 0,

γ

d
(1−M1)I∗1 , 0,M1

γ

β1

[
β1N

∗

d+ γ
− 1

]
, 0, 0, 0, 0

)

and,

D2 =

(
d+ γ

β2

, 0,
d

β2

[
β2N

∗

d+ γ
− 1

]
, 0,

γ

d
(1−M2)I∗2 , 0,M2

γ

β2

[
β2N

∗

γ + d
− 1

]
, 0, 0, 0

)
.

The boundary equilibriums, D1 and D2, will be in the Ω positively invariant region, as long as

the parameters satisfy
N∗β1

d+ γ
> 1 and,

N∗β2

d+ γ
> 1, respectively.

In the case of coexistence of the two infection forces, we are able to find the equilib-
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rium, which is given by

C∗1 =
γ(1−M1)

d
I∗1

C∗2 =
γ(1−M2)

d
I∗2

R∗1 =
d+ γ − β2S

∗

α2φ

R∗2 =
d+ γ − β1S

∗

α1φ
(2.11)

I∗12 =
(d+ γ)I∗2 − β2S

∗I∗2
β2S∗

I∗21 =
(d+ γ)I∗1 − β1S

∗I∗1
β1S∗

I∗1 + I∗2 =
d(N∗ − S∗)

d+ γ

and, S∗ is the root of the cubic polynomial O(S) = b3S
3 + b2S

2 + b1S + b0 where

b3 = β1β2[α2(d+ γ(1−M1))(β1 − α1φ)(d+ γ) + α1(d+ γ(1−M2))(β2(d+ γ)− α2φγM1)]

b2 = α2β2(d+ γ)(d+ γ(1−M1))((d+ γ)(α1φ− β1) +N∗β1α1φ)

− β1α2(d+ γ)3(β1 − α1φ) + β2α1(d+ γ)2(α2φγM1 − β2(d+ γ))

− β2β1α1(d+ γ(1−M2))((d+ γ)2 − α2φγM1N
∗)

b1 = (d+ γ)3[(d+ γ)(β2α1 + β1α2 − α2α1φ)−N∗α1α2φ(β1 + β2)]

b0 = N∗φα1α2(d+ γ)4.

Moreover, S∗ has to satisfy that S∗ < d+γ

βi
, i = 1, 2, in order to have the equilibrium

in the Ω region. Otherwise, if S∗ does not satisfy the inequality, the variables which represent

recovered and infected populations will be negative.

Now, we are ready to prove the theorems about the existence of the equilibriums of

the system (2.4). Yet, we need to define an important epidemiological threshold before, which

is going to help us to prove the existence theorems as well as giving us the stability of these

equilibriums.

2.1.1 Basic Reproduction Number

The Basic Reproduction Number R0 is defined by many authors, such as Van den

Driessche (2008), as the expected number of secondary infections produced by one case in a
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susceptible population, also as a measure of the potential for disease spread in a population.

Mathematically, the Basic Reproduction Number is a threshold for stability of Disease Free

equilibrium (Van den Driessche, 2008).

Thereby, we define the threshold value

R0 =
N∗β

d+ γ
(2.12)

as the Basic Reproduction Number of the system for symmetric case, when the parameters are

equal. Also, the threshold values

R1 =
N∗β1

d+ γ
and R2 =

N∗β2

d+ γ
(2.13)

as the Basic Reproduction Number, for asymmetric case, regarding to infection one and two,

respectively.

In this case, it is usual to define an overall Reproduction Number for the system when

it is a multi-strain model with different strains. Thus, the Basic Reproduction Number for the

system, concerning to asymmetric case will be defined as:

R0 = max{R1,R2}. (2.14)

2.1.2 Equilibriums of the Limiting System

We are going to assume, without loss of generality, from now on that β2 ≥ β1. There-

fore, either we have symmetry in the parameters, it means the infections have the same force,

or one of the infections has the largest infection rate. In this case,R0 = R2.

Theorem 1. If R1 > 1 then the system of equations (2.4), always has the boundary equilib-

rium, D1, in ΩX , where

D1 =

(
d+ γ

β1

,
d

β1

[
β1N

∗

d+ γ
− 1

]
, 0,

γ

d
(1−M1)I∗1 , 0,M1

γ

β1

[
β1N

∗

d+ γ
− 1

]
, 0, 0, 0, 0

)
.

And, if R2 > 1 the system of equations (2.4) always has the boundary equilibrium,

D2, in ΩX , where

D2 =

(
d+ γ

β2

, 0,
d

β2

[
β2N

∗

d+ γ
− 1

]
, 0,

γ

d
(1−M2)I∗2 , 0,M2

γ

β2

[
β2N

∗

γ + d
− 1

]
, 0, 0, 0

)
.
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Proof. It is easy to see that, if N∗βi
d+γ

> 1, for i = 1, 2 then I∗i , C∗i and R∗i , for i = 1, 2 are

positive and the total sum is N∗. Thus, Di is in Ω, i = 1, 2 and the system has always a

boundary equilibrium with that condition.

Theorem 2. If maxR0 > 1 and,

RInv =
β1

β2

+

(
N∗β2

d+ γ
− 1

)
α1φγM2

β2(d+ γ)
> 1 (2.15)

then, the system (2.4) admits an equilibrium of the coexistence with the two strains in ΩX .

Proof. The independent term, b0, of the polynomial O(S) is always positive. Since the equi-

librium is given by (2.11) with S∗ being a root of the polynomial O, this equilibrium will be in

the region Ω if S∗ < d+γ

βi
, for i = 1, 2, we define

Smin = min{d+ γ

β1

,
d+ γ

β2

}.

It means, if N∗β2
d+γ

> 1 andRInv > 1, we have

O(Smin) =
[(d+ γ)2γM1α2β1]

β2
2 [(d+ γ)2(β2 − β1) + γM2α1φ((d+ γ)−N∗β2)] < 0.

This shows that we have a root S∗ of the polynomial O, such that, 0 < S∗ < Smin

for i = 1, 2. Therefore, for this S∗, the positive equilibrium D3 with the variables satisfying

(2.11) is Ω. Moreover, this shows that we have a positive equilibrium of the system, in ΩX ,

with the coexistence of the two strains.

2.1.3 Symmetric Case

Once we restrict to the case β1 = β2 = β, α1 = α2 = α and P 1(t) = P 2(t), which

implies that M1 = M2 = M , we can write the cubic polynomial O(S) = Q(S)(bS + a) where

a = −αφ(d+ γ)2

b = αφβ(d+ γ(1−M))

and, Q(S) = a2S
2 + a1S + a0 where

a2 = β[(d+ γ)(αφ− 2β) + γMαφ]

a1 = (d+ γ)2(2β − αφ)−N∗αφβ(d+ γ + γM)

a0 = N∗αφ(d+ γ)2.
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Since S∗ = −a
b

= (d+γ)2

β(d+γ(1−M))
gives us a negative value for I∗12 and I∗21, the equilibrium

will not be in the Ω region, we just need to look for the Q(S) roots.

While searching for the roots, we must remember that we want a S∗, root of Q(S)

polynomial, which is positive and, S∗ < d+γ
β

, in order to have an equilibrium in the Ω region.

All these information give us the following theorem.

Theorem 3. If R0 > 1 the system of equations (2.4) restrict to the case β1 = β2 = β,

α1 = α2 = α and M1 = M2 = M always have two boundary equilibriums in ΩX , namely,

D1 =

(
d+ γ

β
,
d

β

[
βN∗

d+ γ
− 1

]
, 0,

γ

d
(1−M)I∗1 , 0,M

γ

β

[
βN∗

d+ γ
− 1

]
, 0, 0, 0, 0

)
,

D2 =

(
d+ γ

β
, 0,

d

β

[
βN∗

d+ γ
− 1

]
, 0,

γ

d
(1−M)I∗2 , 0,M

γ

β

[
βN∗

d+ γ
− 1

]
, 0, 0, 0

)
and, a unique positive equilibrium in ΩX , with coexistence of the two strains, where

S∗ =
−a1

2a2

−
√
a2

1 − 4a0a2

2a2

, (2.16)

(with ai being the coefficients of polynomial Q(S)) and, I∗1 = I∗2 = d
2(d+γ)

(N −S∗), C∗1 = C∗2 ,

R∗1 = R∗2, I∗12 = I∗21 satisfies (2.11).

Proof. If N∗β
d+γ

> 1 then, it is easy to see that Di is in Ω, for i = 1, 2.

In addition, since the searched root S∗ needs to be smaller than d+γ
β

, let Smax be

Smax =
d+ γ

β
.

Then, the quadratic polynomial evaluated in Smax is

Q(Smax) = Q(
d+ γ

β
) = (d+ γ)γMαφ

(
d+ γ

β
−N∗

)
< 0,

because N∗β
d+γ

> 1.

Besides, the independent term, a0, of the polynomialQ(S) is positive. This proves that

we have a positive root satisfying S∗ < d+γ
β

, and it is given by

S∗ =
(d+ γ)2(−2β + αφ) +N∗αφβ(d+ γ + γM)

2β[(d+ γ)(αφ− 2β) + γMαφ]
(2.17)

−
√

((d+ γ)2(2β − αφ) +N∗αφβ(d+ γ + γM))2 − 8N∗αφβ2γM(d+ γ)2

2β[(d+ γ)(αφ− 2β) + γMαφ]
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Therefore, the equilibrium D3 = (S∗, I∗1 , I
∗
2 , C

∗
1 , C

∗
2 , R

∗
1, R

∗
2, I
∗
12, I

∗
21, R

∗) is in Ω,

where S∗ is given by (2.17) and, from (2.11),

I∗1 = I∗2 =
d(N∗ − S∗)

2(d+ γ)
,

C∗1 = C∗2 =
γ(1−M)

d
I∗1 ,

R∗1 = R∗2 =
d+ γ − βS∗

αφ
,

I∗12 = I∗21 =
(d+ γ)I∗1 − βS∗I∗1

βS∗
,

R∗ = N∗ − S∗ − I∗1 − I∗2 − C∗1 − C∗2 −R∗1 −R∗1 − I∗12 − I∗21.

2.2 Stability Analysis

In the previous section, we have calculated the equilibriums of the limiting system in

order to know the equilibriums of the delay system. Over this section, we are going to introduce

results that connect the local stability of the limiting system with the local stability of the delay

system. In the sequence, we are going to analyse the stability of the limiting system (2.4) in

order to use this results to achieve the main goal which involves understanding the dynamic

behaviour of the initial system (1.7).

From the work by Brauer (1978), it is known that the asymptotic stability of solution

X = 0 of the system

dX(t)

dt
= F (t,X) +

∫ t

0

G(t− s)X(s)ds, X(0) = ξ, (2.18)

is equivalent to the integrability of the resolvent kernel of the linear system. It means, it turns

out to be equivalent to the non-vanishing of det(λI −A− B̂(λ)) for Reλ ≥ 0, that is, there is

no solutions in the right half plane Reλ ≥ 0 of the

det(λI − A− B̂(λ)) = 0, (2.19)

where (2.19) is the characteristic equation for a system, I is the identity matrix,A is the Jacobian

matrix of the system in relation to the variable X , B̂(λ) =
∫∞

0
e(−λs)B(s)ds and, B is the

Jacobian matrix of the system in relation to the variable Y = X(t− s) with time delay.
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For the purpose of finding the stability of the solutions of the system (1.7) we follow

the idea found in the study by Brauer (1978) in the section 3, denoting the limiting system (2.4)

as the unperturbed system. Thus, the equilibriums of the limiting system need to be found and

the hypothesis (2.6) and (2.9) need to be true.

Since we have already calculated the equilibriums of the limiting system (unperturbed

system) in the previous section, and the perturbation function of the system tends to zero as t

goes to infinity, we are going to use the linearization theory for the limiting system.

Then, the stability of the equilibriums of the limiting system is a consequence of sta-

bility of the zero solution of the linearized system. Considering the assumptions in (2.6) true,

which lead to a hypothesis (2.9), the perturbation function of the system is integrable, hence we

have the necessary assumptions to use the theorem 2 in the work from Brauer (1978), as well as

showing that if the zero solution of the linearized limiting system is uniformly asymptotically

stable, then the solution of the delay system will be also stable.

2.2.1 Stability of the Equilibriums of the Limiting System

Once we remind the limiting system (or the unperturbed system as Brauer (1978)

named) (2.4), we regard

H(t) =

∫ ∞
t

γY (s)Pt(t− s)ds (2.20)

as a perturbation, where H is a matrix, Y is the matrix containing the variables of the popula-

tions, Pt is the vector containing the function P i
t (t − s)e−d(t−s) . Adding the perturbation with

the limiting system we have the initial system (1.7).

We must remember that we have a Disease Free equilibrium (DFE) of the system (2.4)

which is given by D0 = (N∗, 0, 0, 0, 0, 0, 0, 0, 0). We want to investigate the stability of DFE

D0, linearizing the system at D0, by writing the solution like

S(t) = N∗ + s(t), Ii(t) =0 + yi(t)

Ci(t) = 0 + ci(t), Ri(t) =0 + ri(t)

Iji(t) = 0 + ki(t),

for i 6= j, i, j = 1, 2. Then, the null solution of the associated linear system

24



s
′
(t) = −ds(t)− β1N

∗(y1(t) + k1(t))− β2N
∗(y2(t) + k2(t))

y
′

1(t) = −(d+ γ)y1(t) + β1N
∗(y1(t) + k1(t))

y
′

2(t) = −(d+ γ)y2(t) + β2N
∗(y2(t) + k2(t))

c
′

1(t) = γy1(t)− dc1(t) + γ

∫ ∞
0

y1(t− z)P 1
z (z)e−d(z)dz

c
′

2(t) = γy2(t)− dc2(t) + γ

∫ ∞
0

y2(t− z)P 2
z (z)e−d(z)dz

r
′

1(t) = −dr1(t)− γ
∫ ∞

0

y1(t− z)P 1
z (z)e−d(z)dz

r
′

2(t) = −dr2(t)− γ
∫ ∞

0

y2(t− z)P 2
z (z)e−d(z)dz

k
′

2(t) = −(d+ γ)k2(t)

k
′

1(t) = −(d+ γ)k1(t)

corresponds to the solution D0 of the system (2.4).

Therefore, finding the exponential solution for the associated linear system is to deter-

mine the exponential rate of growth or decay λ ∈ C such that λ is the root of the characteristic

equation

det(λI −H0 − Ĝ(λ)) = 0 (2.21)

where I is the identity matrix 9× 9, H0 is the matrix

H0 =



−d −β1N∗ −β2N∗ 0 0 0 0 −β2N∗ −β1N∗

0 β1N∗ − (d+ γ) 0 0 0 0 0 0 β1N∗

0 0 β2N∗ − (d+ γ) 0 0 0 0 β2N∗ 0

0 γ 0 −d 0 0 0 0 0

0 0 γ 0 −d 0 0 0 0

0 0 0 0 0 −d 0 0 0

0 0 0 0 0 0 −d 0 0

0 0 0 0 0 0 0 −(d+ γ) 0

0 0 0 0 0 0 0 0 −(d+ γ)



,
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and, the matrix

Ĝ(λ) =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 γĜ1(λ) 0 0 0 0 0 0 0

0 0 γĜ2(λ) 0 0 0 0 0 0

0 −γĜ1(λ) 0 0 0 0 0 0 0

0 0 −γĜ2(λ) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,

where, Ĝi(λ) =

∫ ∞
0

e−λzgi(z)dz =

∫ ∞
0

e−λzP i
z(z)e−dzdz, it means Ĝ(λ) is the matrix whose

the elements are the Laplace transform of the continuous function gi(z) = e−dzP i
z(z).

As soon as we solve the characteristic equation (2.21) of the associated system, we

have the following eigenvalues of the system at DFE

λ1 = −d, λ6 =− (d+ γ) (2.22)

λ2 = −d, λ7 =− (d+ γ)

λ3 = −d, λ8 =− (d+ γ) + β1N
∗

λ4 = −d, λ9 =− (d+ γ) + β2N
∗

λ5 = −d.

It gives us the following theorem about the stability of Disease Free equilibrium.

Theorem 4. If R0 < 1 then the Disease Free equilibrium, D0 = (N∗, 0, 0, 0, 0, 0, 0, 0, 0), of the

system (2.4) is locally asymptotically stable. And D0 will be unstable ifR1 > 1 or R2 > 1.

Proof. If N∗β1
d+γ

< 1 and N∗β2
d+γ

< 1, all the eigenvalues given by (2.22) are negative. Then

D0 is locally stable. In case of N∗β1
d+γ

> 1 or N∗β2
d+γ

> 1, the eigenvalues λ8 or λ9 are positive,

consequently, D0 will be unstable.

Now we want to know about the stability of the Boundary equilibriums of the system

(2.4) which is given by

D1 =

(
d+ γ

β1

,
d

β1

[
β1N

∗

d+ γ
− 1

]
, 0,

γ

d
(1−M1)I∗1 , 0,M1

γ

β1

[
β1N

∗

d+ γ
− 1

]
, 0, 0, 0

)
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and,

D2 =

(
d+ γ

β2

, 0,
d

β2

[
β2N

∗

d+ γ
− 1

]
, 0,

γ

d
(1−M2)I∗2 , 0,M2

γ

β2

[
β2N

∗

γ + d
− 1

]
, 0, 0

)
.

We want to investigate the stability of the Boundary equilibrium D1 linearizing the

system at D1, by writing the solution like

S(t) = S∗ + s(t), I1(t) =I∗1 + y1(t)

C1(t) = C∗1 + c1(t), R1(t) =R∗1 + r1(t)

Iji(t) = 0 + ki(t), I2(t) =0 + y2(t)

C2(t) = 0 + c2(t), R2(t) =0 + r2(t)

for i 6= j, i, j = 1, 2. Then, the system (2.4) is associated with the linear system

s
′
(t) = −ds(t)− β1S

∗(y1(t) + k1(t))− β1s(t)I
∗ − β2S

∗(y2(t) + k2(t))

y
′

1(t) = −(d+ γ)y1(t) + β1S
∗(y1(t) + k1(t)) + β1s(t)I

∗
1

y
′

2(t) = −(d+ γ)y2(t) + β2S
∗(y2(t) + k2(t))

c
′

1(t) = γy1(t)− dc1(t) + γ

∫ ∞
0

y1(t− z)P 1
z (z)e−d(z)dz

c
′

2(t) = γy2(t)− dc2(t) + γ

∫ ∞
0

y2(t− z)P 2
z (z)e−d(z)dz

r
′

1(t) = −dr1(t)− α2φR
∗
1(y2(t) + k2(t))− γ

∫ ∞
0

y1(t− z)P 1
z (z)e−d(z)dz

r
′

2(t) = −dr2(t)− α1φr2(t)I∗1 − γ
∫ ∞

0

y2(t− z)P 2
z (z)e−d(z)dz

k
′

2(t) = −(d+ γ)k2(t) + α2φR
∗
1(y2(t) + k2(t))

k
′

1(t) = −(d+ γ)k1(t) + α1φI
∗
1r2(t).

Therefore, finding the exponential solution for the associated linear system is to deter-

mine the exponential rate of growth or decay λ ∈ C such that λ is the root of the characteristic

equation

det(λI −H1 − Ĝ(λ)) = 0 (2.23)

where I is the identity matrix 9× 9, H1 is the matrix
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H1 =



−dR1 −(d+ γ) −β2 d+γ
β1

0 0 0 0 −β2 d+γ
β1

−(d+ γ)

d(R1 − 1) 0 0 0 0 0 0 0 (d+ γ)

0 0 (d+ γ)
(
β2
β1
− 1
)

0 0 0 0 β2
d+γ

β1
0

0 γ 0 −d 0 0 0 0 0

0 0 γ 0 −d 0 0 0 0

0 0 −α2φ

β1
γM1(R1 − 1) 0 0 −d 0 −α2φ

β1
γM1(R1 − 1) 0

0 0 0 0 0 0 −d− α1φ

β1
d(R1 − 1) 0 0

0 0 α2φ

β1
γM1(R1 − 1) 0 0 0 0 −(d+ γ) + α2φ

β1
γM1(R1 − 1) 0

0 0 0 0 0 0 α1φ

β1
d(R1 − 1) 0 −(d+ γ)



,

and, the matrix

Ĝ(λ) =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 γĜ1(λ) 0 0 0 0 0 0 0

0 0 γĜ2(λ) 0 0 0 0 0 0

0 −γĜ1(λ) 0 0 0 0 0 0 0

0 0 −γĜ2(λ) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,

where, Ĝi(λ) =

∫ ∞
0

e−λzgi(z)dz =

∫ ∞
0

e−λzP i
z(z)e−dzdz, it means, Ĝ(λ) is the matrix whose

the elements are the Laplace transform of the continuous function gi(z) = e−dzP i
z(z).

Once we solve the characteristic equation (2.23) of the associated system, we have the

following eigenvalues

λ1 = −d, λ6 =− d
(

1 +
α1φ

β1

(R1 − 1)

)
(2.24)

λ2 = −d, λ7 =
1

2

(
−dR1 −

√
(dR1)2 − 4d(d+ γ)(R1 − 1)

)
λ3 = −d, λ8 =

1

2

(
−dR1 +

√
(dR1)2 − 4d(d+ γ)(R1 − 1)

)
λ4 = −(d+ γ), λ9 =

α2

β1

φγM1(R1 − 1) +
(β2 − β1)

β1

(d+ γ)

λ5 = −(d+ γ).

Now, we want to investigate the stability of the boundary equilibrium D2 linearizing

the system at D2, by writing the solution like
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S(t) = S∗ + s(t), I2(t) =I∗2 + y2(t)

C2(t) = C∗2 + c2(t), R2(t) =R∗2 + r2(t)

Iji(t) = 0 + ki(t), I1(t) =0 + y1(t)

C1(t) = 0 + c1(t), R1(t) =0 + r1(t)

for i 6= j, i, j = 1, 2. Then, the system (2.4) is associated with the linear system

s
′
(t) = −ds(t)− β1S

∗(y1(t) + k1(t))− β2s(t)I
∗
2 − β2S

∗(y2(t) + k2(t))

y
′

1(t) = −(d+ γ)y1(t) + β1S
∗(y1(t) + k1(t))

y
′

2(t) = −(d+ γ)y2(t) + β2S
∗(y2(t) + k2(t)) + β2s(t)I

∗
2

c
′

1(t) = γy1(t)− dc1(t) + γ

∫ ∞
0

y1(t− z)P 1
z (z)e−d(z)dz

c
′

2(t) = γy2(t)− dc2(t) + γ

∫ ∞
0

y2(t− z)P 2
z (z)e−d(z)dz

r
′

1(t) = −dr1(t)− α2φr1(t)I∗2 − γ
∫ ∞

0

y1(t− z)P 1
z (z)e−d(z)dz

r
′

2(t) = −dr2(t)− α1φR
∗
2(y1(t) + k1(t))− γ

∫ ∞
0

y2(t− z)P 2
z (z)e−d(z)dz

k
′

2(t) = −(d+ γ)k2(t) + α2φI
∗
2r1(t)

k
′

1(t) = −(d+ γ)k1(t) + α1φR
∗
2(y1(t) + k1(t)).

Therefore, finding the exponential solution for the associated linear system is to deter-

mine the exponential rate of growth or decay λ ∈ C such that λ is the root of the characteristic

equation

det(λI −H2 − Ĝ(λ)) = 0 (2.25)

where I is the identity matrix 9× 9, H2 is the matrix

H2 =



−dR2 −β1 d+γ
β2

−(d+ γ) 0 0 0 0 −(d+ γ) −β1 d+γ
β2

0 (d+ γ)
(
β1
β2
− 1
)

0 0 0 0 0 0 β1
d+γ

β2

d(R2 − 1) 0 0 0 0 0 0 (d+ γ) 0

0 γ 0 −d 0 0 0 0 0

0 0 γ 0 −d 0 0 0 0

0 0 0 0 0 −d− α2φ

β2
d(R2 − 1) 0 0 0

0 −α1φ

β2
γM2(R2 − 1) 0 0 0 0 −d 0 −α1φ

β2
γM2(R2 − 1)

0 0 0 0 0 α2φ

β2
d(R2 − 1) 0 −(d+ γ) 0

0 α1φ

β2
γM2(R2 − 1) 0 0 0 0 0 0 −(d+ γ) + α1φ

β2
γM2(R2 − 1)



,
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and, the matrix

Ĝ(λ) =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 γĜ1(λ) 0 0 0 0 0 0 0

0 0 γĜ2(λ) 0 0 0 0 0 0

0 −γĜ1(λ) 0 0 0 0 0 0 0

0 0 −γĜ2(λ) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,

where, Ĝi(λ) =

∫ ∞
0

e−λzgi(z)dz =

∫ ∞
0

e−λzP i
z(z)e−dzdz, it means, Ĝ(λ) is the matrix whose

the elements are the Laplace transform of the continuous function gi(z) = e−dzP i
z(z).

Once we solve the characteristic equation (2.25) of the associated system, we have the

following eigenvalues

λ1 = −d (2.26)

λ2 = −d

λ3 = −d

λ4 = −(d+ γ)

λ5 = −(d+ γ)

λ6 = −d
(

1 +
α2φ

β2

(R2 − 1)

)
λ7 =

1

2

(
−dR2 −

√
(dR2)2 − 4d(d+ γ)(R2 − 1)

)
λ8 =

1

2

(
−dR2 +

√
(dR2)2 − 4d(d+ γ)(R2 − 1)

)
λ9 =

α1φ

β2

γM2(R2 − 1) +
(β1 − β2)

β2

(d+ γ).

It gives us the following theorem about the stability of the Boundary equilibriums.

Theorem 5. The Boundary equilibrium, D1, of the system (2.4) is always unstable in ΩX

region. And, D2 is locally stable, in ΩX , if RInv < 1 and, is unstable in ΩX if RInv > 1,

where

RInv =
R1

R2

+ (R2 − 1)
α1φγM2

β2(d+ γ)
. (2.27)
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Proof. Since D1 is in Ω we have that R1 > 1. Then, R1−1 > 0, therefore, the eigenvalues

λ6, λ7 and λ8 in (2.24) are negative. However, λ9 given in (2.24) is positive, since β2 > β1

and R1 − 1 > 0. Thus, D1 will be unstable.

For the analysis of the stability of the D2, it is important to note that, since D2 is in

Ω, R2 > 1 and, because of that, the eigenvalue in (2.26) λ6, λ7 and λ8 are negative. Now,

rewriting λ9 which is given in (2.26) we obtain

λ9 =
α1φγM2(R2 − 1)

β2

+
β1

β2

(d+ γ)− (d+ γ)

=
α1φγM2

β2

(R2 − 1) +
R1

R2

(d+ γ)− (d+ γ).

Thus λ9 < 0, if RInv =
R1

R2

+ (R2 − 1)
α1φγM2

β2(d+ γ)
< 1. Thus, the equilibrium D2

will be locally stable.

And λ9 > 0, if RInv =
R1

R2

+ (R2 − 1)
α1φγM2

β2(d+ γ)
> 1. Thus, the equilibrium D2

will be unstable.

In addition, if RInv = 1, Smin = d+γ
β2

will be the root of the polynomial O(S), the

Boundary equilibrium will be the only positive root of the polynomial (as described before in

details in the theorem for the existence of the equilibriums, in the previously section).

We can rewrite the threshold value RInv defined in the theorem above as

RInv =
R1

R2

+ (R2 − 1)
α1φγM2

β2(d+ γ)
(2.28)

=
R1

R2

+
α1φ

β1

γ

(d+ γ)
M2R1

(
1− 1

R2

)
.

And, we know from (2.8) that 1−M2 = dN2 > 0, which means that M2 < 1. Then,

if
α1φ

β1

≤ 1, we have that RInv < R1. Biologically speaking this results mean that there is a

range of values for β1 for which the strain one cannot invade the population if the strain two is

endemic. This way, the infection forces two may protect the population from infection forces

one. After this range value, the infection forces start to coexist.

The value RInv is also called the Invasion Reproduction Number and we are going to

discuss about this threshold further, over the next chapters.

The results for existence and stability of the equilibriums were proved assuming β2 >

β1. For β1 < β2 the results follow the same, but usingR0 = R1 andRInv = R2

R1
+α2φ

β2

γ
(d+γ)

M1R2

(
1− 1

R1

)
.
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Therefore, the boundary equilibrium associated with the smaller infection rate will always be

unstable, while the other one will depend on theRInv.

2.2.2 Symmetric Case

For the analysis of the equilibriums stability on the symmetric case, where β1 = β2 =

β, α1 = α2 = α and P 1(t) = P 2(t) which implies that M1 = M2 = M , we just need to

solve the characteristic equation (2.21),

det(λI −H0 − Ĝ(λ)) = 0,

of the linear associated system, taking equal parameters.

As soon as we solve this characteristic equation, we have the following eigenvalues of

the linear associated system at D0, for the symmetric case

λ1 = −d, λ6 =− (d+ γ) (2.29)

λ2 = −d, λ7 =− (d+ γ)

λ3 = −d, λ8 =− (d+ γ) + βN∗

λ4 = −d, λ9 =− (d+ γ) + βN∗

λ5 = −d.

In the same way, taking the equal parameters in the matrices of the characteristic equa-

tions

det(λI −Hi − Ĝ(λ)) = 0,

for i = 1, 2, the eigenvalues of the linear associated system at

D1 =

(
d+ γ

β
,
d

β
(R0 − 1), 0,

γ

d
(1−M)I∗1 , 0,M

γ

β
(R0 − 1), 0, 0, 0

)
, (2.30)

and, at

D2 =

(
d+ γ

β
, 0,

d

β
(R0 − 1), 0,

γ

d
(1−M)I∗2 , 0,M

γ

β
(R0 − 1), 0, 0

)
, (2.31)
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are the same and given by

λ1 = −d (2.32)

λ2 = −d

λ3 = −d

λ4 = −(d+ γ)

λ5 = −(d+ γ)

λ6 = −d
(

1 +
αφ

β
(R0 − 1)

)
λ7 =

1

2

(
−dR0 −

√
(dR0)2 − 4d(d+ γ)(R0 − 1)

)
λ8 =

1

2

(
−dR0 +

√
(dR0)2 − 4d(d+ γ)(R0 − 1)

)
λ9 =

αφ

β
γM(R0 − 1).

It gives the following theorem about the stability of the equilibriums.

Theorem 6. If R0 < 1 then the Disease Free equilibrium of the system (2.4) is locally asymp-

totically stable in the symmetric case. It is unstable if R0 > 1. In addition, the Boundary

equilibriums, D1 and D2, given in (2.30) and (2.31), respectively, are unstable in the ΩX re-

gion, whenR0 > 1.

Proof. If R0 < 1, then, N∗β < d + γ. Therefore, the eigenvalues λ8 and λ9 in (2.29) are also

negative. It proves the local asymptotic stability of DFE. If R0 > 1, then N∗β > d + γ. And,

the eigenvalues λ8 and λ9 in (2.29) are positive, what proves the instability of the DFE.

According to the previous theorem, D1 and D2 are in the interest region Ω if R0 > 1.

Then, N∗β > d + γ and the eigenvalue λ6, given in (2.32) is negative. Also, the eigenvalues

λ7 and λ8 have negative real part, but λ9 is positive, since R0 > 1. This way, the Boundary

equilibriums are always unstable.

It is important to note that, when R0 = 1, we have
d+ γ

β
= N∗. Therefore, the only

equilibrium of the system is the Disease Free equilibrium in this case. Biologically speaking,

these results mean that, since the serotypes have the same force of infection, if one strain invades

a disease free population, strain two does the same at the same time. Thus, the two infection

starts to coexist in a susceptible population at the same time.
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2.2.3 Stability of the solutions of the Time Delay System

Over previous section, we have shown the equilibriums of the unperturbed (limiting)

system (2.4) and the stability of the equilibriums. In addition, the assumptions in (2.6) about

kernel function are true, which lead to∫ ∞
0

P i
s(s)e

−dsds <∞. (2.33)

Also, leading to the assumption (2.9), that is,

∫ ∞
0

sP i
s(s)e

−dsds <∞. (2.34)

Moreover, with the assumption (2.9), we can prove that the perturbation function H(t)

defined in (2.20) is integrable. In fact, integrating H(t), assuming that Y is a bounded function,

changing the integration limiting and using (2.9) we have∫ ∞
0

H(t) <∞. (2.35)

Also, the theorems proved in the previous section show the uniformly asymptotic sta-

bility of the zero solution of the linear limiting system, therefore the stability of the equilibriums

of the limiting system.

By theorem 2 from Brauer (1978) (see Appendix) we have the following results about

the solutions stability of the initial system (1.7).

Corollary 1. If R1 < 1 and R2 < 1 then the Disease Free equilibrium,D0 = (N∗, 0, 0, 0, 0, 0, 0, 0, 0),

of the system (1.7) is locally asymptotically stable. And, D0 is unstable ifR1 > 1 or R2 > 1.

Corollary 2. Without loss of generality, we suppose β2 > β1. Then, the Boundary equilibrium,

D1, of the system (1.7) is always unstable in Ω. D2 is locally stable in Ω if RInv < 1 and, it

is unstable in Ω if RInv > 1, where

RInv =
R1

R2

+ (R2 − 1)
α1φγM2

β2(d+ γ)
. (2.36)

Symmetric Case

Corollary 3. IfR0 < 1 then the Disease Free equilibrium of the system (1.7) is locally asymp-

totically stable in the symmetric case. And, it is unstable if R0 > 1. In addition, the Boundary

equilibriums, D1 and D2, given in (2.30) and (2.31), respectively, are unstable in Ω, when

R0 > 1.
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2.3 Global Stability

Over the previous sections, we have seen the set Ω = {(S, I1, I2, C1, C2, R1, R2, I12, I21, R) ∈

R10
+ such that S + I1 + I2 + C1 + C2 +R1 +R2 + I12 + I21 +R ≤ N∗} is positively invariant for

the system (1.7). Also, we have proved the local stability for the DFE equilibrium and for the

Boundary Endemic equilibrium which is completely determined by the Reproduction numbers

and by the Invasion Reproduction number. In this section, we are going to investigate the global

dynamics of the system (1.7), by constructing suitable Lyapunov functions. The results are

going to be established and formalized in the following theorems.

2.3.1 Global Stability of the DFE

Theorem 7. If R0 ≤ 1 then the Disease-Free equilibrium D0 of the system (1.7) is globally

attractive in Ω.

Proof. First, we denote the positive function, for i = 1, 2,

Πi(t) =

∫ ∞
0

γIi(s)P
i(t− s)e−d(t−s)ds. (2.37)

It is considered h(z) = z − 1 − ln(z), z ∈ R∗+. Then, h ≥ 0, since it has a global

minimum at z = 1 and h(1) = 0.

Thus, we let L be the function

L(t) =
1

d+ γ

(
N∗h

(
S

N∗

)
+ I1 + I2 + I21 + I12 +R1 +R2 + Π1 + Π2

)
, (2.38)

this way,

L(t) =
1

d+ γ

(
S −N∗ −N∗ln

(
S

N∗

)
+ I1 + I2 + I21 + I12 +R1 +R2

)
+

1

d+ γ

(∫ ∞
0

γI1(s)P 1(t− s)e−d(t−s)ds+

∫ ∞
0

γI2(s)P 2(t− s)e−d(t−s)ds

)

is well-posed, it is a Lyapunov function, with L ≥ 0, where the equality is true if and only if

S = N∗ and, Ii = 0, Ri = 0, Iij = 0 for i, j = 1, 2, since N∗h
(
S
N∗

)
≥ 0, for any S > 0.
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Now, differentiating L along the solution of the system (1.7) we have

L′ =
1

d+ γ

(
S ′ −N∗S

′

S
+ I ′1 + I ′2 + I ′21 + I ′12 +R′1 +R′2 + Π′1 + Π′2

)
(2.39)

=
1

d+ γ

(
dN∗ − dS − N∗

S
(dN∗ − dS − β1S(I1 + I21)− β2S(I2 + I12))

)
+

1

d+ γ

(
−γ(I1 + I2)− d(I1 + I2)− d(R1 +R2)−

∫ t

0

γI1(s)P 1
t(t− s)e−d(t−s)ds

)
+

1

d+ γ

(
−
∫ t

0

γI2(s)P 2
t(t− s)e−d(t−s)ds− d(I12 + I21)− γ(I12 + I21)

)
+

1

d+ γ

(∫ ∞
0

γI1(s)P 1
t(t− s)e−d(t−s)ds+

∫ ∞
0

γI2(s)P 2
t(t− s)e−d(t−s)ds

)
+

1

d+ γ

(
−d
(∫ ∞

0

γI1(s)P 1(t− s)e−d(t−s)ds+

∫ ∞
0

γI2(s)P 2(t− s)e−d(t−s)ds

))

L′ =
1

d+ γ

(
dN∗

(
2− S

N∗
− N∗

S

))
(2.40)

+
1

d+ γ
[(−(d+ γ) + β1N

∗)(I1 + I21) + (−(d+ γ) + β2N
∗)(I2 + I12)] (2.41)

+
1

d+ γ
(−d(R1 +R2 + Π1 + Π2)) (2.42)

+
1

d+ γ

(∫ ∞
t

γI1(s)P 1
t(t− s)e−d(t−s)ds+

∫ ∞
t

γI2(s)P 2
t(t− s)e−d(t−s)ds

)
. (2.43)

Since S
N∗

+ N∗

S
≥ 2 we have that the term in (2.40) is always non positive in Ω. Also,

since R0 ≤ 1 we have that the term in (2.41) is always non positive in Ω. R1 and R2 are in Ω

and, Π1 and Π2 are positive functions of t, this way we have that the term in (2.42) is always

non positive. The last term in (2.43) is non positive because P (t) is decreasing and, thus P i
t is

negative.

Therefore, L′ ≤ 0 in Ω and, the equality is true if and only if each term of the equation

is zero. From (2.40) the equality is true if and only if S = N∗ and, with R0 < 1, from (2.41)

to (2.43) we conclude that I1 = I2 = R1 = R2 = C1 = C2 = I12 = I21 = 0.

In the case that R0 = 1, since S = N∗, from the first equation of the system we have

that S ′ = −βiN∗(Ii + Iji) < 0. But this is a contradiction with the fact that, since S = N∗, it

is implied that S ′ = 0. Thus Ii + Iji = 0. Therefore, for instance, ifR2 = R0 = 1 we still have

that I2 = 0 and I12 = 0.

This way, defining E = {(S, I1, I2, C1, C2, R1, R2, I12, I21, R) ∈ Ω ; L′(t) = 0} the

singletonD0 is the largest invariant set inE. By the Invariance Principle for IDE (Burton, 2005;

LaSalle, 1976) we have that the Disease Free equilibrium D0 of the system (1.7) is globally

asymptotically stable in Ω.

36



2.3.2 Global Stability of the Boundary Equilibrium

We have proved over previous section, that the Boundary equilibrium D2 is locally

asymptotically stable, when R2 > 1 and the Invasion Reproduction Number RInv is smaller

than 1. Now we are able to show that under these same conditions the trajectories with initials

conditions in Ω−{(S, I1, I2, C1, C2, R1, R2, I12, I21, R) ∈ Ω ; I2 = 0} approach that equilibrium.

To prove this fact, we firstly need the following result.

Lemma 1. If R2 > 1, and RInv < 1 then the trajectories of system (1.7) which start in Ω

approach the invariant set Ω2 = {(S, I1, I2, C1, C2, R1, R2, I12, I21, R) ∈ Ω ; I1 = C1 = R1 =

I12 = I21 = R = 0}.

Proof. Considering the Lyapunov function

L1(t) = Π1 +R1 + I12, (2.44)

with Π1 being the same function definite in (2.37).

Thus, differentiating L1 along the solution of the system (1.7) we have

L′1 =Π′1 +R′1 + I ′12

=− dΠ1 +

∫ ∞
0

γI1(t)P 1
t (t− s)e−d(t−s)ds − dR1 − (d+ γ)I12 −

∫ t

0

γI1(t)P 1
t (t− s)e−d(t−s)ds

=− dΠ1 − (−
∫ ∞
t

γI1(t)P 1
t (t− s)e−d(t−s)ds)− dR1 − (d+ γ)I12

Therefore, L′1 ≤ 0 in Ω and, the equality is true if, and only if, R1 = 0, I12 = 0,

Π1 = 0 and −
∫∞
t
γI1(t)P 1

t (t − s)e−d(t−s)ds = 0. In addition, from the equation of the system

and, from the equality above, we have directly that I1 = 0 and, C1 approach zero when t goes

to infinity. Also, since I1 = 0 we have that

0 = I ′1(t) = β1SI21. (2.45)

Then, S = 0 or I21 = 0. If S = 0 then for the first equation of the system we have

S ′(t) = dN∗ > 0, (2.46)

which is a contradiction, since S = 0 implies S ′ = 0. Then I21 = 0.

Therefore, we have shown that the maximal invariant set contained in set of all points

in Ω where L′1 = 0 is Ω2. It shows the lemma.
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This lemma shows that under the conditions about the Reproduction numbers is suf-

ficient to study the dynamics of the delay system (1.7) only on the projection of Ω2, it means

that, in the set Ω2p = {(S, I2, C2, R2); S + I2 + C2 + R2 ≤ N∗) in R4. In this set, the initial

system is reduced to

dS(t)

dt
= dN∗ − dS − β2SI (2.47)

dI(t)

dt
= β2SI − (d+ γ)I

dC(t)

dt
= γI − dC +

∫ t

0

γI(s)P 2
t (t− s)e−d(t−s)ds

dR(t)

dt
= −dR−

∫ t

0

γI(s)P 2
t (t− s)e−d(t−s)ds.

This system has two equilibriumsD0p = (N∗, 0, 0, 0) andD2p = (d+γ

β2
, d
β2

(R2−1), C∗, R∗)

correspondent to the projections of D0 and D2, respectively. Now we are going to prove that

all solutions of the system (2.47) with initial conditions in Ω2p − {(S, I, C,R) ∈ R4; I = 0}

approach the equilibrium D2p whenR2 > 1.

Theorem 8. IfR2 > 1 then the Endemic equilibrium D2p of the system (2.47) is globally stable

in Ω2p .

Proof. The idea for this proof is the same idea used in O’ Regan (2010). Once we let (S∗, I∗, C∗, R∗)

be the Endemic equilibrium of the system (2.47). This positive equilibrium exists whenR2 > 1.

At the equilibrium, the equalities

dN∗ = dS∗ + β2S
∗I∗

β2S
∗I∗ = (d+ γ)I∗

γI∗ − dC∗ − γI∗M2 = 0

−dR∗ + γI∗M2 = 0

hold. Substituting these expressions into the system , we can rewrite the system in this form

dS(t)

dt
= −d(S − S∗)− β2(SI − S∗I∗) (2.48)

dI(t)

dt
= β2I(S − S∗)

dC(t)

dt
= γ(I − I∗)− d(C − C∗) +

∫ t

0

γI(s)P 2
t (t− s)e−d(t−s)ds− γI∗M2

dR(t)

dt
= −d(R−R∗)−

∫ t

0

γI(s)P 2
t (t− s)e−d(t−s)ds− γI∗M2
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Considering the Lyapunov function

L2(t) = S − S∗ − S∗ln
(
S

S∗

)
+ I − I∗ − I∗ln

(
I

I∗

)
. (2.49)

Now, differentiating L2 along the solution of the system, we have

L′2 = S ′ + I ′ − S∗S
′

S
− I∗ I

′

I

= (dS∗ + β2S
∗I∗)

(
2− S

S∗
− S∗

S

)
.

Therefore L′2 ≤ 0 in Ω2p and, the equality L′2 = 0 is true if, and only if S = S∗. Since

S = S∗, we have S ′ = 0 and, from the first equation of the system (2.48) implies that I = I∗.

In this set, from the last equations of the system (2.48) follows directly that C approaches to

C∗ and R approaches to R∗ when t → ∞. By a Invariance Principle for IDE (Burton, 2005;

LaSalle, 1976) we have that the Endemic equilibrium D2p is globally asymptotically stable in

Ω2p .

The local asymptotic stability of D2, the lemma and the theorem above demonstrate

the global stability of D2 in Ω under the conditions 1 < R2 andRInv < 1.
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CHAPTER 3

Numerical Analysis

In this chapter, we are going to analyse numerically the solutions of the system in order

to understand better the model as well as using the numerical approach to obtain information

about the local stability of the Coexistence Endemic equilibrium and the local dynamics.

The numerical values for the parameters are shown on the table below. To model the

infection, we have used the data taken from primary references about Dengue fever.

Table 3.1: Numerical values of the parameters

Parameter Meaning Value Reference
1
d

life expectancy 65− 75 years (IBGE, 2018)
1
γ

recovery time 4− 10 days (Gubler, 2014; WHO, 2009)
1
ωi

cross immunity protection time 2− 9 months (Gubler, 2014; WHO, 2009)

βi infection rate, serotype i 40− 200 ?

αi reinfection rate, serotype i 40− 200 ?

φ ADE factor 0− 5 (Ferguson, 1999a)

? These values were calculated in order to give reasonable Basic Reproduction num-

bers for Dengue. For instance, Maier (2017) and Massad (2001) have estimated the range of
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Table 3.2: Parameters value used in the simulations

Parameter Simulation value

d 0.015 y−1

γ 52 y−1

ωi 2 y−1

φ 0− 5

βi 40− 200 ?

αi βi

R0 between 1.38 to 7.86 with Brazilian dataset. Reiner (2014) estimated the range of the Basic

Reproduction number varied from 0.76 to over 5 from dataset from Peru and, with dataset from

Thailand, Ferguson (1999b) estimated for 1.38 to 7.70, with average 3.2. Moreover, the interval

of the values for the parameter is in accordance to the values found in the study by Kooi (2014),

given by 2γ.

In the particular case, when we assume that the temporary immunity is exponentially

distributed, in other words, P i(t) = e−ωit, we have that 1
ωi

is the average of the cross immunity

time. In order to analyse numerically the general case when we assume a general function

representing the cross immunity time, we will first define a function that satisfies the necessary

conditions.

In this case, we need to choose a function, not necessarily a exponential function,

which can represent the immunity period. Also, some mathematical and biological assumptions

need to be addressed and satisfied, for each serotype i = 1, 2:

P i(0) = 1, P i(∞) = 0, P i′(s) < 0, and (3.1)∫ ∞
0

P i(s)ds =
1

ωi
(3.2)

with ωi given on the table (3.2).

In order to simplify, it is chosen, P i(s) = P (s) for i = 1, 2 and we are going to

estimate a cubic polynomial that satisfies the assumptions in (3.1). We could choose any con-

tinuous decreasing function, as polynomials or combinations of polynomials, exponential, sinus

and cosine functions, however we choose to work with a cubic polynomial for this numerical

analysis, such as, as3 + bs2 + cs+d and, for each assumption, we will estimate the values a, b, c

and d.
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Besides that, in biological terms, it can be expected that the cross immunity time is a

short term period that can not impact for longer than one year. Thus, we are going to assume

that after one year, the immunity is not effective anymore and, after this period the individual is

susceptible again, with average immunity time of 6 months, as in the particular case.

This way, we define

P (s) =

as
3 + bs2 + cs+ d, 0 ≤ s ≤ 1

0, s ≥ 1

(3.3)

meaning that for more than one year there is no more immunity cross period and during the first

year a cubic polynomial represents the decreasing period for immunity.

Then, we want that P (0) = 1 and P (1) = 0. In addition, P needs to be continuous at

s = 1, thus we need that P ′(1) = 0 and since the average time is chosen to be six months we

need that ∫ ∞
0

P (s)ds =

∫ 1

0

P (s)ds =
1

ωi
=

1

2
. (3.4)

Substituting this assumptions on the function, the first one gives that d = 1. Second

assumption gives a+b+c = −1. The continuous assumption gives 3a+2b+c = 0. Substituting

this equality and using (3.4) we can finally find that a = 2, b = −3 and, c = 0.

Thus, we are going to use that

P (s) =

2s3 − 3s2 + 1, 0 ≤ s ≤ 1

0, s ≥ 1

(3.5)

with average time being 1
2

year.

Thus, Ni =
∫∞

0
P (s)e−dsds ≈ 0.49 and the value Mi that appears in the equilibriums

is given numerically by Mi =
∫∞

0
Ps(s)e

−dsds ≈ 0.993, with the parameters d given on table

(3.2). Note that Mi = ωi
ωi+d

≈ 0.993 in the exponential case, meaning that the average time is

held for both cases, particular and general.

Using these functions and values, we are going to explore and analyse the stability

of the endemic equilibrium and the solutions of the IDE system with delay for that chosen

function.
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3.1 Stability of the Coexistence Endemic equilibrium

3.1.1 Symmetric case

As we have seen in the chapter 3, the theorem ensures, in the symmetric case, that a

unique endemic equilibrium with the coexistence of two serotypes within the invariant region

always exist when the Basic Reproduction Number is bigger than one. In this particular case,

the local stability of this endemic equilibrium was not explored yet.

Although it was possible to describe analytically the equilibrium with coexistence of

two strains, in the symmetric case, the expression for the value of S∗ shows a complex depen-

dency of the parameters. Also, it can be noticed that the characteristic equation of the system is

a transcendental equation, with typically having infinitely many roots.

Thus, we are going to do a numerical analysis in order to understand the stability of the

endemic equilibrium, analysing the sign of the roots of the characteristic equation, numerically,

for some values of the parameter φ, using it as a bifurcation parameter.

For all value of φ > 0, we already know that the coexistence equilibrium exists and,

thus, we can numerically verify the value of S∗, for each value of φ, then we calculate the roots

of the characteristic equation, as we are going to show in the next figures.
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Figure 3.1: The figures show the eigenvalues of the endemic equilibrium in the complex plane,

for each value of φ. The values used in the simulations are found on table (3.2) with β =

β1 = β2 = 180. Figures (3.1a) to (3.1h) show that a purely imaginary eigenvalue appears for

φ ≈ 0.032.

As known, a Hopf bifurcation arises when looking for the eigenvalues of the Jacobian

matrix of the continuous parametric dynamical system evaluated at a steady point of it, all

eigenvalues have negative real part except one conjugate non-zero purely imaginary pair that

cross the imaginary axis, because of a variation of the parameter.

Thus, analysing numerically the local stability of the endemic equilibrium D3, figure

(3.1c) shows that the matrix has a pair of conjugated complex eigenvalues, that change the

sign of the real part as φ increases. Thus, a Hopf bifurcation occurs when the parameters φ is

≈ 0.032.
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Figure 3.2: Maximum value of the real part of the eigenvalues of the endemic equilibrium.

To complete the analysis, figure (3.2a) shows the maximum of the real part of eigen-

values for each value of parameter φ. Figure (3.2a) shows that as φ approaches the value 0.032,

the biggest real part of the eigenvalues crosses the x-axis, when the Hopf bifurcation occurs

and, it remains positive.

3.1.2 Asymmetric case

According to our analysis over chapter 3, the coexistence equilibrium D3 exists only if

the maximum of the Reproduction number is bigger than one and, if the Invasion Reproduction

number is bigger than one. In this case, the Boundary equilibrium loses stability and the coexis-

tence equilibrium, with the coexistence of the two serotypes, rises and remains in the invariant

region.

On figures above, we can see the parameters region for the stability of the Boundary

equilibriums and, for the Disease Free equilibrium (DFE) as well as the parameters region for

the existence of the Coexistence Endemic equilibrium.
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Figure 3.3: The blue region represents the parameters region for which the DFE is globally

stable (R0 ≤ 1). The green region represents where the Boundary equilibrium is locally sta-

ble (RInv ≤ 1). The coral one represents the existence region of the Coexistence Endemic

equilibrium (RInv > 1). Figure (3.3a) with φ = 0.2 and figure (3.3b) with φ = 4.2.

Figures (3.3a) and (3.3b) show that, as the value φ increases, the parameters region of

the stability for the Boundary equilibrium decreases, forcing the endemic equilibrium coexist

within the region.

According to the figures (3.3a) and (3.3b) there is a threshold for the value of φ, in

each case, which satisfiesRInv > 1. Then, starting for this threshold, the Endemic equilibrium

is in the region and it makes sense to look for the eigenvalues. Thus, we can numerically verify

the local dynamic near the correspondent endemic equilibrium for each value of φ.

In the asymmetric case, we divide in two cases:

Case (i): R0 > 1,R1 < 1

In this case, with values for the parameters on table (3.2) with β1 = 45 and β2 = 180,

which give R1 = 0.87, and R0 = 3.46, the RInv is bigger than one for φ = 1.23. Then, for

all value of φ > 1.23 we have the existence of the endemic equilibrium, and the correspondents

eigenvalues, as shown in the figures.
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Figure 3.4: The figures show the eigenvalues of the endemic equilibrium in the complex plane,

for each value of φ. The values used in the simulations are found on table (3.2) with β1 = 45

and β2 = 180. Figure (3.4d) shows that a purely imaginary eigenvalue appears for φ ≈ 2.19.

Thus, analysing numerically the local stability of the endemic equilibrium D3, figure

(3.4a) to (3.4f) show that the characteristic equation has a pair of conjugated complex roots,

which changes the sign of the real part as φ increases. Thus, a Hopf bifurcation occurs when

the parameter φ ≈ 2.19.

Case (ii): R0 > 1,R1 > 1

In this case, with values for the parameters on table (3.2) with β1 = 120 and β2 = 180,

which giveR1 = 2.31, andR0 = 3.46, theRInv is bigger than one for φ = 0.205. Then, for all

value of φ > 0.205 we have the existence of the endemic equilibrium and the correspondents

eigenvalues, as shown on the figures.
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Figure 3.5: The figures show the eigenvalues of the endemic equilibrium in the complex plane,

for each value of φ. The values used in the simulations are found on table (3.2) with β1 = 120

and β2 = 180. Figure (3.5c) shows that a purely imaginary eigenvalue appears for φ ≈ 0.244.

Thus, analysing numerically the local stability of the endemic equilibrium D3, figure

(3.5a) to (3.5f) show that the characteristic equation has a pair of conjugated complex roots,

which changes the sign of the real part as φ increases. Thus, a Hopf bifurcation occurs when

the parameter φ ≈ 0.244.

3.1.3 Bifurcation Structure

Through the figures, we have showed numerically in the previous section that the En-

demic coexistence equilibrium changes the stability as the parameter φ changes. As φ increases

from small values through critical value, φc, the steady state changes from a stable focus to an

unstable steady state. Therefore, Hopf bifurcation occurs and, consequently, we conclude that

closed periodic orbit will be found in a small neighbourhood of φc.

In order to see the limit cycle around the equilibrium, in a small vicinity of the critical

value, bifurcation diagrams are shown on the next figures.
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Figure 3.6: Bifurcation diagrams for symmetric and asymmetric cases. In the horizontal axis,

the parameter φ varies in a vicinity of φc, while in the vertical axis, the maximum and minimum

values for susceptible population are plotted.

In the symmetric case, the Hopf bifurcation occurs at φc = 0.032, it means that the

solutions exhibit a small amplitude limit cycle around the endemic equilibrium. A stable limit

cycle clearly arises and goes away from the equilibrium (figure (3.6a)). Also, the amplitude of

the limit cycle increases gradually as the parameter φ moves away from the critical bifurcation

point. Thus, it is possible to conclude that a supercritical Hopf bifurcation occurred.

In the asymmetric case, the Hopf bifurcation occurs at φc = 2.19 and φc = 0.244, it

means that the solutions exhibit a small amplitude limit cycle around the endemic equilibrium.

A stable limit cycle arises close to the critical Bifurcation point and goes away from the unstable

equilibrium (figure (3.6b)) and (figure (3.6c)). Thus, it is possible to conclude that a supercritical

Hopf bifurcation has occurred.

Over the next section, solutions will be plotted for different values of φ, in order to

support the theoretical analysis (about stability of the equilibriums), as well as verifying the

local numerical analysis (about the H. B.), also showing the asymptotic behaviour for parameter

values further from bifurcation value.

3.1.4 Solutions of the system

In this section, we are going to explore and to analyse numerically the solutions of

the system in order to understand the model better, as well as using this numerical approach to

obtain information about the solutions of the system for values of parameter φ further from the

bifurcation value.
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Figure 3.7: Solutions of the system for φ = 1, β = 45, R0 = 0.87 < 1.Initial conditions:

(0.6, 0.01, 0.02, 0, 0, 0, 0.01, 0, 0).

The figure (3.7a) shows the solutions of the system at the symmetric case for the pa-

rameter values on the table (3.2) with φ = 1, β = 45 giving R0 = 0.87 < 1. In this case, the

long term behaviour of the solutions tends to the DFE.
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(b) φ = 0.02

Figure 3.8: Solutions of the system for φ = 0.02, β = 180, R0 = 3.46 > 1 Initial conditions

(0.28, 0.00011, 0.0011, 0.002, 0.002, 0.3, 0.3, 0.001, 0.001).

The figure (3.8a) and (3.8b) show the solutions of the system at the symmetric case for

the parameter values on the table (3.2) with φ = 0.02, β = 180 giving R0 = 3.46 > 1. In this

case, the long term behaviour of the solutions tends to the coexistence (endemic) equilibrium.

This happens for all values of φ ∈ (0, 0.032).
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(c) φ = 0.05
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(e) φ = 0.5
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(f) φ = 0.5

Figure 3.9: Solutions of the system for β = 180, R0 = 3.46 > 1. For φ = 0.05, initial con-

ditions (0.26, 0.00011, 0.00015, 0.034, 0.036, 0.00010, 0.00012). For φ = 0.5, initial conditions

(0.3, 0.0011, 0.002, 0.2, 0.3, 0.001, 0.002).

The figure (3.9a) to (3.9c) show the solutions of the system at the symmetric case for

the parameter values on the table (3.2) with φ = 0.05, β = 180 giving R0 = 3.46 > 1. And

figures (3.9d) and (3.9f), for φ = 0.5. In the first case, the equilibrium is unstable and φ is

taken close to the Hopf bifurcation value, consequently, closed periodic orbit will be found.

The solutions indicate that a limit cycle appears and it is stable for small values of φ close to

φc = 0.032.

As φ increases far from the bifurcation critical value, changes in the behaviour of the

solutions are able to be seen ( figures (3.9d) and (3.9e)). In this case, for long term behaviour, it

is possible to see different oscillations and a complex behaviour (3.9f).
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(c) φ = 1.2
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(d) φ = 3
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(e) φ = 3
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(f) φ = 3

Figure 3.10: Solutions of the system for φ = 3, β = 180. For φ = 1.2, initial con-

dition (0.2, 0.0011, 0.0022, 0.01, 0.02, 0.07, 0.07, 0.01, 0.02). For φ = 3, initial condition

(0.16, 0.00011, 0.00013, 0.003, 0.003, 0.034, 0.034, 0.00012, 0.0001).

The figure (3.10a) to (3.10c) show the solutions of the system at the symmetric case

for the parameter values on the table (3.2) with β = 180 giving R0 = 3.46 > 1. In both cases,

φ = 1.2 and φ = 3, the solutions of the system converge to periodic orbits.
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Asymmetric case
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Figure 3.11: Solutions of the system for φ = 1, β1 = 40, R1 = 0.76 < 1, β2 = 45, R2 =

0.87 < 1. Initial conditions: (0.6, 0.01, 0.02, 0, 0, 0, 0.01, 0, 0).

The figure (3.11a) shows the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) with φ = 1, β1 = 40, R1 = 0.76 < 1, β2 = 45, R2 =

0.87 < 1. In this case, the long term behaviour of the solutions tends to the DFE.

Now, we are going to explore and to analyse numerically the solutions of the system,

in the asymmetric case, when β1 < β2 andR1 < 1 < R2.

Case (i): R0 > 1,R1 < 1
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(a) φ = 0.5
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(b) φ = 0.5

Figure 3.12: Solutions of the system for φ = 0.5, β1 = 45, R1 = 0.87 < 1, β2 = 180,

R2 = 3.46 > 1. Initial conditions: (0.3, 0.000001, 0.02, 0, 0.005, 0, 0.4, 0, 0).

The figures (3.12a) and (3.12b) show the solutions of the system at the asymmetric case

for the parameter values on the table (3.2) with φ = 0.5, β1 = 45 giving R1 = 0.87 < 1 and,

β2 = 180 giving R2 = 3.46 > 1. In this case, the long term behaviour of the solutions tends to

the Boundary equilibrium D2, it means that the Boundary equilibrium is locally asymptotically
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stable. In addition, the coexistence equilibrium is not in the positive region. This happens for

all values of φ ∈ (0, 1.23).
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(d) φ = 2.1

Figure 3.13: Solutions of the system for β1 = 45, R1 = 0.87 < 1,

β2 = 180, R2 = 3.46 > 1. For φ = 1.4, initial conditions

(0.26, 0.000024, 0.00018, 0.00063, 0.0048, 0.012, 0.35, 0.000021, 0.000085). For φ = 2.1, ini-

tial conditions (0.2601, 0.0000244, 0.00018, 0.00063, 0.0048, 0.0115, 0.358, 0.0000209, 0.000084).

The figures (3.13a) and (3.13b) show the solutions of the system at the asymmetric

case for the parameter values on the table (3.2) for φ = 1.4, β1 = 45 giving R1 = 0.87 < 1

and, β2 = 180 giving R2 = 3.46 > 1. And, for φ = 2.1, the solutions are shown by figures

(3.13c) and (3.13d). In both cases, the long term behaviour of the solutions converges to the

Coexistence equilibrium, it means that the Coexistence equilibrium is locally asymptotically

stable. This happens for all values of φ ∈ (1.23, 2.2).
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(c) φ = 2.21

Figure 3.14: Solutions of the system for φ = 2.21, β1 = 45,

R1 = 0.87 < 1, β2 = 180, R2 = 3.46 > 1. Initial conditions:

(0.2643, 0.00002122, 0.000190, 0.01123, 0.4070, 0.00001776, 0.0000715).

The figures (3.14a) to (3.14c) show the solutions of the system at the asymmetric case

for the parameter values on the table (3.2) for φ = 2.21, β1 = 45 giving R1 = 0.87 < 1 and,

β2 = 180 giving R2 = 3.46 > 1. In this case, the solution for long term behaviour exhibits a

limit cycle.
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(c) φ = 3.5

Figure 3.15: Solutions of the system for φ = 3.5, β1 = 45, R1 = 0.87 < 1, β2 = 180,

R2 = 3.46 > 1. Initial conditions: (0.25, 0.08, 0.2, 0.05, 0.15, 0.04, 0.56, 0.001, 0.009).

The figures (3.15a) to (3.15c) show the solutions of the system at the asymmetric case

for the parameter values on the table (3.2) with φ = 3.5, β1 = 45 giving R1 = 0.87 < 1 and,

β2 = 180 givingR2 = 3.46 > 1. In this case, the solutions show a complex behaviour.

Now, we are going to explore and to analyse numerically the solutions of the system

in the asymmetric case, when β1 < β2 and 1 < R1 < R2.

Case (ii): R0 > 1,R1 > 1
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(a) φ = 0.1
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(b) φ = 0.1

Figure 3.16: Solutions of the system for φ = 0.1, β1 = 120, R1 = 2.31 > 1, β2 = 180,

R2 = 3.46 > 1. Initial conditions: (0.27, 0.000001, 0.001, 0.00001, 0.05, 0, 0.56, 0, 0).

The figures (3.16a) and (3.16b) show the solutions of the system at the asymmetric case

for the parameter values on the table (3.2) with φ = 0.1, β1 = 120 giving R1 = 2.31 > 1 and,

β2 = 180 giving R2 = 3.46 > 1. In this case, the long term behaviour of the solutions tends to

the Boundary equilibrium D2, it means that the Boundary equilibrium is locally asymptotically

stable. In addition, the Coexistence equilibrium is not in the positive region. This happens for

all values of φ ∈ (0, 0.205).
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(a) φ = 0.23
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(b) φ = 0.23

Figure 3.17: Solutions of the system for β1 = 120, R1 =

2.31 > 1, β2 = 180, R2 = 3.46 > 1. Initial

conditions:(0.27, 0.000011, 0.00019, 0.00027, 0.00505, 0.0237, 0.6546, 0.0000031, 0.0000011).

The figures (3.17a) and (3.17b) show the solutions of the system at the asymmetric case

for the parameter values on the table (3.2) with φ = 0.23, β1 = 120 givingR1 = 2.31 > 1 and,

β2 = 180 giving R2 = 3.46 > 1. In this case, the long term behaviour of the solutions tends to

the Coexistence equilibrium, it means that the Coexistence equilibrium is locally asymptotically
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stable. This happens for all values of φ ∈ (0.205, 0.244).
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(a) φ = 0.26
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(b) φ = 0.26
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(c) φ = 0.26

Figure 3.18: Solutions of the system for φ = 0.26, β1 = 120,

R1 = 2.31 > 1, β2 = 180, R2 = 3.46 > 1. Initial conditions:

(0.269, 0.0000321, 0.0001786, 0.000828, 0.00461, 0.0653, 0.546, 0.0000129, 0.0000195).

The figures (3.18a) to (3.18c) show the solutions of the system at the asymmetric case

for the parameter values on the table (3.2) with φ = 0.26, β1 = 120 givingR1 = 2.31 > 1 and,

β2 = 180 giving R2 = 3.46 > 1. In this case, a stable limit cycle appears and the solutions

converge to a periodic orbit.
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(a) φ = 0.8
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(b) φ = 0.8
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(c) φ = 0.8

Figure 3.19: Solutions of the system for φ = 0.8, β1 = 120, R1 = 2.31 > 1, β2 = 180, R2 =

3.46 > 1. Initial conditions: (0.26, 0.000032, 0.0002, 0.0009, 0.005, 0.05, 0.4, 0.00001, 0.00002).

The figures (3.19a) to (3.19c) show the solutions of the system at the asymmetric case

for the parameter values on the table (3.2) with φ = 0.8, β1 = 120 giving R1 = 2.31 > 1 and,

β2 = 180 giving R2 = 3.46 > 1. In this case, a stable limit cycle appears and the solutions

converge to a periodic orbit.
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(a) φ = 2
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(c) φ = 2

Figure 3.20: Solutions of the system for φ = 2, β1 = 120, R1 = 2.31 > 1, β2 = 180, R2 =

3.46 > 1. Initial conditions: (0.25, 0.000042, 0.0009, 0.001, 0.01, 0.05, 0.35, 0.00002, 0.00003).

The figures (3.20a) to (3.20c) show the solutions of the system at the asymmetric case

for the parameter values on the table (3.2) with φ = 2, β1 = 120 giving R1 = 2.31 > 1 and,

β2 = 180 giving R2 = 3.46 > 1. In this case, a stable limit cycle appears and the solutions

converge to a periodic orbit.

Although we conclude mathematically that the solution of the system goes to an equi-

librium or goes to a periodic orbit, this happens for a long time behaviour. It means, it takes

much time to get in the asymptotic behaviour. Therefore, biologically speaking, it is hard to

predict the next episode of the disease for a short period of time.

3.2 Main Results

We can summarize our main results on the table below, where local and global stability

of the DFE and the boundary equilibriums were theoretically proved. While, the local stability

and bifurcations of the Coexistence Endemic were numerically showed.
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Table 3.3: Stability of the solutions of the delay system: Symmetric parameters

Basic R. Number DFE Eq. D1 Eq. D2 Int. Equilibrium D3

R1 = R2

R0 ≤ 1 GAS No No No

R0 > 1 Unstable Unstable Unstable LAS for φ < φc

H. B. (stable limit cycle)

Unstable φ > φc

Table 3.4: Stability of the solutions of the delay system: Asymmetric parameters

Basic R. N. Invasion N. DEF Eq. D1 Eq. D2 Int. Eq. D3

R1 < R2 RInv

R0 ≤ 1 RInv < 1 GAS No No No

R0 > 1 RInv < 1 Unstable No (R1 < 1) GAS No

Unstable (R1 > 1)

R0 > 1 RInv > 1 Unstable Unstable Unstable LAS for φ < φc

H B (stable limit cycle)

Unstable φ > φc
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CHAPTER 4

Analysis of the Coexistence Endemic Equilibrium

4.1 Stability Analysis of the Endemic Equilibrium of the Time

Delay System

The analysis of the local stability of the endemic equilibrium (coexistence equilibrium) using

the theory of the linearisation and the results in Brauer (1978) was not successful. We will have to deal

with transcendental characteristic equation, as well as the fact it was not possible to describe the endemic

equilibrium in terms of the parameters.

Therefore, in order to analyse the stability, we first analyse it numerically (chapter 3). We have

found that a Hopf bifurcation occurs for a critical value of the parameter φ leading to periodic oscillations.

The steady state was computed numerically for arbitrary φ and, as φ increases, the trajectories change

from stable endemic coexistence equilibrium to complicated oscillatory dynamics.

Once the numerical results are in mind, in order to analyse analytically the bifurcation structure,

we are going to use perturbation theory and symmetry in order to dribble the complexity of a direct

calculation of the endemic equilibrium and the eigenvalues.

We are going to analyse now the general case for the time delay system. In order to do that,

we are first going to use the idea by Domoshnitsky (2002). Domoshnitsky (2002) proposed a method

which reduces a class of IDE to corresponding ODE system. If the elements of the kernel function in the

integral are constants matrices or have the form

(t− s)ke−A(t−s)sin(B(t− s)), (4.1)
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where k is an integer non-negative number, A, B real numbers, then a new autonomous system can be

written. Generalization of this method is proved by Domoshnitsky (2002) by using Cauchy functions

and use kernel functions for the construction of the Cauchy matrix of an auxiliary ODE system.

Our purpose here is to prove analytically that in fact, also for the time delay system, the endemic

equilibrium is unstable after the bifurcation value for the parameter φ. Thus, we will choose for the

kernel function P (s), two functions of the form ( 4.1 ) and show these two cases. Generalizations can be

done using the results of the Domoshnitsky (2002). For our main purpose these two cases are sufficient,

although generalizations can be done in future research.

We are going to consider two particular cases:

Case (i): P (s) = cos(As)e−ωs, A > 0.

We are going to analyse the case when P (s) = cos(As)e−ωs. Of course this function satisfies

the necessary assumptions, such as, P (0) = 1, P (∞) = 0 and
∫∞

0 e−dsP (s)ds <∞. Then,

Ci(t) =

∫ t

0
γIi(s)cos(A(t− s))e−(ω+d)(t−s)ds,

and,

C
′
i(t) = γIi(t)− (d+ ω)Ci(t)−A

∫ t

0
γIi(s)sen(A(t− s))e−(ω+d)(t−s)ds. (4.2)

Nominating

Ei(t) =

∫ t

0
γIi(s)sen(A(t− s))e−(ω+d)(t−s)ds,

then,

E
′
i(t) = −(ω + d)Ei(t) +ACi(t). (4.3)

Therefore, using the ideas from Domoshnitsky (2002), the initial time delay system can be

reduced to the corresponding ODE system with this particular function.

In the symmetric case, we already known that since the parameters are symmetric the dynamic

of the model will be also symmetric, regarding to equal initial conditions, the variables that represent the

sub-populations are equal in the respective class for different serotypes. Then, the primary infections are

equal, the secondary infections are the same and so on. Thus, we are going to use the symmetry among

serotypes in order to reduce the symmetric system.

First, using the ideas of the Billings (2007), we are going to consider the population reached

the equilibrium N∗ = 1
k ln( rd), r > d. At the equilibrium, we are going to normalize the ODE using

S = S
N∗ , Ii = Ii

N∗ , Iij =
Iij
N∗ , Ci = Ci

N∗ , Ri = Ri
N∗ and, Ei = Ei

N∗ .

This way, near the equilibrium at symmetric case, the ODE can be rewritten as
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S
′
(t) = d− dS − βS(I1 + I2 + I12 + I21)

I1
′
(t) = −(d+ γ)I1 + βS(I1 + I21)

I2
′
(t) = −(d+ γ)I2 + βS(I2 + I12)

C1
′
(t) = −(d+ ω)C1 + γI1 −AE1

C2
′
(t) = −(d+ ω)C2 + γI2 −AE2 (4.4)

E1

′
(t) = −(ω + d)E1 +AC1

E2

′
(t) = −(ω + d)E2 +AC2

R1
′
(t) = −dR1 − αφR1(I2 + I12) + ωC1 +AE1

R2
′
(t) = −dR2 − αφR2(I1 + I21) + ωC2 +AE2

I12
′
(t) = −(d+ γ)I12 + αφR1(I2 + I12)

I21
′
(t) = −(d+ γ)I21 + αφR2(I1 + I21).

Using the symmetry among the serotypes, we reduce the whole system defining new variables

s = S =
S

N∗

x = I1 = I2

c = C1 = C2 (4.5)

e = E1 = E2

r = R1 = R2

y = I12 = I21.

Thus, the endemic equilibrium of the initial system will be the same equilibrium of the follow-

ing associated reduced model

s′(t) = d− ds− βs2(x+ y)

x′(t) = −(d+ γ)x+ βs(x+ y)

c′(t) = −(d+ ω)c+ γx−Ae (4.6)

e′(t) = −(d+ ω)e+Ac

r′(t) = −αφr(x+ y) + ωc− dr +Ae

y′(t) = −(d+ γ)y + αφr(x+ y).

There is still a complexity of the direct calculation of the endemic equilibrium and the eigen-

values, in terms of the dependency of the parameters. Hence, we are going to use the perturbation theory,

in an attempt to deal with this complexity.
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It is important to note that d, the mortality rate, is small compared to the other parameters. This

time, we introduce another small parameter µ, having now, µ a parameter slightly bigger than d, but still

small enough to have the other parameters of the system in order of 1
µ . However, d is of O(µ).

Afterwards, we set the birth rate µ and, the mortality rate d. We rescale the parameters in

relation to µ, letting β = β0
µ , α = α0

µ , ω = ω0
µ , γ = γ0

µ . With these parameters set, we are close enough

to our original system at the steady state and its behaviour.

As soon as we remove the mortality rate, we are able to estimate the endemic equilibrium

analytically, in terms of the parameters and stability. Once we set the mortality parameter d = 0 (because

d is of O(µ)) simplifies the model near the equilibrium. Moreover, the mortality term has negligible

effect on the steady state because it is a small parameter compared to the other parameters. This way, the

resulting local dynamics can be reduced to the following associated system

s′ = µ− βs2(x+ y)

x′ = −γx+ βs(x+ y)

c′ = γx− ωc−Ae

e′ = −ωe+Ac (4.7)

r′ = αφr(x+ y) + ωc+Ae

y′ = −γy + αφr(x+ y).

The qualitatively analysis of this model is an interesting approach of our original system, but

it is only valid for small values of the mortality rate and different values of the birth rate, suggesting an

attempt to approach the value of the endemic equilibrium, not including the mortality in the long time

dynamic and a possible estimation analysis of the Hopf bifurcation structure for values of φ.

The endemic equilibrium of the system (4.7), considering, x 6= 0 and y 6= 0, in other words,

when the disease is already established, without the mortality term, now it is easy to calculate. And, it is

given by

ES = (
γ0

2β0
,
µ2

2γ0
,

µ2ω0

2(ω2
0 +A2µ2)

,
γ0

2α0φ
,
µ2

2γ0
). (4.8)

Now, we use the linearisation theory to analyse the stability of the endemic equilibrium. The

Jacobian matrix of the reduced associated system (4.7) at the steady state ES is given by
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J(ES) =



−2β0µ
γ0

−γ0
µ 0 0 0 −γ0

µ

β0µ
γ0

− γ0
2µ 0 0 0 γ0

2µ

0 γ0
µ −ω0

µ −A 0 0

0 0 A −ω0
µ 0 0

0 − γ0
2µ

ω0
µ A −α0φµ

γ0
− γ0

2µ

0 γ0
2µ 0 0 α0φµ

γ0
− γ0

2µ


(4.9)

with the characteristic polynomial m(λ) = m0 +m1λ+m2λ
2 +m3λ

3 +m4λ
4 +m5λ

5 +m6λ
6 with

the coefficients given by

m0 =
2α0φβ0(ω2

0 +A2µ2)

µ2

m1 =
4A2α0φβ0µ

γ0
+
β0γω

2
0

µ3
+
β0(A2γ2

0 + 4α0φω0(γ0 + ω0))

γ0µ

m2 =
2A2α0φβ0µ

2

γ2
0

+
γ2

0ω0αφ(γ0 + 3ω0) + 2β0ω0γ
2
0(2γ0 + 3ω0)

2γ2
0µ

2

+
6A2β0γ

2
0 + 3A2α0φγ

2
0 + 4α0φβ0(γ2

0 + 4γ0ω0 + ω2
0)

2γ2
0

m3 =
γ0ω

2
0

µ3
+
µ(8α0φβ0γ0 + 2A2γ0(2β0 + α0φ) + 8α0φβ0ω0)

2γ2
0

+
2A2γ3

0 + 2β0γ
3
0 + 12β0γ

2
0ω0 + 4β0γ0ω

2
0 + α0φγ0(γ2

0 + 6γ0ω0 + 2ω2
0)

2γ2
0µ

m4 =
2α0β0

γ2
0

+
ω0(2γ0 + ω0)

µ2
+

2A2γ2
0 + 6β0γ

2
0 + 8β0γ0ω0 + α0φγ0(3γ0 + 4ω0)

2γ2
0

m5 =
2γ3

0µ
2 + 4β0γ0µ

4 + 2α0φγ0µ
4 + 4γ2ω0µ

2

2γ2
0µ

3

m6 = 1.

Since the coefficients of the polynomial are of orderO(1/µ3) we redefine a polynomialM(λ) =

µ3m(λ). Thus, we apply the regular perturbation theory, assuming that the solutions of the polynomial

M(λ) are of the form λ = z0 + z1µ+ z2µ
2 +O(µ3).

Substituting the solutions λ in the polynomial M(λ) = µ3m(λ) and equalising the terms of

the same order, we have

z0 = 0

z1 = −2
α0φ

γ0
(4.10)

z2 = 0

and,

65



z2 = −β0

z1 = − 1

4γ0ω0
[α0φ(γ0 − ω0) + 4β0ω0] (4.11)

z2 = ±v0

√
β0i,

where v0 = 1
32βγ2ω2 [16A2β(γ − 1)γ2 − 16β2ω2 − (αφ)2(γ2 + 14γω − 15ω2) + 8βαφ(γ2 − ω2))].

Thus, the approximation of the O(µ3) of the eigenvalues are

λ1 = −2
α0φ

γ0
µ < 0 (4.12)

and,

λ2,3 = − 1

4γ0ω0
[α0φ(γ0 − ω0) + 4β0ω0]µ± (1 + v0µ

2)
√
β0i (4.13)

with the negative real part, because ω ≤ γ, in other words, the length of the recovery time is smaller than

the length of the cross immunity time, according to the biological references.

The other eigenvalues can be determined by verifying their magnitude, by analysing the coef-

ficients of the characteristic polynomial. Performing this analysis, it is possible to verify that the other

solutions of the polynomial m(λ) are of the order O( 1
µ) . Dividing m(λ) by the roots found, it can be

noticed that the real root λ4 is the form of

− 1

3µ
(γ + 2ω) +

αφ

3
(γ + ω)µ+O(u) (4.14)

while, the real part of the complex roots has the form

−1

3µ
(γ + 2ω) +

αφ

3
(γ + ω)µ+

3
√

2µ

2γ
+O(u2). (4.15)

Thus, the real part of the eigenvalue is negative since the term of order O( 1
µ) is negative.

Thus, it is possible to conclude that the symmetry of the parameters and variables lead to a great

reduced system, however it is not possible to find the bifurcation structure in the symmetry. Also, with

this conditions, we easily verify numerically that for all values of φ > 0 the eigenvalues of this reduced

associated model are always negative, showing a stable dynamic near the endemic equilibrium, which

does not necessarily occur, as we have seen numerically in the symmetric case for the initial system, over

the previous chapter.

Therefore, over this case, we must deal with the whole system without the assumption that the

variables are symmetric, only with the assumption the parameters have the symmetry, since the symmetry

among the variables does not reflect the stability of the whole system.
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In fact, it is the assumption of the symmetry in the variables and not the perturbation in the mor-

tality term, that makes only the stable dynamic appears for the system. We can assure this statement with

numerical results of the stability of the system (4.6), at symmetric case, with symmetry in the variables

and without the perturbation of the mortality term. It is possible to see that the eigenvalues of Jacobian

matrix at the endemic equilibrium of the system (4.6) have always negative real part, independent of the

size of the parameter φ as demonstrated on the following figures.
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Figure 4.1: The figures show the eigenvalues of the endemic equilibrium in the complex plane,

for each value of φ, at symmetric case, for symmetric system (4.6) (with symmetry in the

variables and without the perturbation in the mortality term). The values used in the simulations

are found on table (3.2) with β1 = β2 = 180.

Then, we are going to proceed and work with the whole system (4.4). As a matter of simplicity,

we are going to define new variables as following
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s = S =
S

N∗

xi = Ii

ci = Ci (4.16)

ei = Ei

ri = Ri

y1 = I21

y2 = I12.

Thus, the endemic equilibrium in the initial system will be the same equilibrium of the follow-

ing associated system

s′(t) = d− ds− βs(x1 + x2 + y1 + y2)

x′1(t) = −(d+ γ)x1 + βs(x1 + y1)

x′2(t) = −(d+ γ)x2 + βs(x2 + y2)

c′1(t) = −(d+ ω)c1 + γx1 −Ae1 (4.17)

c′2(t) = −(d+ ω)c2 + γx2 −Ae2

e′1(t) = −(d+ ω)e1 +Ac1

e′2(t) = −(d+ ω)e2 +Ac2

r′1(t) = −αφr1(x2 + y2) + ωc1 − dr1 +Ae1

r′2(t) = −αφr2(x1 + y1) + ωc2 − dr2 +Ae2

y′1(t) = −(d+ γ)y1 + αφr2(x1 + y1)

y′2(t) = −(d+ γ)y2 + αφr1(x2 + y2).

Now, we are going to use the same idea used before for the reduced model. We are going to use

the perturbation theory. Note that d, the mortality rate, is small compared to the other parameters. In the

sequence, we introduce another small parameter µ, having now, d is of O(µ) and, the other parameters

of the system in order of 1
µ .

Afterwards, we rescale the parameters in relation to µ, letting β = β0
µ , α = α0

µ , ω = ω0
µ ,

γ = γ0
µ , and setting the birth rate µ and, the mortality rate d. As soon as we have these parameters set,

we are close enough to our original system at the steady state and its behaviour.

After removing the mortality rate, we are able to estimate the endemic equilibrium analytically,

in terms of the parameters and stability. Once we set the mortality parameter d = 0 (because d is of

O(µ)) simplifies the model near the equilibrium. Moreover, the mortality term has negligible effect on
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the steady state because it is a small parameter compared to the other parameters. Then, the resulting

local dynamics can be described by the following system

s′(t) = µ− βs(x1 + x2 + y1 + y2)

x′1(t) = −γx1 + βs(x1 + y1)

x′2(t) = −γx2 + βs(x2 + y2)

c′1(t) = −ωc1 + γx1 −Ae1 (4.18)

c′2(t) = −ωc2 + γx2 −Ae2

e′1(t) = −ω1e1 +Ac1

e′2(t) = −ω2e2 +Ac2

r′1(t) = −αφr1(x2 + y2) + ωc1 +Ae1

r′2(t) = −αφr2(x1 + y1) + ωc2 +Ae2

y′1(t) = −γy1 + αφr2(x1 + y1)

y′2(t) = −γy2 + αφr1(x2 + y2).

The qualitatively analysis of this model is an interesting approach of our original system, but

it is only valid for small values of the mortality rate and different values of the birth rate, suggesting an

attempt to approach the value of the endemic equilibrium, not including the mortality in the long time

dynamic and, a possible estimation analysis of the Hopf bifurcation structure for values of φ.

The endemic equilibrium of the system (4.18), considering, xi 6= 0 and yi 6= 0, in other words,

when the disease is already established without the mortality term now, it is easy to calculate and it is

given by

EA = (
γ0

2β0
,
µ2

2γ0
,
µ2

2γ0
,

ω0µ
2

2(ω2
0 +A2µ2)

,
ω0µ

2

2(ω2
0 +A2µ2)

,
γ0

2α0φ
,
γ0

2α0φ
,
µ2

2γ0
,
µ2

2γ0
). (4.19)

Now, we use the linearisation theory to analyse the stability of the endemic equilibrium. The

Jacobian matrix of the reduced associated system (4.18) at the steady state EA is given by
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J(EA) =



−2β0µ
γ0

− γ0
2µ − γ0

2µ 0 0 0 0 0 0 − γ0
2µ − γ0

2µ

β0µ
γ0

− γ0
2µ 0 0 0 0 0 0 0 γ0

2µ 0

β0µ
γ0

0 − γ0
2µ 0 0 0 0 0 0 0 γ0

2µ

0 γ0
µ 0 −ω0

µ 0 −A 0 0 0 0 0

0 0 γ0
µ 0 −ω0

µ 0 −A 0 0 0 0

0 0 0 A 0 −ω0
µ 0 0 0 0 0

0 0 0 0 A 0 −ω0
µ 0 0 0 0

0 0 − γ0
2µ

ω0
µ 0 A 0 −α0φµ

γ0
0 0 − γ0

2µ

0 − γ0
2µ 0 0 ω0

µ 0 A 0 −α0φµ
γ0

− γ0
2µ 0

0 γ0
2µ 0 0 0 0 0 0 α0φµ

γ0
− γ0

2µ 0

0 0 γ0
2µ 0 0 0 0 α0φµ

γ0
0 0 − γ0

2µ



.

(4.20)

It gives a characteristic polynomial n(λ) of order 11, which is very difficult to find all the roots.

Our main goal here is to simplify the assumptions as much as possible, in order to get analytical results

found in the numerical approach. The reduced model and characteristic polynomial of the reduced model

obtained through the symmetry in the variables, among the serotypes, are a particular case of the model

(4.18) and its characteristic polynomial. Since in the reduced model there is no bifurcation structure, we

will only work with the quotient polynomial m(λ)
n(λ) = r(λ).

If there is a bifurcation structure, thus, it can be only found in the quotient polynomial r(λ) =

r0 + r1λ+ r2λ
2 + r3λ

3 + r4λ
4 + r5λ

5, where

r0 = −α0φγ0(
ω2

0

µ3
+
A2

µ
)

r1 = −3α0φω(γ0 + ω0)

2µ2
− 3αφA2

2

r2 = −α0φA
2 µ

γ0
− γ0ω

2
0

µ3
− A2γ0 + 3α0φω0

µ
− α0φ(γ2

0 + 2ω2
0)

2γ0µ

r3 = −A2 − 3α0φ

2
− 2α0φω0

γ0
− 2γ0ω0 + ω2

0

µ2

r4 = −α0φµ

γ0
− γ0 + 2ω0

µ

r5 = −1

since, m(λ) only shows eigenvalues with negatives real part.

The coefficients of the polynomial are of order O(1/µ3) we redefine a polynomial R(λ) =

µ3r(λ). Thus, we apply the regular perturbation theory, assuming that the solutions of the polynomial

R(λ) are of the form λ = z0 + z1µ+ z2µ
2 +O(µ3).
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Substituting the solutions λ in the polynomial R(λ) = µ3r(λ) and equalising the terms of the

same order we have

z2
0 = −α0φ

z1 =
α0φ

4γ0ω0
[γ0 − ω0] (4.21)

z2 = ±v1

√
α0φi.

where v1 = α0φ( 1
4ω2

0
+ 1

γ20
+ 1

4γ0ω0
),

Thus, the approximation of the O(µ3) of the eigenvalues are given by

λ1,2 =

(
α0φ

4γ0ω0
[γ0 − ω0]

)
µ± (1 + v1µ

2)
√
α0φi, (4.22)

with the positive real part, because ω ≤ γ, it means, the length of the recovery time is smaller than the

length of the cross immunity time, according to the biological references.

Thus, with the system (4.18), we show that the endemic equilibrium is always unstable. With

this analysis, we can also easily verify numerically that for all values of φ > 0 the eigenvalues of the

whole system are always negative, except for a pair of complex, which has positive real part, showing a

unstable dynamic near the endemic equilibrium.

It was not possible to show analytically the bifurcation structure, however it was possible to

prove analytically the instability of the endemic equilibrium. It is what happens for the most values of φ

showed numerically, in the symmetric case.

In this particular case, at symmetric case, for all positive values of φ, there is always a pair

of complex eigenvalues that has positive real part, showing that the Coexistence Endemic equilibrium is

always unstable, leading to complicated dynamic.

Case (ii): P (s) = (−as+ 1)e−ωs

We are going to analyse the case when P (s) = (−as+1)e−ωs, of course this function satisfies

the necessary assumptions, which are, P (0) = 1, P (∞) = 0 and
∫∞

0 e−dsP (s)ds <∞. Then,

Ci(t) =

∫ t

0
γIi(s)(−a(t− s) + 1)e−(ω+d)(t−s)ds,

and,

C
′
i(t) = γIi(t)− (d+ ω)Ci(t)− a

∫ t

0
γIi(s)e

−(ω+d)(t−s)ds. (4.23)

Nominating

Ei(t) =

∫ t

0
γIi(s)e

−(ω+d)(t−s)ds,

then,

E
′
i(t) = −(ω + d)Ei(t) + γIi(t). (4.24)
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Therefore, using the ideas from Domoshnitsky (2002), the initial time delay system can be

reduced to the corresponding ODE system with this particular function.

At the symmetric case, we already known that since the parameters are symmetric the dynamic

of the model will be also symmetric, it means that, for equal initial conditions, the variables which

represent the sub-populations are equal in the respective class for different serotypes. Then, the primary

infections are equal, the secondary infections are the same and so on. Thus, we are going to use the

symmetry among serotypes, in order to reduce the symmetric system.

First, using the ideas from Billings (2007), we consider the population reached the equilibrium

N∗ = 1
k ln( rd), r > d. At the equilibrium, we normalize the ODE, putting S = S

N∗ , Ii = Ii
N∗ , Iij =

Iij
N∗ ,

Ci = Ci
N∗ , Ri = Ri

N∗ and, Ei = Ei
N∗ .

This way, near the equilibrium, at symmetric case, the ODE can be rewritten as

S
′
(t) = d− dS − βS(I1 + I2 + I12 + I21)

I1
′
(t) = −(d+ γ)I1 + βS(I1 + I21)

I2
′
(t) = −(d+ γ)I2 + βS(I2 + I12)

C1
′
(t) = −(d+ ω)C1 + γI1 − aE1

C2
′
(t) = −(d+ ω)C2 + γI2 − aE2 (4.25)

E1

′
(t) = −(ω + d)E1 + γI1

E2

′
(t) = −(ω + d)E2 + γI2

R1
′
(t) = −dR1 − αφR1(I2 + I12) + ωC1 + aE1

R2
′
(t) = −dR2 − αφR2(I1 + I21) + ωC2 + aE2

I12
′
(t) = −(d+ γ)I12 + αφR1(I2 + I12)

I21
′
(t) = −(d+ γ)I21 + αφR2(I1 + I21).

Using the symmetry among the serotypes, we reduce the whole system defining new variables

s = S =
S

N∗

x = I1 = I2

c = C1 = C2 (4.26)

e = E1 = E2

r = R1 = R2

y = I12 = I21.

Thus, the endemic equilibrium of the initial system will be the same equilibrium of the follow-
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ing associated reduced model

s′(t) = d− ds− βs2(x+ y)

x′(t) = −(d+ γ)x+ βs(x+ y)

c′(t) = −(d+ ω)c+ γx− ae (4.27)

e′(t) = −(d+ ω)e+ γx

r′(t) = −αφr(x+ y) + ωc− dr + ae

y′(t) = −(d+ γ)y + αφr(x+ y).

There is still a complexity of the direct calculation of the endemic equilibrium and the eigen-

values, in terms of the dependency of the parameters. Hence, in an attempt to deal with this complexity

we are going to use the perturbation theory.

It is important to note that d, the mortality rate, is small compared to the other parameters. This

time, we introduce another small parameter µ, having now, µ a parameter slightly bigger than d, but still

small enough to have the other parameters of the system in order of 1
µ . However, d is of O(µ).

We set the birth rate µ and, the mortality rate d and we rescale the parameters in relation to µ,

letting β = β0
µ , α = α0

µ , ω = ω0
µ , γ = γ0

µ . With this parameters set, we are close enough to our original

system at the steady state and its behaviour.

As soon as we remove the mortality rate, we are able to estimate the endemic equilibrium

analytically, in terms of the parameters and stability. Once we set the mortality parameter d = 0 (because

d is of O(µ)) simplifies the model near the equilibrium. Moreover, the mortality term has negligible

effect on the steady state because it is a small parameter compared to the other parameters. Then, the

resulting local dynamics can be reduced to the following associated system

s′ = µ− βs2(x+ y)

x′ = −γx+ βs(x+ y)

c′ = γx− ωc− ae (4.28)

e′ = −(ω + d)e+ γx

r′ = αφr(x+ y) + ωc+ ae

y′ = −γy + αφr(x+ y).

The qualitatively analysis of this model is an interesting approach of our original system, but

it is only valid for small values of the mortality rate and different values of the birth rate, suggesting an

attempt to approach the value of the endemic equilibrium, not including the mortality in the long time

dynamic and a possible estimation analysis of the Hopf bifurcation structure for values of φ.
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The endemic equilibrium of the system (4.28) considering x 6= 0 and y 6= 0, in other words,

when the disease is already established, without the mortality term, now it is easy to calculate and it is

given by

ES = (
γ0

2β0
,
µ2

2γ0
,
µ2

2ω0
(
ω0 − aµ
ω0

),
γ0

2α0φ
,
µ2

2γ0
). (4.29)

Now, we use the linearisation theory to analyse the stability of the endemic equilibrium. The

Jacobian matrix of the reduced associated system (4.28) at the steady state ES is given by

J(ES) =



−2β0µ
γ0

−γ0
µ 0 0 0 −γ0

µ

β0µ
γ0

− γ0
2µ 0 0 0 γ0

2µ

0 γ0
µ −ω0

µ −a 0 0

0 γ0
µ 0 −ω0

µ 0 0

0 − γ0
2µ

ω0
µ a −α0φµ

γ0
− γ0

2µ

0 γ0
2µ 0 0 α0φµ

γ0
− γ0

2µ


(4.30)

with the characteristic polynomial m(λ) = m0 +m1λ+m2λ
2 +m3λ

3 +m4λ
4 +m5λ

5 +m6λ
6 with

the coefficients given by

m0 =
2α0φβ0ω

2
0

µ2

m1 =
(4α0φβ0γ

2
0ω0 + 4α0φβ0γ0ω

2
0)µ2

γ2
0µ

3
+
β0γ0ω

2
0

µ3

m2 = −α0φaγ0

2µ
+

2α0φβ0(γ2
0 + 4γ0ω0 + ω2

0)

γ2
0

+
α0φω0(γ0 + 3ω0) + 2β0ω0(2γ0 + 3ω0)

2µ2

m3 =
γ0ω

2
0

µ3
+

4α0φβ0(γ0 + ω0)µ

γ2
0

+
β0(γ2

0 + 6γ0ω0 + 2ω2
0)

γ0µ
+
α0φ(γ2

0 + 6γ0ω0 + 2ω2
0)

2γ0µ

m4 =
2α0φβ0µ

2

γ2
0

+
ω0(2γ0 + ω0)

µ2
+
β0(6γ0 + 8ω0) + α0φ(3γ0 + 4ω0)

2γ0

m5 =
(γ0 + 2ω0)µ2

µ3
+

(2β0 + α0φ)µ

γ0

m6 = 1.

Since the coefficients of the polynomial are of orderO(1/µ3) we redefine a polynomialM(λ) =

µ3m(λ). Thus, we apply the regular perturbation theory, assuming that the solutions of the polynomial

M(λ) are of the form λ = z0 + z1µ+ z2µ
2 +O(µ3).

When we substitute the solutions λ in the polynomial M(λ) = µ3m(λ) and equalising the
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terms of the same order, we have

z0 = 0

z1 = −2
α0φ

γ0
(4.31)

z2 = 0

and,

z2 = −β0

z1 = − 1

4γ0ω0
[α0φ(γ0 − ω0) + 4β0ω0] (4.32)

z2 =
α0φa

4ω2
0

± v0

√
β0i,

where v0 = 1
32γ2ω2β

[16β2ω2 + (αφ)2(γ2 + 14γω − 15ω2)− 8αφβ(γ2 − 8γω − 10ω2)].

Thus, the approximation of the O(µ3) of the eigenvalues are

λ1 = −2
α0φ

γ0
µ < 0 (4.33)

and,

λ2,3 = − 1

4γ0ω0
[α0φ(γ0 − ω0) + 4β0ω0]µ+

α0φa

4ω2
0

µ2 ± (1 + v0µ
2)
√
β0i (4.34)

with the negative real part, because ω ≤ γ, in other words, the length of the recovery time is smaller than

the length of the cross immunity time, according to the biological references.

The other eigenvalues can be determined by verifying their magnitude, by analysing the coef-

ficients of the characteristic polynomial. Performing this analysis, it is possible to verify that the other

solutions of the polynomial m(λ) are of the order O( 1
µ) . Dividing m(λ) by the roots found, it can be

noticed that the real root λ4 is of the form

−γ + 2ω

3µ
+

αφ

6γω2
(−aγµ2 + ω(γ + ω)µ) +O(u2), (4.35)

while the real part of the complex roots are the form

−γ + 2ω

3µ
+

αφ

6γω2
(−aγµ2 + ω(γ + ω)µ)− 2γ(γ + ω)2

3
3
√

4αφ(γ2 + ω2)µ
+O(u) (4.36)

Thus, the real part of the eigenvalue is negative since the term of order O( 1
µ) is negative.

Thus, it is possible to conclude that the symmetry of the parameters and variables lead to a

great reduced system but it is not possible to find the bifurcation structure in the symmetry. Also, with
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these conditions, we easily verify numerically that for all values of φ > 0 the eigenvalues of this reduced

associated model are always negative, showing a stable dynamic near the endemic equilibrium, which

does not necessarily occur as we have seen numerically, in the symmetric case for the initial system,

during the previous chapter.

Therefore, in this case we have to deal with the whole system, without the assumption that

the variables are symmetric, only that the parameters have the symmetry, since the symmetry among the

variables does not reflect the stability of the whole system.

In fact, it is the assumption of the symmetry in the variables and not the perturbation in the mor-

tality term, that makes only the stable dynamic appears for the system. We can assure this statement with

numerical results of the stability of the system (4.27), at symmetric case, with symmetry in the variables

and without the perturbation of the mortality term. It is possible to see that the eigenvalues of Jacobian

matrix at the endemic equilibrium of the system (4.27) have always negative real part, independent of

the size of the parameter φ as showed on the following figures.
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Figure 4.2: The figures show the eigenvalues of the endemic equilibrium in the complex plane,

for each value of φ, at symmetric case, for symmetric system (4.27) ( with symmetry in the

variables and without the perturbation in the mortality term). The values used in the simulations

are find on table (3.2) with β1 = β2 = 180.
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Then, we are going to proceed and work with the whole system (4.25). As a matter of simplic-

ity, we are going to define new variables as following

s = S =
S

N∗

xi = Ii

ci = Ci (4.37)

ei = Ei

ri = Ri

y1 = I21

y2 = I12.

Thus, the endemic equilibrium in the initial system will be the same equilibrium of the follow-

ing associated system

s′(t) = d− ds− βs(x1 + x2 + y1 + y2)

x′1(t) = −(d+ γ)x1 + βs(x1 + y1)

x′2(t) = −(d+ γ)x2 + βs(x2 + y2)

c′1(t) = −(d+ ω)c1 + γx1 − ae1 (4.38)

c′2(t) = −(d+ ω)c2 + γx2 − ae2

e′1(t) = −(d+ ω)e1 + γx1

e′2(t) = −(d+ ω)e2 + γx2

r′1(t) = −αφr1(x2 + y2) + ωc1 − dr1 + ae1

r′2(t) = −αφr2(x1 + y1) + ωc2 − dr2 + ae2

y′1(t) = −(d+ γ)y1 + αφr2(x1 + y1)

y′2(t) = −(d+ γ)y2 + αφr1(x2 + y2).

Now, we are going to use the same idea used before for the reduced model. We are going to

use the perturbation theory. It is important to note that d, the mortality rate, is small compared to the

other parameters. This way, we introduce another small parameter µ, having now, d is of O(µ) and, the

other parameters of the system in order of 1
µ .

The parameters are rescaled in relation to µ, letting β = β0
µ , α = α0

µ , ω = ω0
µ , γ = γ0

µ .

Afterwards, we set the birth rate µ and, the mortality rate d. With these parameters set, we are close

enough to our original system at the steady state and its behaviour.
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As soon as we remove the mortality rate, we are able to estimate the endemic equilibrium

analytically, in terms of the parameters and stability. Once we set the mortality parameter d = 0 (because

d is of O(µ)) simplifies the model near the equilibrium. Moreover, the mortality term has negligible

effect on the steady state because it is a small parameter compared to the other parameters. Then, the

resulting local dynamics can be described by the following system

s′(t) = µ− βs(x1 + x2 + y1 + y2)

x′1(t) = −γx1 + βs(x1 + y1)

x′2(t) = −γx2 + βs(x2 + y2)

c′1(t) = −ωc1 + γx1 − ae1 (4.39)

c′2(t) = −ωc2 + γx2 − ae2

e′1(t) = −ω1e1 + γx1

e′2(t) = −ω2e2 + γx2

r′1(t) = −αφr1(x2 + y2) + ωc1 + ae1

r′2(t) = −αφr2(x1 + y1) + ωc2 + ae2

y′1(t) = −γy1 + αφr2(x1 + y1)

y′2(t) = −γy2 + αφr1(x2 + y2).

The qualitatively analysis of this model is an interesting approach of our original system, but

it is only valid for small values of the mortality rate and different values of the birth rate, suggesting an

attempt to approach the value of the endemic equilibrium, not including the mortality in the long time

dynamic and a possible estimation analysis of the Hopf bifurcation structure for values of φ.

The endemic equilibrium of the system (4.18), considering, xi 6= 0 and yi 6= 0, it means, when

the disease is already established, without the mortality term, now it is easy to calculate. And, it is given

by

EA = (
γ0

2β0
,
µ2

2γ0
,
µ2

2γ0
,
µ2

2ω2
0

(ω0 − aµ),
µ2

2ω2
0

(ω0 − aµ),
γ0

2α0φ
,
γ0

2α0φ
,
µ2

2γ0
,
µ2

2γ0
). (4.40)

Now, we use the linearisation theory to analyse the stability of the endemic equilibrium. The

Jacobian matrix of the reduced associated system (4.18) at the steady state EA is given by
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J(EA) =



−2β0µ
γ0

− γ0
2µ − γ0

2µ 0 0 0 0 0 0 − γ0
2µ − γ0

2µ

β0µ
γ0

− γ0
2µ 0 0 0 0 0 0 0 γ0

2µ 0

β0µ
γ0

0 − γ0
2µ 0 0 0 0 0 0 0 γ0

2µ

0 γ0
µ 0 −ω0

µ 0 −a 0 0 0 0 0

0 0 γ0
µ 0 −ω0

µ 0 −a 0 0 0 0

0 γ0
µ 0 0 0 −ω0

µ 0 0 0 0 0

0 0 γ0
µ 0 0 0 −ω0

µ 0 0 0 0

0 0 − γ0
2µ

ω0
µ 0 a 0 −α0φµ

γ0
0 0 − γ0

2µ

0 − γ0
2µ 0 0 ω0

µ 0 a 0 −α0φµ
γ0

− γ0
2µ 0

0 γ0
2µ 0 0 0 0 0 0 α0φµ

γ0
− γ0

2µ 0

0 0 γ0
2µ 0 0 0 0 α0φµ

γ0
0 0 − γ0

2µ



.

(4.41)

It gives a characteristic polynomial n(λ) of order 11, which is very difficult to find all the roots.

The main goal here is to simplify the assumptions as much as possible, in order to get analytical results

found in the numerical approach. The reduced model and characteristic polynomial of the reduced model

obtained through the symmetry in the variables among the serotypes are a particular case of the model

(4.18) and its characteristic polynomial. Since in the reduced model there is no bifurcation structure we

will only work with the quotient polynomial m(λ)
n(λ) = r(λ).

If there is a bifurcation structure, thus, it can be only found in the quotient polynomial r(λ) =

r0 + r1λ+ r2λ
2 + r3λ

3 + r4λ
4 + r5λ

5, where

r0 = −α0φγ0
ω2

0

µ3

r1 = −α0φaγ0

2µ
− 3α0φω0(γ0 + ω0)

2µ2

r2 = −α0φγ0

2µ
− γ0ω

2
0

µ3
− 3α0φω0

µ
− α0φω

2
0

γ0µ

r3 = −3α0φ

2
− 2α0φω0

γ0
− 2γ0ω0

µ2
− ω2

0

µ2

r4 = −α0φµ

γ0
− γ0 + 2ω0

µ

r5 = −1

since, m(λ) only show eigenvalues with negatives real part.

The coefficients of the polynomial are of order O(1/µ3) we redefine a polynomial R(λ) =

µ3r(λ). Thus, we apply the regular perturbation theory, assuming that the solutions of the polynomial

R(λ) are of the form λ = z0 + z1µ+ z2µ
2 +O(µ3).
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Then, we substitute the solutions λ in the polynomial R(λ) = µ3r(λ) and equalising the terms

of the same order, we have

z2
0 = −α0φ

z1 =
α0φ

4γ0ω0
[γ0 − ω0] (4.42)

z2 = −α0φa

4ω2
0

± v1

√
α0φi.

where v1 = α0φ
16 ( 3

ω2
0

+ 3
γ20

+ 6
γ0ω0

),

Thus, the approximation of the O(µ3) of the eigenvalues are given by

λ1,2 =

(
α0φ

4γ0ω0
[γ0 − ω0]

)
µ− α0φa

4ω2
0

µ2 ± (1 + v1µ
2)
√
α0φi, (4.43)

with the positive real part, because ω ≤ γ, in other words, the length of the recovery time is smaller than

the length of the cross immunity time, according to the biological references.

Thus, with the system (4.18), we show that the endemic equilibrium is always unstable. With

this analysis, we can also easily verify numerically that for all values of φ > 0 the eigenvalues of the

whole system are always negative, except for a pair of complex which has positive real part, showing a

unstable dynamic near the endemic equilibrium.

It was not possible to show analytically the bifurcation structure, however it was possible to

prove analytically the instability of the endemic equilibrium, it is what happens for the most values of φ

showed numerically in the symmetric case.

In this particular case, at symmetric case, for all positive values of φ, there is always a pair

of complex eigenvalues that has positive real part, showing that the Coexistence Endemic equilibrium is

always unstable, leading to complicated dynamic.
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CHAPTER 5

Perturbations of Non-linear System

By adding small mortality in the original system, we could better represent the dynamic of

Dengue fever with the inherent characteristics. In order to represent small, but possible death caused by

disease, we have perturbed the proposed model by adding a mortality term in the infectious classes.

Through perturbation theory of non-linear systems, we are going to analyse this new system

of IDE and discuss the results comparing solutions of the proposed system with the new model with

mortality term. Furthermore, numerical analysis will support the theoretical study, showing numerical

solutions of the perturbed system, for long term behaviour.

5.1 Adding mortality caused by disease

In the sequence, we wish to study the following system:
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dS(t)

dt
= rN(t)e−kN(t) − dS(t)− β1

S(t)

N(t)
(I1(t) + I21(t))− β2

S(t)

N(t)
(I2(t) + I12(t))

dI1(t)

dt
= −(d+ γ)I1(t) + β1

S(t)

N(t)
(I1(t) + I21(t))− µ1I1(t)

dI2(t)

dt
= −(d+ γ)I2(t) + β2

S(t)

N(t)
(I2(t) + I12(t))− µ2I2(t)

dC1(t)

dt
= γI1(t)− dC1(t) +

∫ t

0
γI1(s)P 1

t (t− s)e−d(t−s)ds

dC2(t)

dt
= γI2(t)− dC2(t) +

∫ t

0
γI2(s)P 2

t (t− s)e−d(t−s)ds (5.1)

dR1(t)

dt
= −dR1(t)− α2φ

R1(t)

N(t)
(I12(t) + I2(t))−

∫ t

0
γI1(s)P 1

t (t− s)e−d(t−s)ds

dR2(t)

dt
= −dR2(t)− α1φ

R2(t)

N(t)
(I21(t) + I1(t))−

∫ t

0
γI2(s)P 2

t (t− s)e−d(t−s)ds

dI12(t)

dt
= −(d+ γ)I12(t) + α2φ

R1(t)

N(t)
(I2(t) + I12(t))− µ2I12(t)

dI21(t)

dt
= −(d+ γ)I21(t) + α1φ

R2(t)

N(t)
(I1(t) + I21(t))− µ1I21(t)

dR(t)

dt
= −dR(t) + γ(I12(t) + I21(t)) + µ1I1(t) + µ2I2(t) + µ1I21(t) + µ2I12(t).

The constants µi, for i = 1, 2, represent a possible but small death caused by the disease and,

it will be different for each serotype. We are assuming also, that who dies of the disease is counted as

recovered, because it will no longer infect or be susceptible. Note that this new system could be more

specific in order to represent the disease and the deaths caused by disease. Mathematically it represents

a perturbation of the delay system that we have been studying so far, because when µi = 0 we have the

system (1.7).

The total population dynamics is determined by

dN(t)

dt
= rN(t)e−kN(t) − dN(t)

where, N(t) = S(t) + I1(t) + I2(t) + C1(t) + C2(t) + I12(t) + I21(t) +R1(t) +R2(t) +R(t).

We let S
N = s, IijN = xij , CiN = ci and Ri

N = ri denoting, for each class, the fractions of the

population. Thus, the sum of the total population satisfies s+x1+x2+c1+c2+r1+r2+x12+x21+r = 1.

This way, we assume that the population reached the equilibrium N∗, the original system can be studied

analysing the following subsystem:
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ds(t)

dt
= d− ds(t)− β1s(t)(x1(t) + x21(t))− β2s(t)(x2(t) + x12(t))

dx1(t)

dt
= −(d+ γ)x1(t) + β1s(t)(x1(t) + x21(t))− µ1x1(t)

dx2(t)

dt
= −(d+ γ)x2(t) + β2s(t)(x2(t) + x12(t))− µ2x2(t)

dr1(t)

dt
= −dr1(t)− α2φr1(t)(x12(t) + x2(t))−

∫ t

0
γx1(s)P 1

t (t− s)e−d(t−s)ds (5.2)

dr2(t)

dt
= −dr2(t)− α1φr2(t)(x21(t) + x1(t))−

∫ t

0
γx2(s)P 2

t (t− s)e−d(t−s)ds

dx12(t)

dt
= −(d+ γ)x12(t) + α2φr1(t)(x2(t) + x12(t))− µ2x12(t)

dx21(t)

dt
= −(d+ γ)x21(t) + α1φr2(t)(x1(t) + x21(t))− µ1x21(t).

Note that the dynamics for the recovered and cross immunity classes are decoupled, it means

we could remove the equations which represent that dynamic and reduce the original system to these

seven equations subsystem. Also, working with the fractions of the populations as variables of the

system, we do not need to worry with the dynamic of the total population.

For this analyses, we consider µi = µ. The system (5.2) is denoted by

y′(t) = F (t, y(t))−
∫ t

0
γe−d(t−s)Pt(t− s)E1y(s)ds− µE2y(s) (5.3)

where µ represents a constant parameter, E1 represents a matrix with all null entries except in the entries

correspondents to the functions P it (t) , and E2 is also an elementary matrix.

To study this system we are going to apply the theory of perturbation of nonlinear system and,

we are going to use the results by Brauer (1966) and Brauer (1972), in order to study the behaviour of

the solutions of this new system.

It is important to note that this new system has the same equilibriums that the original system

but now, the values of the equilibrium depend on the mortality rate µ. Also, it is important to note that

the Basic Reproduction number decrease with the mortality rate, this is, the infection time is now 1
d+γ+µ .

The next result is an adaptation of results of the Brauer (1966, 1972) and it can give us an

insight in order to prove if the mortality rate for the disease is small, then we have continuity in the

parameter and the solutions of the perturbed system are close to the original system.

We consider the solution of system (5.2) (or (5.3)) as function of t, initials conditions, as well

as, of parameter µ and, we will denote y(t) = y(t, t0, y0, µ) to indicate this dependence. We can use the

ideas of the Brauer (1972) and differentiate the equation (5.3) with respect to the parameter µ. Then,

∂

∂t

∂y(t)

∂µ
=
∂y′(t)

∂µ
= Fy(y(t))

∂y(t)

∂µ
−
∫ t

0
γe−d(t−s)Pt(t−s)E1

∂y(s)

∂µ
ds−µE2

∂y(t)

∂µ
−E2y(t). (5.4)

It gives the following result.
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Lemma 2. The vector matrix ∂y(t)
∂µ whose entries are the partial derivatives of the components of y(t)

with respect to the parameter µ satisfies the integro-differential equation

V ′(t, t0, y0, µ) = Fy(y(t))V (t, t0, y0, µ)−
∫ t

t0

γe−d(t−s)Pt(t− s)E1V (s, t0, y0, µ)ds− µE2V (t, t0, y0, µ)− E2y(t),

V (t0) = 0. (5.5)

The solution V (t) of system (5.5) gives us a limitation estimated for the difference between the

solution of perturbed system (5.3) and the original system with distributed time delay.

Lemma 3. Let V (t, t0, y0, µ) be the solution of system (5.5). If µ and η are in a convex subset D, and

V (t) is uniform bounded in µ then, for all t ≥ t0,

|y(t, t0, y0, µ)− y(t, t0, y0, η)|≤ |V (t)||µ− η|. (5.6)

Proof. Let ξ be the line from µ to η, given by ξ(λ) = µ+ λ(η− µ), for 0 ≤ λ ≤ 1. Since D is convex,

the graph of ξ lies in D. Then

d

dλ
[y(t, t0, y0, ξ(λ))] =

∂

∂ξ(λ)
y(t, t0, y0, ξ(λ))ξ′(λ) = V (t, t0, y0, ξ(λ))(η − µ).

Integrating we have

y(t, t0, y0, µ)− y(t, t0, y0, η) =

∫ 1

0
V (t, t0, y0, ξ(λ))dλ(η − µ).

Since V (t) is uniform bounded in µ, thus we have

|y(t, t0, y0, µ)− y(t, t0, y0, η)| ≤ |
∫ 1

0
V (t, t0, y0, ξ(λ))dλ| |η − µ|

≤ max
0≤λ≤1

|V (t, t0, y0, ξ(λ))| |µ− η|

≤ |V (t)| |µ− η|. (5.7)

The following Theorem relates and gives an estimation for distance between the solutions of

the system (5.1) and (1.7).

Theorem 9. The solutions of system (5.3) and (4.4), for sufficiently small µ, are related by

|y(t, t0, y0)− x(t, t0, y0)|≤ ε, (5.8)

for all t ∈ [0, T ].

Proof. First note that y(t, t0, y0, 0) = x(t, t0, y0), in other words, the solution with η = 0 is the solution

of original system.
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We are going to estimate the limitation of solution V . The solution V (t, t0, y0, µ) satisfies the

system (5.5) where,

Fy(y(t)) =



w −β1s −β2s 0 0 −β2s −β1s

β1(x1 + x21) w3 0 0 0 β1s 0

β2(x2 + x12) 0 w4 0 0 0 β2s

0 0 −α2φr1 −α2φ(x2 + x12)− d 0 0 −α2φr1

0 −α1φr2 0 0 −α1φ(x1 + x21)− d −α1φr2 0

0 α1φr2 0 0 α1φ(x1 + x21) w1 0

0 0 α2φr1 α2φ(x2 + x12) 0 0 w2


, (5.9)

and w = −d − β1(x1 + x21) − β2(x2 + x12), w1 = α1φr2 − (d + γ), w2 = α2φr1 − (d + γ),

w3 = −(d + γ) + β1s and w4 = −(d + γ) + β2s . Thus, |Fy(y(s))|≤ d + γ + Kβ,αφ, where

Kβ,αφ = max{β1, β2, α1φ, α2φ} .

If V (t) = V (t, t0, y0, µ), then

etµE2V ′(t) + etµE2µE2V (t) =

etµE2 [Fy(y(t))V (t)−
∫ t

t0

γe−d(t−s)Pt(t− s)E1V (s)ds− E2y(t)].

This implies that

(etµE2V (t))′ = etµE2 [Fy(y(t))V (t)−
∫ t

t0

γe−d(t−s)Pt(t− s)E1V (s)ds− E2y(t)].

Integrating from t0 = 0 to t we have

etµE2V (t) =

∫ t

0
eτµE2 [Fy(y(τ))V (τ)−

∫ τ

0
γe−d(τ−s)Pτ (τ − s)E1V (s)ds− E2y(τ)]dτ.

So,

|V (t)| ≤ |e−tµE2 |
∣∣∣∣∫ t

0
eτµE2

[
Fy(y(τ))V (τ)−

∫ τ

0
γe−d(τ−s)Pτ (τ − s)E1V (s)ds− E2y(τ)

]
dτ

∣∣∣∣
≤ e−tµ

[∫ t

0
|eτµE2 |

[
|Fy(y(τ))| |V (τ)|+

∫ τ

0
γ|e−d(τ−s)Pτ (τ − s)E1| |V (s)|ds+ |E2y(τ)|

]
dτ

]
≤ e−tµ

[∫ t

0
eτµ
[
|Fy(y(τ))| |V (τ)|+

∫ τ

0
γ|e−d(τ−s)Pτ (τ − s)| |V (s)|ds+ |y(τ)|

]
dτ

]
.

Therefore,

|V (t)|eµt ≤
∫ t

0
eµτ |Fy(y(τ))||V (τ)|dτ +

∫ t

0
eµτ
[∫ τ

0
γ(−e−d(τ−s)Pτ (τ − s))|V (s)|ds

]
dτ

+

∫ t

0
eµτ |y(τ)|dτ.

We let ∆i = µ. Since, µ < d, we have that supτ<0|eµτy(τ)| exists, and in fact supτ<0|eµτy(τ)|=

||yt||e, defined previously for solution in the Banach space, where the initial conditions are functions de-

fined in −∞.
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Thus,

Z(t) = |V (t)|eµt

≤
∫ t

0
|Fy(y(τ))|Z(τ)dτ +

∫ t

0
eµτ
[∫ τ

0
γ(−e−d(τ−s)Pτ (τ − s))|V (s)|ds

]
dτ +

∫ t

0
||yt||edτ

≤ ||yt||et+

∫ t

0
|Fy(y(τ))|Z(τ)dτ +

∫ t

0
eµτ
[∫ τ

0
γ(−e−d(τ−s)Pτ (τ − s))eµ(τ−s)e−µ(τ−s)|V (s)|ds

]
dτ

≤ ||yt||et+

∫ t

0
|Fy(y(s))|Z(s)ds+

∫ t

0
eµτ
[∫ τ

0
γ(−e(−d+µ)(τ−s)Pτ (τ − s))e−µ(τ)Z(s)ds

]
dτ

≤ t+

∫ t

0
|Fy(y(s))|Z(s)ds+

∫ t

0

∫ t

s
eµτγ(−e(−d+µ)(τ−s)Pτ (τ − s))e−µ(τ)Z(s)dτds

≤ t+

∫ t

0

[
|Fy(y(s))|+

∫ t

s
γ(−e(−d+µ)(τ−s)Pτ (τ − s))dτ

]
Z(s)ds

≤ t+

∫ t

0

[
|Fy(y(s))|+

∫ t−s

0
γe(−d+µ)ξ(−Pξ(ξ))dξ

]
Z(s)ds.

The hypothesis (2.5) guarantees that∫ ∞
0

γe(−d+µ)ξ(−Pξ(ξ))dξ <∞.

Thus,

Z(t) ≤ t+

∫ t

0
[d+ γ +Kβ,αφ + γM ]Z(s)ds.

Using Gronwall inequality for Z(t) we have that

|V (t)|≤ te−µte[d+γ+Kβ,αφ+γM]t.

Therefore,

|V (t)|≤ e(2γ+Kβ,αφ)t = ekt.

is uniform bounded in µ. From Lemma (3) we conclude that

|y(t, t0, y0, µ)− x(t, t0, y0)|≤ µekt. (5.10)

Therefore, for each ε and T > 0 exist δ > 0 such that µ < δ implies that

|y(t, t0, y0, µ)− x(t, t0, y0)|≤ ε, (5.11)

for all t ∈ [0, T ].
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From this theorem, we conclude that to study the behaviour of the system (5.1) is sufficient to

know the behaviour of the system (1.7), because of the continuity in the parameter. Thus, to add a small

mortality in the system, corresponding to the mortality due to disease in different stages of Dengue, from

the point of view of the qualitative study, it does not imply changes in the behaviour of the solutions

because both solutions are close for t ∈ [0, T ].

Biologically speaking, this means that small mortality for the disease doesn’t affect the quali-

tatively behaviour of the model as well as the behaviour of the propagation of the disease. Therefore, the

original system can be a good representation for the study of the propagation of the disease, even without

the mortality term.

5.2 Numerical Solutions of Long-term Behaviour

In this chapter we are going to analyse numerically the solutions of the system in order to obtain

more information about the dynamic of the perturbed system (5.1), as well as supporting the theoretical

study of the previously section.

Here, µ1 will represent the mortality rate caused by disease for infection and reinfection of one

sertoype, and µ2 will represent a different value for mortality rate for the infection and reinfection of the

other serotype.

The numerical values for the parameters are shown on the table (3.2) at Chapter 3. Additionally,

as we are assuming β2 > β1, the infecction 2 is more severe than the infection 1. Thus, we are assuming

that the mortality rate for infection 2 is bigger than the other. Therefore, for this simulations were used

µ1 = 0.009 and µ2 = 0.01. These values were based on information found in WHO (2018), which

suggest that early detection of the Dengue fever and proper medical care decrease mortality rate for

disease below 1% (WHO, 2018).

Figures (5.1a)to (5.1i) show the solutions of the system at the symmetric case, for the parameter

values on the table (3.2) for different values of φ and for µ1 = 0.009 and µ2 = 0.01.

Figures (5.2a)to (5.2k) show the solutions of the system at the asymmetric case, with β1 = 45,

for the parameter values on the table (3.2) for different values of φ and for µ1 = 0.009 and µ2 = 0.01.

Figures (5.3a)to (5.3j) show the solutions of the system at the asymmetric case, with β1 = 120,

for the parameter values on the table (3.2) for different values of φ and for µ1 = 0.009 and µ2 = 0.01.

The solutions verify the theoretical analysis in previous section. Additionally, it is shown that

the original system can be a good representation for the study of the propagation of the disease, even

without the mortality term, hence the solutions of the new system hold similar qualitative behaviour.
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(f) φ = 0.5
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(h) φ = 1.2
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(i) φ = 1.2

Figure 5.1: Solutions of the system for the symmetric case. Initial conditions are found, for

each value of φ, in the solutions at Chapter 3.
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(c) φ = 0.5
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(d) φ = 1.5
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(e) φ = 1.5
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(f) φ = 2.1
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(g) φ = 2.1
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(h) φ = 2.21
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(i) φ = 2.21
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(j) φ = 3.5
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(k) φ = 3.5

Figure 5.2: Solutions of the system for the asymmetric case, with β1 = 45. Initial conditions

are found, for each value of φ, in the solutions at Chapter 3.
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(c) φ = 0.23
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(e) φ = 0.26
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(f) φ = 0.26
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(g) φ = 0.8
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(i) φ = 2
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(j) φ = 2

Figure 5.3: Solutions of the system for the asymmetric case, with β1 = 120. Initial conditions

are found, for each value of φ, in the solutions at Chapter 3.
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CHAPTER 6

Particular case

Along chapter 2, we have proposed a model to study the spread of Dengue fever. Furthermore,

we have analysed the model as we proposed with a general time of cross immunity protection, Now, we

are going to analyse a particular case when the time immunity protection is exponentially distributed.

6.1 ODE System Analysis: Equilibriums of the System

In this section, we are going to analyse the particular case when we assume that the average

cross immunity time is a constant rate being 1
ωi

and the IDE system (1.7) can be described by the ODE

system (1.8).

Observe that the equation that describes the dynamics for individuals in the recovered class is

decoupled, hence we can establish

R(t) = N(t)− S(t)− I1(t)− I2(t)− C1(t)− C2(t)−R1(t)−R2(t)− I12(t)− I21(t).

Also, the equation which describes the dynamics of the total population in time does not depend

on the disease state of the individual, in other words, the disease does not interfere on the dynamic of

total population. Thus, when we search for the steady state of the equation,

dN(t)

dt
= rN(t)e−kN(t) − dN(t), (6.1)

it is found a unique positive equilibrium

N∗ =
1

k
ln
(r
d

)
, r > d.
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Consequently, we assume from now on that the size of population N(t) is constant in time,

namely, the total population reaches the equilibrium N∗, we look for the steady state of the system (1.8).

We search for constants functions S∗, I∗1 , I∗2 ,C∗1 , C∗2 , R∗1, R∗2, I∗12, I∗21, that satisfies:

0 = N∗d− dS∗ − β1S
∗(I∗1 + I∗21)− β2S

∗(I∗2 + I∗12)

0 = −(d+ γ)I∗1 + β1S
∗I∗1 + β1S

∗I∗21

0 = −(d+ γ)I∗2 + β2S
∗I∗2 + β2S

∗I∗12

0 = γI∗1 − (d+ ω1)C∗1

0 = γI∗2 − (d+ ω2)C∗2 (6.2)

0 = −dR∗1 − α2φR
∗
1(I∗12 + I∗2 ) + ω1C

∗
1

0 = −dR∗2 − α1φR
∗
2(I∗21 + I∗1 ) + ω2C

∗
2

0 = −(d+ γ)I∗12 + α2φR
∗
1(I∗2 + I∗12)

0 = −(d+ γ)I∗21 + α1φR
∗
2(I∗1 + I∗21)

where βi = βi
N∗ and αi = αi

N∗ .

Clearly, the system (1.8) always has a disease-free equilibrium, namely,

E0 = (N∗, 0, 0, 0, 0, 0, 0, 0, 0, 0)

where R∗ = N∗ − S∗ − I∗1 − I∗2 − C∗1 − C∗2 −R∗1 −R∗2 − I∗12 − I∗21 .

In the case of the extinction of one of the infection forces we are able to find the boundary

equilibrium of the system

E1 =

(
d+ γ

β1

,
d

β1

[
β1N

∗

d+ γ
− 1

]
, 0,

γ

d+ ω1
I∗1 , 0,

ω1

d

γ

d+ ω1
I∗1 , 0, 0, 0, 0

)
.

And, the boundary equilibrium

E2 =

(
d+ γ

β2

, 0,
d

β2

[
β2N

∗

d+ γ
− 1

]
, 0,

γ

d+ ω2
I∗2 , 0,

ω2

d

γ

d+ ω2
I∗2 , 0, 0, 0

)
.

For biological reasons, we are looking for steady states which belong to Ω positively invariant

region, where Ω = {(S, I1, I2, C1, C2, R1, R2, I12, I21, R) ∈ R10
+ such that S + I1 + I2 + C1 + C2 +

R1 +R2 + I12 + I21 +R ≤ N∗}. This way, the boundary equilibrium Ei, i = 1, 2 is in Ω as long as

the parameters satisfy
N∗βi
d+ γ

> 1, i = 1, 2.
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In the case of the coexistence of the two strains, we are able to find the equilibrium which is

given by

C∗1 =
γ

d+ ω1
I∗1

C∗2 =
γ

d+ ω2
I∗2

R∗1 =
d+ γ − β2S

∗

α2φ

R∗2 =
d+ γ − β1S

∗

α1φ
(6.3)

I∗12 =
(d+ γ)I∗2 − β2S

∗I∗2
β2S∗

I∗21 =
(d+ γ)I∗1 − β1S

∗I∗1
β1S∗

I∗1 + I∗2 =
d(N∗ − S∗)

d+ γ

R∗ =
d

γ
(I∗12 + I∗21)

and, S∗ is the root of the cubic polynomial O(S) = b3S
3 + b2S

2 + b1S + b0 where

b3 = β1β2[α2(β1 − α1φ)(d+ γ)(d+ ω2)((d+ ω1)(d+ γ)− γω1)

+ α1(β2(d+ γ)(d+ ω1)− α2φγω1)((d+ ω2)(d+ γ)− γω2)]

b2 = (d+ γ)3(d+ ω1)(d+ ω2)[β1α2(−β1 + α1φ) + β2α2(−β1 + α1φ)− β2α1(β1 + β2)]

+ (d+ γ)2β1β2((d+ ω2)γω1α2 + (d+ ω1)γω2α1)

+ β1β2α1α2φN
∗[(d+ γ)2(d+ ω1)(d+ ω2)− ω2γ

2ω1]

b1 = (d+ γ)3(d+ ω1)(d+ ω2)[(d+ γ)(β2α1 + β1α2 − α2α1φ)−N∗α1α2φ(β1 + β2)]

b0 = N∗φα1α2(d+ γ)4(d+ ω1)(d+ ω2).

Moreover, S∗ has to satisfy that S∗ < d+γ

βi
, i = 1, 2, in order to have the equilibrium in

the Ω region. Otherwise, if S∗ does not satisfy the inequality, the variables which represent recovered

and infected population will be negative. Now, we are ready to prove the following theorems about the

equilibriums of the system (1.8).

Theorem 10. If N∗β1
d+γ > 1 then the system of equations (1.8) always has the boundary equilibrium, E1,

in Ω, where

E1 =

(
d+ γ

β1

,
d

β1

[
β1N

∗

d+ γ
− 1

]
, 0,

γ

d+ ω1
I∗1 , 0,

ω1

d

γ

d+ ω1
I∗1 , 0, 0, 0, 0

)
.
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And, if N∗β2
d+γ > 1 then the system of equations (1.8) always has the boundary equilibrium,

E2, in Ω, where

E2 =

(
d+ γ

β2

, 0,
d

β2

[
β2N

∗

d+ γ
− 1

]
, 0,

γ

d+ ω2
I∗2 , 0,

ω2

d

γ

d+ ω2
I∗2 , 0, 0, 0

)
.

Proof. It is easy to see that, if N∗βi
d+γ > 1, for i = 1, 2 then I∗i , C∗i andR∗i , for i = 1, 2 are positive and,

the total sum is N∗. Thus Ei is in Ω, for i = 1, 2 and the system has always a boundary equilibrium

with such condition.

Theorem 11. Without loss of generality, we suppose that β2 > β1. If max{N
∗β1
d+γ ,

N∗β2
d+γ } > 1 and,

L =
β1

β2

+

(
N∗β2

d+ γ
− 1

)
α1φγω2

β2(d+ ω2)(d+ γ)
> 1 (6.4)

then, the system (1.8) admits an interior equilibrium in Ω with the coexistence of the two strains.

Proof. The independent term, b0, of the polynomial O(S) is always positive. Since the equilibrium is

given by (6.3) with S∗ being a root of the polynomial O and, this equilibrium will be in the region Ω if

S∗ < d+γ

βi
, for i = 1, 2, we define

Smin = min{d+ γ

β1

,
d+ γ

β2

} =
d+ γ

β2

.

Then, if N
∗β2
d+γ > 1 and L > 1, the polynomial O at Smin is

O(Smin) =
[(d+ γ)2γω1α2β1]

β2
2 [(d+ ω2)(d+ γ)2(β2 − β1) + γω2α1φ((d+ γ)−N∗β2)] < 0.

This shows that we have a root S∗ of the polynomial O, such that, 0 < S∗ < Smin. Therefore,

for this S∗ the positive equilibrium E3 with the variables satisfying (6.3) is Ω. And, this shows that we

have a positive equilibrium of the system (1.8), in Ω, with the coexistence of the two strains.

6.1.1 Symmetric Case

Once we are restricted to the case β1 = β2 = β, α1 = α2 = α and, ω1 = ω2 = ω, we can

write the cubic polynomial O(S) as O(S) = Q(S)(bS + a) where

a = −αφ(d+ γ)2(d+ ω)

b = αφβ((d+ γ)(d+ ω)− γω)
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and, Q(S) = a2S
2 + a1S + a0 where

a2 = β[(d+ γ)(αφ− 2β)(d+ ω) + γωαφ]

a1 = (d+ γ)2(2β − αφ)(d+ ω)−N∗αφβ((d+ γ)(d+ ω) + γω)

a0 = N∗αφ(d+ γ)2(d+ ω).

Since S∗ = −a
b = (d+γ)2(d+ω)

β((d+γ)(d+ω)−γω) gives us a negative value for I∗12 and I∗21, it means that the

equilibrium will not be in the Ω region, as a consequence we look for the Q(S) roots.

Searching for the roots, we need to remember that we want a S∗, root of Q(S) polynomial,

which is positive and, S∗ < d+γ
β , in order to have an equilibrium in the Ω region. This gives the proof of

the following theorem.

Theorem 12. If N∗β
d+γ > 1 then the system of equations (1.8), restricted to the case β1 = β2 = β,

α1 = α2 = α and, ω1 = ω2 = ω, always has two boundary equilibriums in Ω, namely,

E1 =

(
d+ γ

β
,
d

β

[
βN∗

d+ γ
− 1

]
, 0,

γ

d+ ω
I∗1 , 0,

ω

d

γ

d+ ω
I∗1 , 0, 0, 0, 0

)
,

E2 =

(
d+ γ

β
, 0,

d

β

[
βN∗

d+ γ
− 1

]
, 0,

γ

d+ ω
I∗2 , 0,

ω

d

γ

d+ ω
I∗2 , 0, 0, 0

)
and a unique positive equilibrium in Ω, with coexistence of the two strains, where

S∗ =
(d+ γ)2(−2β + αφ)(d+ ω) +N∗αφβ((d+ γ)(d+ ω) + γω)

2β[(d+ γ)(αφ− 2β)(d+ ω) + γωαφ]
(6.5)

−
√

((d+ γ)2(d+ ω)(2β − αφ) +N∗αφβ(γω + (d+ γ)(d+ ω)))2 − 8N∗αφβ2γω(d+ γ)2(d+ ω)

2β[(d+ γ)(αφ− 2β)(d+ ω) + γωαφ]

and, I∗1 = I∗2 = d
2(d+γ)(N − S∗), C∗1 = C∗2 , R∗1 = R∗2, I∗12 = I∗21 satisfies (6.3).

Proof. If N∗β
d+γ > 1 then, it is easy to see that Ei is in Ω, for i = 1, 2.

In addition, since the searched root S∗ needs to be smaller than d+γ
β , we define

Smax =
d+ γ

β
.

Then, the quadratic polynomial evaluated in Smax will be

Q(Smax) = Q(
d+ γ

β
) = (d+ γ)ωγαφ

(
d+ γ

β
−N∗

)
< 0,

because N∗β
d+γ > 1.
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Besides, the independent term a0 of the polynomial Q(S) polynomial is positive. This proves

that we have a positive root satisfying S∗ < d+γ
β , and it is given by

S∗ =
(d+ γ)2(−2β + αφ)(d+ ω) +N∗αφβ((d+ γ)(d+ ω) + γω)

2β[(d+ γ)(αφ− 2β)(d+ ω) + γωαφ]
(6.6)

−
√

((d+ γ)2(d+ ω)(2β − αφ) +N∗αφβ(γω + (d+ γ)(d+ ω)))2 − 8N∗αφβ2γω(d+ γ)2(d+ ω)

2β[(d+ γ)(αφ− 2β)(d+ ω) + γωαφ]

Therefore, the equilibrium E3 = (S∗, I∗1 , I
∗
2 , C

∗
1 , C

∗
2 , R

∗
1, R

∗
2, I
∗
12, I

∗
21, R

∗) is in Ω, where S∗

is given by (6.6) and, from (6.3),

I∗1 = I∗2 =
d(N∗ − S∗)

2(d+ γ)
,

C∗1 = C∗2 =
γ

d+ ω
I∗1 ,

R∗1 = R∗2 =
d+ γ − βS∗

αφ
,

I∗12 = I∗21 =
(d+ γ)I∗1 − βS∗I∗1

βS∗
,

R∗ = N∗ − S∗ − I∗1 − I∗2 − C∗1 − C∗2 −R∗1 −R∗1 − I∗12 − I∗21.

6.2 Stability Analysis of the Equilibriums

6.2.1 Basic Reproduction Number

The Basic Reproduction Number R0 is defined by many authors, such as Van den Driessche

(2008) as the expected number of secondary infections produced by one case in a susceptible population

and, also as a measure of the potential for disease spread in a population. Mathematically, the Basic

Reproduction Number is a threshold for stability of Disease Free equilibrium (Van den Driessche, 2008).

Since the values N∗β1
d+γ and N∗β2

d+γ have appeared many times as a threshold value for the bound-

ary equilibriums to be in Ω region and, also, as a threshold for the stability of Disease Free equilibrium,

we will define it as the Basic Reproduction Number.

As well as the studies by Van den Driessche (2008) and Kooi (2014) we will define the thresh-

old

R0 =
N∗β

d+ γ
(6.7)
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as the Basic Reproduction Number of the system for symmetric case, when the parameters are equal.

And, the threshold values

R1 =
N∗β1

d+ γ
and R2 =

N∗β2

d+ γ
(6.8)

as the Basic Reproduction Number, for asymmetric case, for infection one and two, respectively.

It is usual, in this case, when it is a multi-strain model with different strains, to define an overall

Reproduction Number for the system. Thus, for asymmetric case, the Basic Reproduction Number for

the system will be defined as

R0 = max{R1,R2}. (6.9)

According to Martcheva (2015), this definition is related to the one found in Van den Driessche

(2008), where the Basic Reproduction Number is defined mathematically as the spectral radius (the

maximum of the modulus of the eigenvalues) of the Next Generation matrix.

6.2.2 Local Stability

The local stability of the equilibriums will be determined by the classical method of determin-

ing stability of the steady states of some ODE system, by analysis of the eigenvalues of the Jacobian

matrix of the system at each equilibrium. Since the equation for R is decoupled of the system (1.8) and,

we can establish

R(t) = N∗ − S(t)− I1(t)− I2(t)− C1(t)− C2(t)−R1(t)−R2(t)− I12(t)− I21(t),

then, it is sufficient to write the equilibriums in the form E = (S∗, I∗1 , I
∗
2 , C

∗
1 , C

∗
2 , R

∗
1, R

∗
1, I
∗
12, I

∗
21)

(without the last input) as well as analysing the Jacobian matrix of the system at the equilibriums in this

way.

The Jacobian matrix of the system at any equilibriumE = (S?, I?1 , I
?
2 , C

?
1 , C

?
2 , R

?
1, R

?
1, I

?
12, I

?
21)

of the system is given by

J(E) =



−d− V0 −β1S? −β2S? 0 0 0 0 −β2S? −β1S?

β1(I
?
1 + I?21) β1S

? − (d + γ) 0 0 0 0 0 0 β1S
?

β2(I
?
2 + I?12) 0 β2S

? − (d + γ) 0 0 0 0 β2S
? 0

0 γ 0 −(d + ω1) 0 0 0 0 0

0 0 γ 0 −(d + ω2) 0 0 0 0

0 0 −α2φR
?
1 ω1 0 V1 0 −α2φR

?
1 0

0 −α1φR
?
2 0 0 ω2 0 V2 0 −α1φR

?
2

0 0 α2φR
?
1 0 0 α2φ(I

?
2 + I?12) 0 V3 0

0 α1φR
?
2 0 0 0 0 α1φ(I

?
1 + I?21) 0 V4



where βi = βi
N∗ , αi = αi

N∗ , for i = 1, 2, V0 = β1(I?1 +I?21)+β2(I?2 +I?12), V1 = −(d+α2φ(I?2 +I?12)),

V2 = −(d+ α1φ(I?1 + I?21)), V3 = −(d+ γ) + α2φR
?
1 and, V4 = −(d+ γ) + α1φR

?
2.

So, the Jacobian matrix of the system evaluated at the Disease Free equilibrium

E0 = (N∗, 0, 0, 0, 0, 0, 0, 0, 0) is
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J(E0) =



−d −β1N∗ −β2N∗ 0 0 0 0 −β2N∗ −β1N∗

0 β1N∗ − (d+ γ) 0 0 0 0 0 0 β1N∗

0 0 β2N∗ − (d+ γ) 0 0 0 0 β2N∗ 0

0 γ 0 −(d+ ω1) 0 0 0 0 0

0 0 γ 0 −(d+ ω2) 0 0 0 0

0 0 0 ω1 0 −d 0 0 0

0 0 0 0 ω2 0 −d 0 0

0 0 0 0 0 0 0 −(d+ γ) 0

0 0 0 0 0 0 0 0 −(d+ γ)



and its eigenvalues are

λ1 = −d (6.10)

λ2 = −(d+ ω1)

λ3 = −(d+ ω2)

λ4 = −(d+ γ)

λ5 = −(d+ γ)

λ6 = −d

λ7 = −d

λ8 = −(d+ γ) + β1N
∗

λ9 = −(d+ γ) + β2N
∗.

It gives us the proof of the following theorem about the stability of Disease Free Equilibrium

(DFE).

Theorem 13. If max {R1,R2} < 1 then the DFE, E0 = (N∗, 0, 0, 0, 0, 0, 0, 0, 0), of the system (1.8)

is locally asymptotically stable. And E0 is unstable if R1 > 1 or R2 > 1.

Proof. If N∗β1
d+γ < 1 and N∗β2

d+γ < 1, all the eigenvalues of Jacobian matrix at E0, given by (6.10), are

negative. Then E0 is locally stable. In case of N∗β1
d+γ > 1 or N∗β2

d+γ > 1, we have the eigenvalues λ8

or λ9 positive and, therefore E0 will have at least one unstable direction. In addition, with β1 < β2 we

have that R1 < R2. Then, if 1 < R1 < R2, also, E0 will be unstable.

The stability of the Boundary equilibriums, in other words, the steady state in case of extinction

of one of the strains, will be determined by the sign of the eigenvalues of the Jacobian matrix in the

equilibrium.

The Jacobian matrix of the system evaluated at

E1 =

(
d+ γ

β1

,
d

β1

(R1 − 1), 0,
γ

d+ ω1
I∗1 , 0,

ω1

d

γ

d+ ω1
I∗1 , 0, 0, 0

)
(6.11)
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is given by

J(E1) =



−dR1 −(d+ γ) −β2 d+γ
β1

0 0 0 0 −β2 d+γ
β1

−(d+ γ)

d(R1 − 1) 0 0 0 0 0 0 0 (d+ γ)

0 0 (d+ γ)
(
β2
β1
− 1
)

0 0 0 0 β2
d+γ

β1
0

0 γ 0 −(d+ ω1) 0 0 0 0 0

0 0 γ 0 −(d+ ω2) 0 0 0 0

0 0 −W1(R1 − 1) ω1 0 −d 0 −W1(R1 − 1) 0

0 0 0 0 ω2 0 −d−W3 0 0

0 0 W1(R1 − 1) 0 0 0 0 W2 0

0 0 0 0 0 0 W3 0 −(d+ γ)



,

where W1 = α2φ

β1

γω1

d+ω1
, W2 = −(d+γ)+W1(R1−1) and,W3 = α1φ

β1
d(R1−1). And its eigenvalues

are

λ1 = −d (6.12)

λ2 = −(d+ ω1)

λ3 = −(d+ ω2)

λ4 = −(d+ γ)

λ5 = −(d+ γ)

λ6 = −d
(

1 +
α1φ

β1

(R1 − 1)

)
λ7 =

1

2

(
−dR1 −

√
(dR1)2 − 4d(d+ γ)(R1 − 1)

)
λ8 =

1

2

(
−dR1 +

√
(dR1)2 − 4d(d+ γ)(R1 − 1)

)
λ9 =

α2φγω1(R1 − 1)

β1(d+ ω1)
+

(β2 − β1)(d+ γ)(d+ ω1)

β1(d+ ω1)
.

While, the Jacobian matrix of the system evaluated at

E2 =

(
d+ γ

β2

, 0,
d

β2

(R2 − 1), 0,
γ

d+ ω2
I∗2 , 0,

ω2

d

γ

d+ ω2
I∗2 , 0, 0

)
(6.13)

is given by

J(E2) =



−dR2 −β1 d+γ
β2

−(d+ γ) 0 0 0 0 −(d+ γ) −β1 d+γ
β2

0 (d+ γ)
(
β1
β2
− 1
)

0 0 0 0 0 0 β1
d+γ

β2

d(R2 − 1) 0 0 0 0 0 0 (d+ γ) 0

0 γ 0 −(d+ ω1) 0 0 0 0 0

0 0 γ 0 −(d+ ω2) 0 0 0 0

0 0 0 ω1 0 −d− Z1 0 0 0

0 −Z2(R2 − 1) 0 0 ω2 0 −d 0 −Z2(R2 − 1)

0 0 0 0 0 Z1 0 −(d+ γ) 0

0 Z2(R2 − 1) 0 0 0 0 0 0 Z3



,
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where Z1 = α2φ

β2
d(R2− 1), Z2 = α1φ

β2

γω2

d+ω2
and, Z3 = −(d+ γ) +Z2(R2− 1). And its eigenvalues

are

λ1 = −d (6.14)

λ2 = −(d+ ω1)

λ3 = −(d+ ω2)

λ4 = −(d+ γ)

λ5 = −(d+ γ)

λ6 = −d
(

1 +
α2φ

β2

(R2 − 1)

)
λ7 =

1

2

(
−dR2 −

√
(dR2)2 − 4d(d+ γ)(R2 − 1)

)
λ8 =

1

2

(
−dR2 +

√
(dR2)2 − 4d(d+ γ)(R2 − 1)

)
λ9 =

α1φγω2(R2 − 1)

β2(d+ ω2)
+

(β1 − β2)(d+ γ)(d+ ω2)

β2(d+ ω2)
.

It gives us the following theorem about the stability of Boundary equilibriums.

Theorem 14. Without loss of generality, we assume β2 > β1. Then, the Boundary equilibrium, E1,

given by (6.11), of the system (1.8) is always unstable, in Ω region. And, E2 given by (6.13) is stable

in Ω, if Rs < 1 and, unstable in Ω, if Rs > 1, where

Rs =
R1

R2
+ (R2 − 1)

α1φγω2

β2(d+ ω2)(d+ γ)
. (6.15)

Proof. Since E1 is in Ω we have that R1 > 1. Then, R1 − 1 > 0 and, therefore, λ6, λ7 and λ8

in (6.12) are negative. However, λ9 given in (6.12) is positive since β2 > β1 and R1 − 1 > 0. Thus,

E1 is unstable.

For the analysis of the stability of the E2, it is important to note that, since E2 is in Ω, R2 > 1

and, because of that, the eigenvalue in (6.14), λ6, λ7 and λ8 are negative. Now, rewriting λ9 which is

given in (6.14) we obtain

λ9 =
α1φγω2(R2 − 1)

β2(d+ ω2)
+
β1

β2

(d+ γ)− (d+ γ)

=
α1φγω2

β2(d+ ω2)
(R2 − 1) +

R1

R2
(d+ γ)− (d+ γ).

Thus, λ9 < 0, if Rs =
R1

R2
+ (R2 − 1)

α1φγω2

β2(d+ ω2)(d+ γ)
< 1 and, the equilibrium E2

will be stable.
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And, λ9 > 0, if Rs =
R1

R2
+ (R2 − 1)

α1φγω2

β2(d+ ω2)(d+ γ)
> 1 and, the equilibrium E2 will

be unstable.

In addition, if Rs = 1 then Smax2 = d+γ

β2
will be the root of the polynomial O(S), given

only the boundary equilibrium (as described in the theorem for the existence of the equilibrium over the

previous section in details).

We can rewrite the threshold value Rs defined in the theorem above as

RInv =
R1

R2
+ (R2 − 1)

α1φγω2

β2(d+ ω2)(d+ γ)
(6.16)

=
R1

R2
+
α1φ

β1

γ

(d+ γ)

ω2

(d+ ω2)
R1

(
1− 1

R2

)
.

RInv is also called the Invasion Reproduction number and we are going to discuss about it

further, over the next chapters.

Note that, if
α1φ

β1

≤ 1, we have that RInv < R1. Biologically speaking, these results mean

that there is a range of values for β1 for which the strain one cannot invade the population if the strain

two is endemic. In this way, the strain two may protect the population from strain one. After this range

value, the infections start to coexist.

The same result above from this theorem is valid for the case β1 > β2.

6.2.3 Symmetric Case

On the symmetric case, the eigenvalues of Jacobian matrix at Disease Free equilibrium (DFE)

of the system (1.8) are the same as in (6.10) taking the parameters equal. Then the eigenvalues are given

by

λ1 = −d (6.17)

λ2 = −(d+ ω)

λ3 = −(d+ ω)

λ4 = −(d+ γ)

λ5 = −(d+ γ)

λ6 = −d

λ7 = −d

λ8 = −(d+ γ) + βN∗

λ9 = −(d+ γ) + βN∗.
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In the same way, taking the parameters equal in (6.12) or (6.14), for the symmetric case, the

eigenvalues of Jacobian matrix of the system (1.8) at

E1 =

(
d+ γ

β
,
d

β
(R0 − 1), 0,

γ

d+ ω
I∗1 , 0,

ω

d

γ

d+ ω
I∗1 , 0, 0, 0

)
, (6.18)

and, at

E2 =

(
d+ γ

β
, 0,

d

β
(R0 − 1), 0,

γ

d+ ω
I∗2 , 0,

ω

d

γ

d+ ω
I∗2 , 0, 0

)
(6.19)

are the same and they are given by

λ1 = −d (6.20)

λ2 = −(d+ ω)

λ3 = −(d+ ω)

λ4 = −(d+ γ)

λ5 = −(d+ γ)

λ6 = −d
(

1 +
αφ

β
(R0 − 1)

)
λ7 =

1

2

(
−dR0 −

√
(dR0)2 − 4d(d+ γ)(R0 − 1)

)
λ8 =

1

2

(
−dR0 +

√
(dR0)2 − 4d(d+ γ)(R0 − 1)

)
λ9 =

αφγω(R0 − 1)

β(d+ ω)
.

This gives the following theorem about the stability of these equilibriums.

Theorem 15. If R0 < 1 then the Disease free equilibrium of the system (1.8) is locally asymptotically

stable on symmetric case. And it is unstable if R0 > 1. In addition, the Boundary equilibriums E1 and

E2 given in (6.18) and (6.19), respectively, are unstable in the Ω region ifR0 > 1.

Proof. If R0 < 1 then N∗β < d + γ. Therefore, the eigenvalues λ8 and λ9 in (6.17) are also negative.

It proves the local stability of DFE. If R0 > 1 then N∗β > d + γ. And, the eigenvalues λ8 and λ9 in

(6.17) are positive, consequently proving the instability of the DFE.

In addition, as we have seen in the previous theorem, E1 and E2 are in the region Ω if R0 >

1. Then, N∗β > d + γ and the eigenvalue λ6, given in (6.20), are negative. Also, λ7 and λ8 have

negative real part, but λ9 is positive, since R0 > 1. In that way, the Boundary equilibriums are always

unstable.
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It is important to note that, when R0 = 1, we have
d+ γ

β
= N∗. Therefore, the only

equilibrium of the system is the Disease free equilibrium, in this case. Biologically speaking, these

results mean that, since the serotypes have the same force of infection, if one strain invades a disease free

population, also strain two, at same time. Thus, the two infection starts to coexist, at the same time, in a

susceptible population.

6.3 Numerical analysis: Particular case (e−ωit)

6.3.1 Stability of the Coexistence Endemic equilibrium

As we have seen over the previous chapters, the local stability of the Coexistence Endemic

equilibrium with the coexistence of the two serotypes has not been discussed yet. In this section, we are

going to explore the analysis of this equilibrium numerically and, we are going to show the reason why

we do not have successful results using the classical linearization theory.

Symmetric case

As we have seen over the chapter 2, concerning to the symmetric case, the theorem ensures

a unique endemic equilibrium with the coexistence of two serotypes within the invariant region always

exists when the Basic Reproduction Number is bigger than one. About this case in particular, the local

stability of this endemic equilibrium has not been explored yet.

Although it was possible to describe analytically the equilibrium with coexistence of two

strains, in the symmetric case, the expression for the value of S∗ shows a complex dependency of the

parameters.

Thus concerning to the difficulty to work with a polynomial of nine degree, even with the help

of the technical computing program Wolfram Mathematica, it is hard to describe the coefficients of the

characteristic polynomial, as well as, its eigenvalues. Therefore, we are going to do a numerical analysis

of the stability of the endemic equilibrium, analysing the sign of the real part of the eigenvalues of the

matrix, numerically, for some values of the parameter φ, using it as a bifurcation parameter.

Epidemiological speaking, φ, the parameter used to describe the ADE effect, is unknown.

Mathematically, once a value is given for φ, we have a different value of S∗, consequently, for the

eigenvalues of the Jacobian matrix. Thus, for all values of φ > 0, we already known that, there is a

coexistence equilibrium and we can numerically verify its values and the correspondent eigenvalues, as

we are going to show through the next figures.
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Figure 6.1: Eigenvalues of the coexistence equilibrium in the complex plane, for each value

of φ. The values used in the simulations are found on table (3.2) with β = β1 = β2 = 180

which gives R0 = 3.46. Figures (6.1c) shows that a purely imaginary eigenvalue appears at

φ ≈ 0.032.

As it is known, a Hopf bifurcation arises when looking for the eigenvalues of the Jacobian

matrix of the continuous parametric dynamical system evaluated at the equilibrium of it, all eigenvalues

have negative real part except one conjugate non-zero purely imaginary pair that cross the imaginary

axis, because of a variation of the parameter (Lynch, 2004; Martcheva, 2015).

Thus, analysing numerically the local stability of the endemic equilibrium E3, figures (6.1a)

to (6.1i) show that the matrix has nine equilibriums and five of them are negative, two of them are

conjugated complex with negative real part and the other two are conjugated complex, changing the sign

of the real part as φ increases. Thus, a Hopf bifurcation occurs when the parameters φ is ≈ 0.032.

We can also see that when φ is near to 3, the matrix has three negative real eigenvalues, one

pair of complex conjugated with positive real part and two pairs of conjugated complex with negative
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real part. In this way, we have two negative real eigenvalues, changing to complex with negative real part

eigenvalues, as shown on figures (6.1h) and (6.1i).
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Figure 6.2: Maximum value of the real part of the eigenvalues of the endemic equilibrium.

(6.2a) shows a smaller range for φ, highlighting the moment that the real part of the complex

eigenvalues change its sign.

To complete this analysis, figures (6.2a) and (6.2b) show the maximum of the real part of

eigenvalues for each value of parameter φ. Note the moment that φ approx the value 0.032. The largest

real part of the eigenvalues cross the x-axis, when the Hopf bifurcation occurs and it remains positive.

Asymmetric case

As we have seen over the chapter 2, the coexistence equilibriumE3 exists only if the maximum

of the Reproduction number is bigger than one, just in case the Invasion Reproduction number is bigger

than one. In this case, counting with the existence of the two serotypes, the Boundary equilibrium loses

stability and the coexistence equilibrium rises and remain in the invariant region.

It is possible to see on the figures (6.3a) and (6.3b) the parameters region for the stability of

the Boundary equilibriums, for the Disease Free equilibrium (DFE) and the parameters region for the

existence of the Coexistence Endemic equilibrium.
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Stability and existence region of the equilibriums
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Figure 6.3: The blue region represents the parameters region for which the DFE is globally

stable (R0 ≤ 1). The green region represents where the Boundary equilibrium is locally sta-

ble (RInv ≤ 1). The coral one represents the existence region of the Coexistence Endemic

equilibrium (RInv > 1). Figure (6.3a) with φ = 0.2 and figure (6.3b) with φ = 4.2.

Figures (6.3a) and (6.3b) show that, as the value φ increases, the parameters region of the

stability for the Boundary equilibrium decreases, forcing the endemic equilibrium to coexist within the

region.

In the asymmetric case, it was not possible to describe analytically the equilibrium with coex-

istence of two strains in terms of the parameters because of the complex dependency on the parameters.

However, we prove that it exists in theorem (11) of chapter 2.

Because of the difficulty to work with a polynomial of nine degree, even with the help of

the technical computing program Wolfram Mathematica, it is hard to describe the coefficients of the

characteristic polynomial, as well as, the eigenvalues. As a consequence, we are going to do a numerical

analysis of the stability of the endemic equilibrium, analysing the sign of the real part of the eigenvalues

of the matrix, numerically, for some values of the parameter φ.

Epidemiological speaking, φ, the parameter used to describe the ADE effect is a parameter that

its value is unknown. Mathematically, once it is given a value for φ we have a different value of S∗ and,

therefore for the eigenvalues of the Jacobian matrix.

As we have seen on the figures (6.3a) and (6.3b) there is a threshold for the value of φ, in each

case, which satisfies RInv > 1. Then, starting for this threshold value, the Coexistence equilibrium will

be in the positive region and, therefore, we can look for the eigenvalues. Thus, we can numerically verify

the local dynamic near the correspondent endemic equilibrium for each value of φ.

In the asymmetric case, we choose two cases:

Case (i): R0 > 1,R1 < 1

In this case, with values for the parameters on table (3.2) with β1 = 45 and β2 = 180, which

giveR1 = 0.87, andR0 = 3.46, theRInv is bigger than one for φ bigger than 1.23. Then, for all values
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of φ > 1.23 we have the existence of the coexistence endemic equilibrium and the correspondents

eigenvalues as shown on the figures.
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Figure 6.4: Eigenvalues of the coexistence endemic equilibrium in the complex plane, for each

value of φ. Figures (6.4a) to (6.4f) show that the real part of a pair of complex eigenvalues

change the sign as φ increases.

Analysing numerically the local stability of the coexistence endemic equilibrium E3, we can

see that the matrix has nine equilibriums of which five are negative real, two are conjugated complex with

negative real part, and the other two conjugated complex change the sign of the real part as φ increases.

Thus, a Hopf bifurcation occurs when the parameters φ is ≈ 2.52 (figure (6.4d)).
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Figure 6.5: Maximum value of the real part of the eigenvalues of the endemic equilibrium.

(6.5a) shows a smaller range for φ, highlighting the moment that the real part of the complex

eigenvalues change its sign.
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To complete the analysis on the figures (6.5a) and (6.5b), it is possible to note the moment that

the biggest real part of the eigenvalues cross the x-axis and remain positive, close to φ = 2.52, when the

Hopf Bifurcation occurs.

It is also possible to see that as φ approx the value 1.23, the real part of the eigenvalue change

the sign. It is the exact moment that the Invasion Reproduction number is bigger than one, and therefore,

the equilibrium is positive, in the positive invariant region and, it inherits the stability of the boundary

equilibrium, having as a consequence negative eigenvalues for φ ∈ (1.23, 2.52).

Case (ii): R0 > 1,R1 > 1

In this case, with the values for the parameters on the table (3.2) with β1 = 120 and β2 = 180,

which giveR1 = 2.31, andR0 = 3.46, theRInv is bigger than one for φ bigger than 0.21. Then, for all

values of φ > 0.21 we have the existence of the coexistence endemic equilibrium and the correspondents

eigenvalues, as shown on the figures.
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Figure 6.6: Eigenvalues of the coexistence endemic equilibrium in the complex plane, for each

value of φ. Figures (6.6a) to (6.6f) show that the real part of a pair of complex eigenvalues

changes the sign as φ increases.

Analysing numerically the local stability of the endemic equilibrium E3, we can see that the

matrix has nine equilibriums of which five are negative, two are conjugated complex with negative real

part and the other two conjugated complex change the sign of the real part as φ increases. Thus, a Hopf

bifurcation occurs when parameters φ ≈ 0.244 (figure (6.6c)).
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Figure 6.7: Maximum value of the real part of the eigenvalues of the endemic equilibrium.

(6.7a) shows a smaller range for φ, highlighting the moment that the real part of the complex

eigenvalues changes its sign.

To complete the analysis on the figures (6.5a) and (6.5b), it is possible to note the moment that

the biggest real part of the eigenvalues crosses the x-axis and remains positive, close to φ = 0.244, when

the Hopf Bifurcation occurs.

It is also possible to see that as φ approx the value 0.21, the real part of the eigenvalue changes

the sign. It is the exact moment that the Invasion Reproduction number is bigger than one, the equilibrium

is positive in the positive invariant region and it inherits the stability of the boundary equilibrium, having

as consequence, negative eigenvalues for φ ∈ (0.21, 0.244).

Bifurcation Structure

As we have showed numerically on the pictures in the previous sections that the Endemic

coexistence equilibrium changes the stability as the parameter φ changes. As φ increases from small

values through critical value, φc, the steady state changes from a stable focus to an unstable steady state.

Therefore, Hopf bifurcation occurs and we are able to conclude that closed periodic orbit will be found

in a small neighbourhood of φc.

According to Lynch (2004), two types of Hopf bifurcation can occur: the supercritical Hopf bi-

furcation, in which stable limit cycle is created surrounding an unstable critical point; and the subcritical

Hopf bifurcation, in which an unstable limit cycle is created and it surrounds a stable critical point.

In order to see the limit cycle around the equilibrium, in a small vicinity of the critical value,

bifurcation diagrams are shown on the next figures.
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(c) Asymmetric case:R1 = 2.31 (φc = 0.244)

Figure 6.8: Bifurcation diagrams for symmetric and asymmetric cases. In the horizontal axis,

the parameter φ varies in a vicinity of φc, while in the vertical axis, the maximum and minimum

values for susceptible population are plotted.

At symmetric case, the Hopf bifurcation occurs at φc = 0.032, as a consequence, the solutions

exhibit a small amplitude limit cycle around the endemic equilibrium. A stable limit cycle clearly arises

and goes away from the equilibrium (figure (6.8a)). Also, the amplitude of the limit cycle increases

gradually as the parameter φ moves away from the critical bifurcation point. Thus, it is possible to

conclude that a supercritical Hopf bifurcation occurred.

At asymmetric case, the Hopf bifurcation occurs at φc = 2.52 and φc = 0.244, as a conse-

quence, the solutions exhibit a small amplitude limit cycle around the endemic equilibrium. A stable

limit cycle arises close to the critical Bifurcation point and goes away from the unstable equilibrium

(figure (6.8b)) and (figure (6.8c)). Thus, it is possible to conclude that a supercritical Hopf bifurcation

occurred.

This change of stability, in other words, this kind of bifurcation is local. Therefore, the Hopf

bifurcation does not specify what happens when the parameter is further beyond the vicinity of its critical

bifurcation value (Edelstein-Keshet, 2005; Murray, 2002).

Because of that, solutions will be plotted in the next section for different values of φ, in order

to support the theoretical analysis (about stability of the equilibriums), verify the local numerical anal-

ysis (about the H. B.), as well as showing the asymptotic behaviour for parameter values further from

bifurcation value.

6.3.2 Solutions of the system

In this section, we are going to explore and to analyse numerically the solutions of the system

in order to understand better the model, as well as using this numerical approach to obtain information

about the solutions of the system for values of parameter φ further from the bifurcation value.
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Figure 6.9: Solutions of the system for φ = 1, β = 45, R0 = 0.87 < 1.Initial conditions:

(0.6, 0.01, 0.02, 0, 0, 0, 0.01, 0, 0).

The figure (6.9a) shows the solutions of the system at the symmetric case, for the parameter

values on the table (3.2) with φ = 1, β = 45 givingR0 = 0.87 < 1. In this case, the long term behaviour

of the solutions tends to the DFE.
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(b) φ = 0.02

Figure 6.10: Solutions of the system for φ = 0.02, β = 180, R0 = 3.46 > 1 Initial condition

(0.28, 0.00011, 0.0011, 0.002, 0.002, 0.3, 0.3, 0.001, 0.001).

The figures (6.10a) and (6.10b) show the solutions of the system at the symmetric case, for the

parameter values on the table (3.2) with φ = 0.02, β = 180 giving R0 = 3.46 > 1. In this case, the

long term behaviour of the solutions tends to the coexistence (endemic) equilibrium. This happens for

all values of φ ∈ (0, 0.032).
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(b) φ = 0.05

1000 1050 1100 1150 1200

Time (years)

0

0.5

1

1.5

2

2.5

3

3.5

4

S
ub

po
pu

la
tio

ns

10-4 Solution - Symmetric case - R0>1

Infected (serotype 2)
Reinfected (serotype 2)

(c) φ = 0.05
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(d) φ = 0.5
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(e) φ = 0.5
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(f) φ = 0.5

Figure 6.11: Solutions of the system for β = 180, R0 = 3.46 > 1. For φ = 0.05, initial

condition (0.26, 0.00011, 0.00015, 0.003, 0.004, 0.034, 0.036, 0.00010, 0.00012). For φ = 0.5,

initial condition (0.3, 0.0011, 0.002, 0.01, 0.02, 0.2, 0.3, 0.001, 0.002).

The figures (6.11a) to (6.11c) show the solutions of the system at the symmetric case, parameter

values on the table (3.2) with φ = 0.05, β = 180 givingR0 = 3.46 > 1. And figures (6.11d) to (6.11f),

for φ = 0.5. In the first case, the equilibrium is unstable and the value for φ is taken close to the Hopf

Bifurcation value and, as a consequence, closed periodic orbits will be found. The solutions indicate that

the limit cycle appears and it is stable for small values of φ close to φc = 0.032.

As φ increases far from the bifurcation critical value, a change in the behaviour of the solutions

is seen ( figures (6.11d) and (6.11e)). In this case, the solutions of the system for φ = 0.5 seem to

converge at the beginning to a periodic orbit. However, for long term behaviour, it is possible to see

different oscillations and a complex behaviour (6.11f).
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(c) φ = 1.2
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(d) φ = 3
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(e) φ = 3

1000 1020 1040 1060 1080 1100

Time (years)

0

1

2

3

4

5

S
ub

po
pu

la
tio

ns

10-3 Solution - Symmetric case - R0>1

Infected (serotype 2)
Reinfected (serotype 2)

(f) φ = 3

Figure 6.12: Solutions of the system for φ = 3, β = 180. For φ = 1.2, initial con-

dition (0.2, 0.0011, 0.0022, 0.01, 0.02, 0.07, 0.07, 0.01, 0.02). For φ = 3, initial condition

(0.16, 0.00011, 0.00013, 0.003, 0.003, 0.034, 0.034, 0.00012, 0.0001).

The figures (6.12a) to (6.12f) show the solutions of the system at the symmetric case for the

parameter values on the table (3.2) with β = 180 giving R0 = 3.46 > 1. In both cases, φ = 1.2 and

φ = 3, the solutions of the system converge to periodic orbits.

Asymmetric case
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(a) φ = 1

Figure 6.13: Solutions of the system for φ = 1, β1 = 40, R1 = 0.76 < 1, β2 = 45, R2 =

0.87 < 1. Initial conditions: (0.6, 0.01, 0.02, 0, 0, 0, 0.01, 0, 0).
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The figure (6.13a) shows the solutions of the system at the asymmetric case for the parameter

values on the table (3.2) with φ = 1, β1 = 40 givingR1 = 0.76 < 1, and β2 = 45 giving R0 = 0.87 <

1. In this case, the long term behaviour of the solutions tends to the DFE.

Now, we are going to explore and to analyse numerically the solutions of the system in the

asymmetric case, when β1 < β2. We are going to divided in two cases: case (i), when R1 < 1 < R2

and case (ii), when 1 < R1 < R2 .

Case (i): R0 > 1,R1 < 1
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(b) φ = 0.5

Figure 6.14: Solutions of the system for φ = 0.5, β1 = 45, R1 = 0.87 < 1, β2 = 180,

R2 = 3.46 > 1. Initial conditions: (0.3, 0.000001, 0.02, 0, 0.005, 0, 0.4, 0, 0).

The figures (6.14a) and (6.14b) show the solutions of the system at the asymmetric case for

the parameter values on the table (3.2) with φ = 0.5, β1 = 45 giving R1 = 0.87 < 1 and, β2 = 180

giving R2 = 3.46 > 1. In this case, the long term behaviour of the solutions tends to the Boundary

equilibrium E2, in other words, the Boundary equilibrium is locally asymptotically stable. In addition,

the coexistence equilibrium is not in the positive region. This happens for all values of φ ∈ (0, 1.23).
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(d) φ = 2.1

Figure 6.15: Solutions of the system for φ = 1.4, β1 = 45, R1 = 0.87 <

1, β2 = 180, R2 = 3.46 > 1. For φ = 1.4, initial conditions

(0.26, 0.000024, 0.00018, 0.00063, 0.0048, 0.012, 0.35, 0.000021, 0.000085). For φ = 2.1, initial

conditions (0.2601, 0.0000244, 0.00018, 0.00063, 0.0048, 0.0115, 0.358, 0.0000209, 0.000084).

The figures (6.15a) and (6.15b) show the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) for φ = 1.4, β1 = 45 giving R1 = 0.87 < 1 and, β2 = 180 giving

R2 = 3.46 > 1. And, for φ = 2.1, the solutions are shown by figures (6.15c) and (6.15d). In both cases,

the long term behaviour of the solutions converges to the Coexistence equilibrium, it means that the

Coexistence equilibrium is locally asymptotically stable. This happens for all values of φ ∈ (1.23, 2.52).

117



0 200 400 600 800 1000 1200

Time (years)

0

0.1

0.2

0.3

0.4

0.5

S
ub

po
pu

la
tio

ns
Solution - Asymmetric case - R0>1, R1<1

Susceptible
Recovered (serotype 1)
Recovered (serotype 2)
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(b) φ = 2.55
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(c) φ = 2.55

Figure 6.16: Solutions of the system for φ = 2.55, β1 = 45,

R1 = 0.87 < 1, β2 = 180, R2 = 3.46 > 1. Initial conditions:

(0.2601, 0.0000244, 0.00018, 0.00063, 0.0048, 0.0115, 0.358, 0.000020, 0.00008).

The figures (6.16a) to (6.16c) show the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) for φ = 2.55, β1 = 45 giving R1 = 0.87 < 1 and, β2 = 180 giving

R2 = 3.46 > 1. In this case, the parameter φ is taken close to the value of Hopf Bifurcation at φc = 2.52

and the solution exhibit for a long time behaviour a limit cycle.
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(b) φ = 3.5
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(c) φ = 3.5

Figure 6.17: Solutions of the system for φ = 3.5, β1 = 45, R1 = 0.87 < 1, β2 = 180,

R2 = 3.46 > 1. Initial conditions: (0.25, 0.08, 0.2, 0.05, 0.15, 0.04, 0.56, 0.001, 0.009).

The figures (6.17a) to (6.17c) show the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) with φ = 3.5, β1 = 45 giving R1 = 0.87 < 1 and, β2 = 180 giving

R2 = 3.46 > 1. In this case, the solutions show a complex behaviour.

Now, we are going to explore and to analyse numerically the solutions of the system in the

asymmetric case, when 1 < R1 < R2.

Case (ii): R0 > 1,R1 > 1
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Figure 6.18: Solutions of the system for φ = 0.1, β1 = 120, R1 = 2.31 > 1, β2 = 180,

R2 = 3.46 > 1. Initial conditions: (0.27, 0.000001, 0.001, 0.00001, 0.05, 0, 0.56, 0, 0).

The figures (6.18a) and (6.18b) show the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) with φ = 0.1, β1 = 120 givingR1 = 2.31 > 1 and, β2 = 180 giving

R2 = 3.46 > 1. In this case, the long term behaviour of the solutions tends to the Boundary equilibrium

E2, it means that the Boundary equilibrium is locally asymptotically stable. In addition, the Coexistence

equilibrium is not in the positive region. This happens for all values of φ ∈ (0, 0.21).
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Figure 6.19: Solutions of the system for φ = 0.23, β1 = 120,

R1 = 2.31 > 1, β2 = 180, R2 = 3.46 > 1. Initial

conditions:(0.27, 0.000011, 0.00019, 0.00027, 0.00505, 0.0237, 0.6546, 0.0000031, 0.0000011).

The figures (6.19a) and (6.19b) show the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) with φ = 0.23, β1 = 120 giving R1 = 2.31 > 1 and, β2 = 180

giving R2 = 3.46 > 1. In this case, the long term behaviour of the solutions tends to the Coexistence

equilibrium, it means that the Coexistence equilibrium is locally asymptotically stable. This happens for

all values of φ ∈ (0.21, 0.244).
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(c) φ = 0.26

Figure 6.20: Solutions of the system for φ = 0.26, β1 = 120,

R1 = 2.31 > 1, β2 = 180, R2 = 3.46 > 1. Initial conditions:

(0.269, 0.0000321, 0.0001786, 0.000828, 0.00461, 0.0653, 0.546, 0.0000129, 0.0000195).

The figures (6.20a) to (6.20c) show the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) with φ = 0.26, β1 = 120 giving R1 = 2.31 > 1 and, β2 = 180

givingR2 = 3.46 > 1. In this case, a stable limit cycle appears and the solutions converge to a periodic

orbit.
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(c) φ = 0.8

Figure 6.21: Solutions of the system for φ = 0.8, β1 = 120, R1 = 2.31 > 1, β2 = 180, R2 =

3.46 > 1. Initial conditions: (0.26, 0.000032, 0.0002, 0.0009, 0.005, 0.05, 0.4, 0.00001, 0.00002).

The figures (6.21a) to (6.21c) show the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) with φ = 0.8, β1 = 120 givingR1 = 2.31 > 1 and, β2 = 180 giving

R2 = 3.46 > 1. In this case, the long term behaviour shows that the solutions converge to a periodic

orbit.
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(c) φ = 2

Figure 6.22: Solutions of the system for φ = 2, β1 = 120, R1 = 2.31 > 1, β2 = 180, R2 =

3.46 > 1. Initial conditions: (0.25, 0.000042, 0.0009, 0.001, 0.01, 0.05, 0.35, 0.00002, 0.00003).

The figures (6.22a) to (6.22c) show the solutions of the system at the asymmetric case for the

parameter values on the table (3.2) with φ = 2, β1 = 120 giving R1 = 2.31 > 1 and, β2 = 180 giving

R2 = 3.46 > 1. In this case, the solutions converge to a periodic orbit.

Although we conclude mathematically that the solution of the system goes to an equilibrium

or goes to a periodic orbit, this happens for a long time behaviour. It means it takes much time to get in

the asymptotic behaviour. Therefore, biologically speaking, for a short period of time it is hard to predict

the next episode of the disease.

6.4 Main Results

We can summarize our main results on the table below, where local and global stability of

the DFE and of the boundary equilibriums were theoretically proved. While, the local stability and

bifurcations of the Coexistence Endemic were numerically showed.

Table 6.1: Stability of the solutions of the delay system: Symmetric parameters

Basic R. Number DFE Eq. E1 Eq. E2 Int. Equilibrium E3

R1 = R2

R0 ≤ 1 GAS No No No

R0 > 1 Unstable Unstable Unstable LAS for φ < φc

H. B. (stable limit cycle)

Unstable φ > φc
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Table 6.2: Stability of the solutions of the delay system: Asymmetric parameters

Basic R. N. Invasion N. DEF Eq. E1 Eq. E2 Int. Eq. E3

R1 < R2 RInv

R0 ≤ 1 RInv < 1 GAS No No No

R0 > 1 RInv < 1 Unstable No (R1 < 1) GAS No

Unstable (R1 > 1)

R0 > 1 RInv > 1 Unstable Unstable Unstable LAS for φ < φc

H B (stable limit cycle)

Unstable φ > φc

6.5 Local Analysis of the Endemic Equilibrium of the ODE

System

The analysis of the local stability of the endemic equilibrium (coexistence equilibrium) using

the classical theory of the linearization was not successful. We will have to deal with a characteristic

polynomial of the a 9 × 9 matrix and with the fact that it was not possible to describe the endemic

equilibrium in terms of the parameters.

First of all, in order to analyse the stability, we have decided to analyse it numerically (chapter

4). We have found that a Hopf bifurcation occurs for a critical value of the parameter φ leading to

periodic oscillations. The steady state was computed numerically for arbitrary φ and, as φ increases,

trajectories change from stable endemic coexistence equilibrium to oscillatory dynamics.

Once we have the numerical results in mind, in order to analyse analytically the bifurcation

structure we are going to use perturbation theory and symmetry in order to handle the complexity of a

direct calculation of the coexistence equilibrium and the eigenvalues.

At the symmetric case, we have already known that since the parameters are symmetric, the

dynamic of the model will be also symmetric, in other words, for equal initial conditions, the variables

that represent the sub-populations are equal in the respective class for different serotypes. Then, the

primary infections are equal, the secondary infections are the same and so on. Thus, we are going to use

the symmetry among serotypes, in order to reduce the symmetric system.

First, we analyse the particular case, when P (t) = e−ωt. Now, using the ideas from Billings

(2007), we consider that the population reached the equilibrium N∗ = 1
k ln( rd), r > d. At the equilib-

rium, we normalize the ODE, using S = S
N∗ , Ii = Ii

N∗ , Iij =
Iij
N∗ , Ci = Ci

N∗ and Ri = Ri
N∗ .

Thus, near the equilibrium, at symmetric case, the ODE can be rewritten as
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S
′
(t) = d− dS − βS(I1 + I2 + I12 + I21)

I1
′
(t) = −(d+ γ)I1 + βS(I1 + I21)

I2
′
(t) = −(d+ γ)I2 + βS(I2 + I12)

C1
′
(t) = −(d+ ω)C1 + γI1

C2
′
(t) = −(d+ ω)C2 + γI2 (6.21)

R1
′
(t) = −dR1 − αφR1(I2 + I12) + ωC1

R2
′
(t) = −dR2 − αφR2(I1 + I21) + ωC2

I12
′
(t) = −(d+ γ)I12 + αφR1(I2 + I12)

I21
′
(t) = −(d+ γ)I21 + αφR2(I1 + I21).

Using the symmetry among the serotypes, we reduce the whole system defining new variables

s = S =
S

N∗

x = I1 = I2

c = C1 = C2 (6.22)

r = R1 = R2

y = I12 = I21.

Thus, the endemic equilibrium in the initial system will be the same equilibrium of the follow-

ing associated reduced model

s′(t) = d− ds− βs2(x+ y)

x′(t) = −(d+ γ)x+ βs(x+ y)

c′(t) = −(d+ ω)c+ γx (6.23)

r′(t) = −αφr(x+ y) + ωc− dr

y′(t) = −(d+ γ)y + αφr(x+ y).

There is still a complexity of the direct calculation of the endemic equilibrium and the eigen-

values, in terms of the dependency of the parameters. Hence, in an attempt to deal with this complexity,

we are going to use the perturbation theory.

Note that d, the mortality rate, is small compared to the other parameters. This way, we intro-

duce another small parameter µ > 0, having now d of the order O(µ) and the other parameters of the

system in order of 1
µ .
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We rescale the parameters in relation to µ, letting β = β0
µ , α = α0

µ , ω = ω0
µ , γ = γ0

µ , in the

sequence, we set the birth rate µ and the mortality rate d. With these parameters set, we are close enough

to our original system at the steady state and its behaviour.

As soon as we remove the mortality rate, we are able to estimate the endemic equilibrium

analytically, in terms of the parameters and stability. Once we set the mortality parameter d = 0 (because

d is of O(µ)) it simplifies the model near the equilibrium. Moreover, the mortality term has negligible

effect on the steady state because it is a small parameter compared to the other parameters. Then, the

resulting local dynamics can be reduced to the following associated system

s′ = µ− βs2(x+ y) (6.24)

x′ = −γx+ βs(x+ y) (6.25)

c′ = γx− ωc (6.26)

r′ = αφxr(x+ y) + ωc (6.27)

y′ = −γy + αφr(x+ y). (6.28)

The qualitatively analysis of this model is an interesting approach of our original system, but

it is only valid for small values of the mortality rate and different values of the birth rate, suggesting an

attempt to approach the value of the endemic equilibrium, not including the mortality in the long time

dynamic and, a possible estimation of the system dynamics and its stability.

The endemic equilibrium of the system (6.24), considering, x 6= 0 and y 6= 0, in other words,

when the disease is already established without the mortality term, now it is easy to calculate. It is giving

by

ES = (
γ0

2β0
,
µ2

2γ0
,
µ2

2ω0
,
γ0

2α0φ
,
µ2

2γ0
). (6.29)

Now, we use the linearisation theory to analyse the stability of the endemic equilibrium. The

Jacobian matrix of the reduced associated system (6.24) at the steady state ES is given by

J(ES) =



−2β0µ
γ0

−γ0
µ 0 0 −γ0

µ

β0µ
γ0

− γ0
2µ 0 0 γ0

2µ

0 γ0
µ −ω0

µ 0 0

0 − γ0
2µ

ω0
µ −α0φµ

γ0
− γ0

2µ

0 γ0
2µ 0 α0φµ

γ0
− γ0

2µ


(6.30)

.
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And, the coefficients of the characteristic polynomialm(λ) = m0+m1λ+m2λ
2+m3λ

3+m4λ
4+m5λ

5

are given by

m0 = −2α0φβ0ω0

µ

m1 = −β0γ
3
0ω0 + 2α0φβ0(γ2

0 + 2γ0ω0)µ2

γ2
0µ

2

m2 = −(2β0 + α0φ)γ3
0µ+ 3(2β0 + α0φ)γ2

0ωµ+ 4α0φβ0(ω0 + 2γ0)µ3

2γ2
0µ

2

m3 = −2γ3
0ω0 + 4α0φβ0µ

4 + (6β0γ
2
0 + 4β0γ0ω0 + 3α0φγ

2
0 + 2α0φγ0ω0)µ2

2γ2
0µ

2

m4 = −γ
2
0(γ0 + ω0)µ+ (2β0 + α0φ)γ0µ

3

γ2
0µ

2

m5 = −1.

Since the coefficients of the polynomial are of orderO(1/µ2) we redefine a polynomialM(λ) =

µ2m(λ). Thus, we apply the regular perturbation theory, assuming that the solutions of the polynomial

M(λ) are of the form λ = z0 + z1µ+ z2µ
2 +O(µ3).

Substituting the solutions λ in the polynomial M(λ) = µ2m(λ) and equalising the terms of

the same order we have

z0 = 0

z1 = −2
α0φ

γ0
(6.31)

z2 = 0

and,

z2
0 = −β0

z1 = − 1

2γ0ω0
[β0γ0ω0 + α0φ(γ0 − ω0)] (6.32)

z2 = ±v0

√
β0i,

where v0 = z1(2β0(γ0 − ω0)− α0φ(3ω0 + γ0))− 3γ0ω0z
2
1 +

β2
0
γ0

(2ω0 + 2γ0)− β0α0φ
2γ0

(γ0 + 6ω0).

Thus, the approximation of the O(µ3) of the eigenvalues are

λ1 = −2
α0φ

γ0
µ < 0 (6.33)

and,

λ2,3 = −
(

1

2γ0ω0
[β0γ0ω0 + α0φ(γ0 − ω0)]

)
µ± (1 + v0µ

2)
√
β0i (6.34)
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with the negative real part, because ω ≤ γ, it means that the length of the recovery time is smaller than

the length of the cross immunity time, according to the biological references.

The other eigenvalues can be determined by verifying their magnitude, by analysing the coef-

ficients of the characteristic polynomial. Performing this analysis, it is possible to verify that the other

solutions of the polynomial m(λ) are of the order O( 1
µ) . Dividing m(λ) by the roots found, it can be

notice that the real part of the complex roots λ4,5 is of the form

−(γ0 + ω0)

µ
− 2β0µ

γ0
+

(β0ω0 + α0φ)µ

ω0
. (6.35)

Thus, the real part of the eigenvalue is negative since the negative term is of order O( 1
µ), whereas the

positive term is of the order O(µ).

It means it is possible to conclude that the symmetry of the parameters and variables lead to a

great reduced system but it is not possible to find the bifurcation structure in the symmetry. Also, with

this conditions, we easily verify numerically that for all values of φ > 0, the eigenvalues of this reduced

associated model are always negative, showing a stable dynamic near the endemic equilibrium, that does

not necessarily occur as we have seen numerically in the previous chapter, in the symmetric case for the

initial system.

Therefore, in this case we have to deal with the whole system, without the assumption that

the variables are symmetric, only that the parameters have the symmetry, since the symmetry among the

variables does not reflect the stability of the whole system.

In fact, it is the assumption of the symmetry in the variables and not the perturbation in the

mortality term which makes only the stable dynamic appear for the system. We can assure this state-

ment with numerical results of the stability of the system (6.23), at symmetric case, with symmetry in

the variables and without the perturbation of the mortality term. It is possible to see that the eigenval-

ues of Jacobian matrix at the endemic equilibrium of the system (6.23) have always negative real part,

independent of the size of the parameter φ as shown on the following figures.
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Figure 6.23: Figures show the eigenvalues of the endemic equilibrium in the complex plane,

for each value of φ, at symmetric case, for symmetric system (6.23) ( with symmetry in the

variables and without the perturbation in the mortality term). The values used in the simulations

are found on table (3.2) with β1 = β2 = 180.

Then, we are going to proceed and work with the whole system (6.21). To simplify, we define

new variables as following
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s = S =
S

N∗

xi = Ii

ci = Ci (6.36)

ri = Ri

y1 = I21

y2 = I12.

Thus, the endemic equilibrium in the initial system will be the same equilibrium of the follow-

ing associated system

s′(t) = d− ds− βs(x1 + x2 + y1 + y2)

x′1(t) = −(d+ γ)x1 + βs(x1 + y1)

x′2(t) = −(d+ γ)x2 + βs(x2 + y2)

c′1(t) = −(d+ ω)c1 + γx1 (6.37)

c′2(t) = −(d+ ω)c2 + γx2

r′1(t) = −αφr1(x2 + y2) + ωc1 − dr1

r′2(t) = −αφr2(x1 + y2) + ωc2 − dr2

y′1(t) = −(d+ γ)y1 + αφr2(x1 + y1)

y′2(t) = −(d+ γ)y2 + αφr1(x2 + y2).

Now, we are going to use the same idea used before for the reduced model. We are going to

use the perturbation theory. It is important to note that d, the mortality rate, is small compared to the

other parameters. This way, we introduce another small parameter µ, having now, d is of O(µ) and the

other parameters of the system in order of 1
µ .

We rescale the parameters in relation to µ, letting β = β0
µ , α = α0

µ , ω = ω0
µ , γ = γ0

µ , in the

sequence, we set the birth rate µ and, the mortality rate d. With this parameters set, we are close enough

to our original system at the steady state and its behaviour.

As soon as we remove the mortality rate, we are able to estimate the endemic equilibrium

analytically, in terms of the parameters and stability. Once we set the mortality parameter d = 0 (because

d is of O(µ)) it simplifies the model near the equilibrium. Moreover, the mortality term has negligible

effect on the steady state because it is a small parameter compared to the other parameters. Then, the

resulting local dynamics can be described by the following system
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s′(t) = µ− βs(x1 + x2 + y1 + y2)

x′1(t) = −γx1 + βs(x1 + y1)

x′2(t) = −γx2 + βs(x2 + y2)

c′1(t) = −ωc1 + γx1 (6.38)

c′2(t) = −ωc2 + γx2

r′1(t) = −αφr1(x2 + y2) + ωc1

r′2(t) = −αφr2(x1 + y2) + ωc2

y′1(t) = −γy1 + αφr2(x1 + y1)

y′2(t) = −γy2 + αφr1(x2 + y2).

The qualitatively analysis of this model is an interesting approach of our original system, but

it is only valid for small values of the mortality rate and different values of the birth rate, suggesting an

attempt to approach the value of the endemic equilibrium, not including the mortality in the long time

dynamic and a possible estimation analysis of the Hopf bifurcation structure for values of φ.

The endemic equilibrium of the system (6.38), considering, xi 6= 0 and yi 6= 0, in other words,

when the disease is already established without the mortality term, now it is easy to calculate. And, it is

given by

EA = (
γ0

2β0
,
µ2

2γ0
,
µ2

2γ0
,
µ2

2ω0
,
µ2

2ω0
,
γ0

2α0φ
,
γ0

2α0φ
,
µ2

2γ0
,
µ2

2γ0
). (6.39)

Now, we use the linearisation theory to analyse the stability of the endemic equilibrium. The

Jacobian matrix of the reduced associated system (6.38) at the steady state EA is given by

J(EA) =



−2β0µ
γ0

− γ0
2µ − γ0

2µ 0 0 0 0 − γ0
2µ − γ0

2µ

β0µ
γ0

− γ0
2µ 0 0 0 0 0 0 γ0

2µ

β0µ
γ0

0 − γ0
2µ 0 0 0 0 γ0

2µ 0

0 γ0
µ 0 −ω0

µ 0 0 0 0 0

0 0 γ0
µ 0 −ω0

µ 0 0 0 0

0 0 − γ0
2µ

ω0
µ 0 −α0φµ

γ0
0 − γ0

2µ 0

0 − γ0
2µ 0 0 ω0

µ 0 −α0φµ
γ0

0 − γ0
2µ

0 0 γ0
2µ 0 0 α0φµ

γ0
0 − γ0

2µ 0

0 γ0
2µ 0 0 0 0 α0φµ

γ0
0 − γ0

2µ



, (6.40)

with characteristic polynomial n(λ) = n0 +n1λ+n2λ
2 +n3λ

3 +n4λ
4 +n5λ

5 +n6λ
6 +n7λ

7 +n8λ
8 +

n9λ
9 and coefficients given by
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n0 = −2α2
0φ

2β0ω
2
0

µ3

n1 = −α0φβ0ω0[γ2
0ω0 + α0φ(3γ0 + 7ω0)µ2]

µ4

n2 = −α0φβ0γ
2
0ω0(3γ0 + 13ω0)

2γ0µ3
− α2

0φ
2(γ2

0ω0(γ0 + 3ω0))

2γ0µ3
− α2

0φ
22β0(γ2

0 + 12γ0ω0 + 10ω2
0)µ2

2γ0µ3

n3 = −4β0γ
4
0ω

2
0 + 4α0φγ

4
0ω

2
0

4γ2
0µ

4)
− 20α2

0φ
2β0γ

2
0 + 76α2

0φ
2β0γ0ω0 + 28α2

0φ
2β0ω

2
0

4γ2
0

− α2
0γ

4
0φ

2 + 12α2
0γ

3
0φ

2ω0 + 13α2
0γ

2
0φ

2ω2
0 + 2α0φβ0γ

2
0(γ2

0 + 23γ0ω0 + 27ω2
0)

4γ2
0µ

2

n4 = −µ(18α2
0φ

2β0γ
2
0 + 28α2

0β0γ0φ
2ω0 + 4α2

0β0φ
2ω2

0)

2γ3
− 4β0γ

4
0ω0(γ0 + 2ω0) + 4α0γ

4
0φω0(γ0 + 2ω0)

2γ3µ3

− 3α2
0γ

4
0φ

2 + 13α2
0γ

3
0φ

2ω0 + 6α2
0γ

2
0φ

2ω2
0 + 2α0β0γ

2
0φ(5γ2

0 + 26γ0ω0 + 12ω2
0)

2γ3
0µ

n5 = −γ
2
0ω

2
0

µ4
− µ2(7α2

0β0γ0φ
2 + 4α2

0β0φ
2ω0)

γ3
0

− β0γ
5 + 8β0γ

4
0ω0 + 6β0γ

3
0ω

2
0 + α0γ

3
0φ(γ2

0 + 8γ0ω0 + 5ω2
0)

γ3
0µ

2

− 50α0β0γ
3
0φ+ 96α0βγ

2
0φω0 + 16α0β0γ0φω

2
0 + α2

0γ0φ
2(13γ2

0 + 24γ0ω0 + 4ω2
0)

4γ3
0

n6 = −2α2
0φ

2β0µ
3

γ3
0

− 2γ0ω0(γ0 + ω0)

µ3
− µ(12α0γ

2
0φ+ 8α0φβ0γ0ω0 + α2

0φ
2γ0(3γ0 + 2ω0))

γ3
0

− 4β0γ
4
0 + 10β0γ

3
0ω0 + 2β0γ

2
0ω

2 + 2α0γ
2
0φ(2γ2

0 + 5γ0ω0 + ω2
0)

γ3
0µ

n7 = −γ
4
0 + α0φ(4β0 + α0φ)µ4 + 4γ3

0ω0 + 4γ0ω0(β0 + α0φ)µ2 + 5γ2
0(β0 + α0φ)µ2 + γ2

0ω
2
0

γ2µ2

n8 = −2(γ2
0 + γ0ω0 + (β0 + α0φ)µ2)

γ0µ

n9 = −1.

Our main goal here is to simplify the assumptions as much as possible, in order to get analytical

results found in the numerical approach. The reduced model and characteristic polynomial of the reduced

model obtained through the symmetry in the variables among the serotypes are a particular case of

the model (6.38) and its characteristic polynomial. Since in the reduced model there is no bifurcation

structure, we will only work with the quotient polynomial m(λ)
n(λ) = r(λ).

If there is a bifurcation structure, it means that it can only be found in the quotient polynomial
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r(λ) = r0 + r1λ+ r2λ
2 + r3λ

3 + r4λ
4, where

r0 =
α0φγ0ω0

µ2
(6.41)

r1 =
α0φ(γ0 + 3ω0)

2µ
(6.42)

r2 =
α0φ(3γ0 + 2ω0)

2γ0
+
γ0ω0

µ2
(6.43)

r3 =
γ0 + ω0

µ
+
α0µ

γ0
(6.44)

r4 = 1 (6.45)

since, m(λ) only show eigenvalues with negative real part.

The coefficients of the polynomial are of order O(1/µ2) we redefine a polynomial R(λ) =

µ2r(λ). Thus, we apply the regular perturbation theory, assuming that the solutions of the polynomial

R(λ) are of the form λ = z0 + z1µ+ z2µ
2 +O(µ3).

When we substitute the solutions λ in the polynomial R(λ) = µ2r(λ) and equalise the terms

of the same order, we have

z2
0 = −α0φ

z1 =
α0φ

4γ0ω0
[γ0 − ω0] (6.46)

z2 = ±v1

√
α0φi.

where v1 = 1
2γ0ω0α0φ

[
α2

0φ
2 − α2

0φ
2(3γ0+2ω0

2γ0
)− α2

0φ
2

4γ0ω0
(γ0 − ω0)(5γ0+3ω0

2 )
]
,

Thus, the approximation of the O(µ3) of the eigenvalues are given by

λ1,2 =

(
α0φ

4γ0ω0
[γ0 − ω0]

)
µ± (1 + v1µ

2)
√
α0φi, (6.47)

with the positive real part, because ω ≤ γ, it means that the length of the recovery time is smaller than

the length of the cross immunity time, according to the biological references.

The other eigenvalues can be determined by verifying their magnitude, by analysing the coef-

ficients of the characteristic polynomial. Performing this analysis, it is possible to verify that the other

solutions of the polynomial r(λ) are of the order O( 1
µ). When we divide r(λ) by the roots found, it can

be noticed that the roots are real and of the form

λ3,4 = −2
(γ0 + ω0)

µ
− α0φµ(

1

γ0
+

1

ω0
)± (

2

µ

√
(γ0 + ω0)2 −O(µ4)). (6.48)

The roots are negative since the positive term that appears in one of the eigenvalues, described by the

root, is smaller than the negative term of the eigenvalue.

Thus, with the system (6.38), we show that the endemic equilibrium is always unstable. With

this analysis, it can be also easy to verify numerically that for all values of φ > 0 the eigenvalues of
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the whole system are always negative, except for a pair of complex that has positive real part, showing a

unstable dynamic near the endemic equilibrium.

Wherefore, it was not possible to show analytically the bifurcation structure. However, it was

possible to prove analytically the instability of the endemic equilibrium. It is what happens for the most

values of φ showed numerically, in the symmetric case.

In this particular case, at symmetric case, for all positive values of φ, there is always a pair

of complex eigenvalues that has positive real part, showing that the Coexistence Endemic equilibrium is

always unstable, leading to complicated dynamic.
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CHAPTER 7

Discussion and Conclusion

7.1 Some Important Considerations

We have proposed a model with time delay on temporary immunity, allowing general periods

of immunity, for instance, P (t) being the probability of a temporarily immune individual which remains

immune t units time after entered this state. Thus, we obtain a model to study the spread of Dengue

fever in a population, namely a system of Integro-Differential Equations with time delay on the recovery

state.

A time delay described by a general distribution is proposed to represent the time that an

individual remains temporarily immune for all serotypes, while most articles show a particular function

(step function or constant distributed delay) when they want to represent this biological effect.

Also, models the dynamic of total population is always considered constant on those models.

Different from that, we have included the Ricker function in order to describe the new individuals born

entering the susceptible class. Adding this term, allow us to analyse the dynamics for a long term in

order to make them more realistic.

Once we take the total population constant and we assume the probability of remaining in the

cross immunity class exponentially distributed and equal for different serotypes, consequently, our model

is very similar to the ODE models of the Aguiar (2007) and Aguiar (2008). However, it is important to

highlight the difference since we assume different assumption about the ADE effect.

The model that Aguiar (2007) and Aguiar (2008) have proposed was an ODE system for two

strains, without vector dynamics and with constant population. The ADE effect was described by a
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constant rate φ and, the temporarily immune class was added on the model with the assumption that the

infection gives a temporary protection for all serotypes no matter which strain the individual was infected

and, it is the same for different strains.

In that work, the temporary immune class is represented by Ri, while the recovery class is

Si. 1
α is the average time immunity and, µ the constant birth rate that is equal to death constant rate.

The assumption for ADE effect is related to a decreasing (or increasing) of the transmissibility. While

this assumption is taken by Aguiar (2007), the same constant rate on our model is used to describe

the increasing probability to the reinfection, in other words, an increasing of the susceptibility of the

recovered individual.

In the study by Aguiar (2008), numerical analysis were made and deterministic chaos could be

observed, with the immunity constant rate α being two months and, for φ < 1, which indicates that with

the severe disease the patients stay hospitalized and it implies that less transmissions occur.

With respect to analytic theory in the study done by Aguiar (2008), concerning to the sym-

metric case, the stationary states were obtained when the two strains were equal. They have described

analytically the coexistence strains solution and the solution for the extinction of one of them, for the

symmetric case only.

For asymmetric case, numerical analysis were made by Kooi (2014). It was observed the

dependency of the parameter φ for ADE effect, also the dependency of parameter ε, which describes the

difference among the infection rates. Bifurcations diagrams are presented and calculated by numerical

simulations. Also, analytical stability analysis were described, for asymmetric case, calculating the

stability of the Disease Free Equilibrium (DFE) and for the Boundary equilibrium only.

It was found that the stability of DFE depends on the sign of two eigenvalues and, from this

threshold value, they define the Basic Reproduction Number R0. While for the stability of Bound-

ary equilibrium the author affirms that just one single eigenvalue can change under positive parameter

changes and, that condition determines the bifurcation saw on the bifurcations numerical diagrams (Kooi,

2014).

There is no mention of a coexistence equilibrium for the asymmetric case over the studies

mentioned above, for the ODE system. The analytical result for coexistence equilibrium and the stability

were obtained only for the symmetric case by Aguiar (2008).

Although no coexistence equilibrium was obtained for the asymmetric case, in the works by

Aguiar (2007, 2008); Kooi (2014) for similar ODE system, in our work even for the ODE model (par-

ticular case) we proved that for certain values of the parameter that represent the enhancement, there is

indeed an endemic equilibrium (or coexistence equilibrium), within the region, which is a very impor-

tant result because, according to VinodKumar (2013), different serotypes have been co-circulating in the

same area with one of them being dominant during an outbreak.
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Also, we proved numerically that only for small parameter values that represent the ADE the

equilibrium can be stable. For all the cases, symmetric and asymmetric, it was showed that bifurcation

occurs and, for the most of the values of the φ the equilibriums exist, but it is unstable. Thus, the

coexistence of the two serotypes is possible but not established, the solution oscillates and the serotypes

begin to compete for the same resource.

Similar results were found by Esteva (2003). They proposed a simpler model for population

and the dynamic of the disease. However, they could incorporate the dynamic of the vector population

(mosquito population).

The dynamic of the vector population in the study by Esteva (2003) is simple: two serotypes

can infect susceptible vector and, once they are infected, they do not recover from the disease. Humans

population dynamics were divided by susceptible state, infected, recovered and reinfected, in a dynamic

with two different serotypes and different probability of infection and recover. In addition, over the work,

different constant parameter was added to represent either cross immunity protection, if σ is smaller than

one, or increasing susceptibility to other serotype, when σ > 1.

With this model, Esteva (2003) found that there are four equilibriums of the system, the DFE,

two boundary equilibriums and the coexistence equilibrium, even in the asymmetric case. In this case,

they affirm that coexistence of both serotypes is possible for large range of parameters. However, this

estimative of the stability of the endemic equilibrium was showed only by numerical analysis.

It is important to emphasize that Esteva (2003) included vector population in the dynamics.

However they do not differentiate the cross immunity protection and the ADE effect, it means that both

biological consequences cannot happen together, either it is partial protection or enhancement of the

susceptibility. We differentiate these two process adding a cross immunity time class as Aguiar (2007)

and using the hypotheses about the increasing of the susceptibility for the reinfection, representing the

ADE consequence, as Esteva (2003).

Although these highlighted differences, we have found similar results as the existence of the

coexistence equilibrium of the system. However, while our results show oscillatory dynamic and unstable

dynamics for almost all the values of the ADE, Esteva (2003) could prove numerically that for all values

of the enhancement the coexistence serotype is stable, only having competitive exclusion when there is

no reinfection.

Therefore, we can indeed remove the dynamic of the vectors and add more characteristics of

the disease in the human dynamics, including a general time for cross immunity protection, different

values for recovery and different values of infectivity resulting in a complex analysis. As soon as we

remove the vector dynamic, we are able to achieve the mathematical and biological results which were

not obtained previously, and may not have as much impact as if we are more interesting in the analysis

of the infected human population and the impact of the diseases in it, since without vectors we could find
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similar analysis regarding the existence of solutions.

Concerning to the dynamic behaviour, our model brings more robust and sophisticated results

than the model of the Esteva (2003). Competitive exclusion is presented in the model of Esteva (2003)

only in the case when there is no reinfection, however our model shows complex dynamics, more reliable

with the reality and taking into account the Competitive Exclusion Principle.

7.1.1 The Competitive Exclusion Principle

The Competitive Exclusion Principle states that in the basic ODE system with multiple strains

for disease or in case of having different species competing, only the strain (or specie) which has the

biggest Reproduction Number persists (if it is larger than one), the other ones die out. The coexistence of

strains or different species are not possible unless in the symmetric scenario when the Basic Reproduction

Number of the different strains are equal.

According to Martcheva (2015) the principle was first formulated as a law in 1930 by an ecol-

ogist Georgy Gause through a laboratory experiment. It was stated that competitors in one niche cannot

coexist and, consequently, the other species become extinct.

Bremermann (1989) has modified a host parasite model proposed by Anderson and May and

postulated a condition which the parasite persists in host population and validate the principle also for

this case. For time delay systems, the principle was derived by Cai (2013) under a stronger condition. In

both papers, the models do not consider the possibility of an individual being infected twice in different

occasions.

In our model, it is noticed the occurrence of a coexistence equilibrium also for asymmetric

case, as in the works by Esteva (2003) and Martcheva (2015), whose stability depends on the force of

the enhancement. The mechanism used in our model that led to the occurrence of an equilibrium with

coexistence strains was the epidemiological consequence: cross immunity and the biological assumption

that different serotypes can infect a host again after the cross immunity period.

In fact, Martcheva (2015) cites and gives examples of some mechanisms that have been iden-

tified as causing coexistence of pathogens, such as mutation virus, superinfection (individual with strain

one becomes infected with strain two), co-infection and cross immunity (cross immunity means, accord-

ing to this author, that the other infection occurs after recovered from the other), which is the case in our

model.

The possibility of the system exhibits the coexistence equilibrium depends on intrinsically of

the values of the parameters that may not be fiscally and biologically feasible, which mean that the

principle is validated in this case.

However, the principle was postulated for models that do not permit the reinfection in different

occasions which means that this different mechanism may be led to exhibit the coexistence equilibrium.
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Thus, for biological feasible parameters values, the endemic equilibrium could exist. Although it will

be always unstable, leading to complex dynamic where sometimes, the infection one resists leading to

the other can be almost extinct and sometimes, the opposite. For a long term behaviour these switches

between the strains seem to be an important result.

According to Martcheva (2015), there are other mechanisms known to induce coexistence of

multiple pathogens, however what causes this coexistence is still an open question. This model carry-

ing these mechanisms which can cause the coexistence of pathogens, as a consequence, these switches

among the strains, have an important role, once some diseases still considered a public health problem,

as Dengue fever, have this multi-strain interaction characteristic, where different strains co-circulate in a

region.

7.1.2 The Invasion Reproduction Number

It is usual to find another important threshold value when working with multiple strain model.

In this case, when we have the coexistence equilibrium, it is normally easy to find a threshold value

that gives the stability of this equilibrium. In our model we called RInv and this value determines the

stability of the Boundary equilibrium, as well as it is a threshold for the endemic equilibrium be located

in the biological positive region.

This quantity found is called Invasion Reproduction Number (of strain one at the equilibrium of

strain two). Martcheva (2015) denoted this value by R2
1 and it is defined epidemiologically as a number

of secondary infections that one individual infected with the strain one will produce in a population, in

which the strain two is at equilibrium during its infectious lifetime.

This Invasion Reproduction Number is very important to determine whether a strain can invade

another. Thus, whenR2
1 = RInv < 1 strain one cannot grow when strain two is at equilibrium. However,

ifR2
1 = RInv > 1 both strains grow and begin to coexist.

7.2 Final Conclusions

In this work we have carried out a mathematical model, namely an Integro-differential equa-

tions system, which can be applied to study a multi strain infectious disease, motivated by Dengue fever.

Dengue fever is endemic in more than 100 countries WHO (2018) and it remains a major public health

problem.

Over the years, some mathematical models for infectious diseases and specially for Dengue

fever have been developed, most of them, in the format of ODEs. However, epidemics propagation are

not instantaneous and it is more appropriate to model epidemics incorporating continuously distributed

delay and not discrete delay or constant time.
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Therefore, by considering Ricker function to describe susceptible newborns, a distributed delay

to describe a temporary immunity and a constant parameter to describe the ADE effect, we analyse a

multi serotype epidemic model in order to understand the transmission and the effects of the spread of

the disease in a population. Additionally, we aim to analyse the effect of time delay and the ADE effect

in the system.

In the chapter 2, a general form for the temporary immunity time was considered. Time delay

was used to model phenomena that an individual may not be immediately recover after being infected.

Using results from IDE systems, we are also capable to prove the existence of four equilibriums and the

stability of the equilibriums in both cases, symmetric and asymmetric.

We proved the existence of the DFE, the two boundary equilibriums and the Coexistence En-

demic equilibrium, under some conditions. We showed that the disease will die out if the Reproduction

number is smaller than 1. If the Invasion Reproduction number is smaller than 1, one strain dies out and

the other will persist. And, in the last scenario the two strains will coexist if the Invasion Reproduction

number is bigger than 1. The existence of the endemic equilibrium was also theoretically proved even

for the asymmetric case.

Lyapunov functions can be an effective tool for proving global stability of IDE systems. Thus,

we could prove the global stability of DFE and the boundary equilibrium, in the case that the Invasion

number is smaller than one.

We also showed numerically the stability of the Coexistence endemic equilibrium, showing

stability for small values of the parameter representing ADE, while the equilibrium will be unstable for

bigger values. The possibility for Hopf bifurcation was allowed only through a numerical analysis by

considering the parameter representing ADE effect as a bifurcation parameter. This kind of bifurcation

is local, thus only for values close to the bifurcation critical point we can conclude that a limit cycle

exists, therefore the solutions show periodic behaviour. Moreover, our results showed that incorporating

distributed delays would arise periodic solutions and show instability of the endemic equilibrium for the

most values of the bifurcation parameter.

Solutions of the system were performed over chapter 3 showing oscillatory dynamics. Al-

though the solutions of the system, for values further from bifurcation critical value, either go to an

equilibrium or go to a periodic orbit, this only happens for a long time behaviour, taking quite long

time to reach the asymptotic behaviour. Therefore, for a short period, the behaviour of the solutions is

unknown and hard to predict.

Over chapter 4, we have shown that direct calculation of the equilibrium, its eigenvalues and

the stability of the Coexistence equilibrium can be only addressed by numerical calculations. Relaxing

assumptions in the symmetric case can lead to a great reduced system. For instance, simplifying the

symmetric case and assuming symmetry in the variables lead us to a five equations system. Even though

138



it has the same equilibriums, the system with symmetry in the variables does not reflect the stability of

the endemic equilibrium of the whole system, as we have seen numerically. Although, we could verify

and conclude that the bifurcation and instability does not occur in the symmetric manifold.

Whereas the assumption of the perturbation in the mortality term allows us to have an ana-

lytic form of the endemic equilibrium with neglected mortality term. Besides, it allows us to show the

eigenvalues, likewise the instability of the Coexistence equilibrium. However, this assumption did not

reflect the bifurcation structure seen in the numerical analysis. Hence, we could verify the instability

direction is out of the symmetric manifold, on the other hand, the Hopf bifurcation already passed with

this perturbation.

We finally conclude this work by adding the mortality rate caused by disease. By adding a small

mortality in the original system, from biological point of view, it could represent better the dynamic of

Dengue fever. However, from the point of view of the qualitative study, through mathematical tools, the

behaviour of both models is similar because of the continuity in the parameter. Therefore, the original

system, without the mortality for disease, can be a good representation for the study of the propagation

of the disease and it brings the advantage of being a simpler model.

A special form for the temporary immunity function was considered in the original model, over

the chapter 6. By considering the temporary immunity time exponential distributed, it was able to reduce

the IDE system to an ODE system. This way, we have more resources to work with, mathematically

speaking. Moreover, qualitative analysis of the ODE system gave us a visual picture of the dynamic

behaviour.

Comparing the particular case (exponential distributed function) with the general case, the

qualitative behaviour of the system was not altered by the choice of function. However, the Invasion

number depends on the average cross protection time, which can affect whether the infection could

coexist.

Lastly, mathematical models were used in order to focus on understanding the spread of in-

fectious disease as well as suggesting interventions to control or even predicting the consequences of

the propagation. With this model, we tried to explain why it is so hard to predict Dengue fever, and we

concluded that there are some mechanism and intrinsic characteristics of Dengue fever, such as ADE and

cross protection, which may hinder the prediction of the next outbreaks of the disease.
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Appendix

Invariant Region for ODE System

For biological reasons we look for steady states of the ODE system that belong to a region

of the R+. In this way, each input will be positive which is biological reasonable since we are deal-

ing with variables that represent sub-population classes. We are going to prove that this region Ω =

{(S, I1, I2, C1, C2, R1, R2, I12, I21, R) ∈ R10
+ such that S+I1+I2+C1+C2+R1+R2+I12+I21+R ≤

N∗}, described before, it is indeed a positive invariant set for the system (1.8), then all solution with ini-

tial condition at Ω will remain in Ω.

Theorem 16. The Ω = {(S, I1, I2, C1, C2, R1, R2, I12, I21, R) ∈ R10
+ such that S + I1 + I2 + C1 +

C2 +R1 +R2 + I12 + I21 +R ≤ N∗}, region is positively invariant set for the system (1.8).

Proof. In fact, it can be easily verified that solutions of the system (1.8) with non-negative initial condi-

tions remain non-negative. In particular, for S, we assume that τ > 0 is the first time such that S(τ) = 0.

Then, at S(τ) = 0, for the first equation of the system we have

dS

dt
= dN∗ > 0. (7.1)

This means that S(t) < 0 for t ∈ (τ − ε, τ). Therefore S(t) > 0, for t ≥ 0.

Also, at S = N∗

dS

dt
≤ 0, (7.2)

then S(t) ≤ N∗ for t ≥ 0.
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Now, adding the equations of the system (1.8) we have

dS

dt
+
dI1

dt
+
dI2

dt
+
dC1

dt
+
dC2

dt
+
dR1

dt
+
dR2

dt
+
dI12

dt
+
dI21

dt
+
dR

dt
=

dN∗ − d(S + I1 + I2 + C1 + C2 +R1 +R2 + I12 + I21 +R)

Then

lim supt→∞ S(t)+I1(t)+I2(t)+C1(t)+C2(t)+R1(t)+R2(t)+I12(t)+I21(t)+R(t) ≤ N∗.

This shows that any trajectory p(t) = (s(t), i1(t), i2(t), c1(t), c2(t), r1(t), r2(t), j1(t), j2(t), r(t))

with the initial condition in Ω, remains in Ω for all t.

Results from Fred Brauer

This following result was used in order to reach the corollarys about the stability of the solutions

of the Time Delay system. This result is from Fred Brauer in his work from 1978, which was found in

Brauer (1978).

It is considered a Integro-differential system of the form

x′(t) = H(t) + F [x(t),

∫ ∞
0

g(x(t− s))P (s)ds], (7.3)

where H(t) tends to zero sufficiently rapidly as t→∞. Regarding H as a perturbation, it is considered

the unperturbed system

x′(t) = F [x(t),

∫ ∞
0

g(x(t− s))P (s)ds]. (7.4)

If
∫∞

0 P (s)ds <∞ we can define an equilibrium to be a solution x∞ of the equation

F [x∞, y∞] = F [x∞, g(x∞)

∫ ∞
0

P (s)ds] = 0 (7.5)

Let u(t) = x(t)− x∞ then we write (7.4) as

u′(t) = Fx(x∞, y∞)u(t) + Fy(x∞, y∞)g′(x∞)

∫ ∞
0

u(t− s)P (s)ds+ ψ(u(t)) (7.6)

ψ denotes the function with the high order in the variables.

Then, the asymptotic stability of the solution u = 0 of the (7.6) and, hence of the x = x∞

of (7.4) (Grossman, 1970; Miller, 1972), is a consequence of the uniform asymptotic stability of the

solution u = 0 of the linear system (7.6) (without the function ψ), in other words,

u′(t) = Fx(x∞, y∞)u(t) + Fy(x∞, y∞)g′(x∞)

∫ ∞
0

u(t− s)P (s)ds. (7.7)
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It is known by Grossman (1973) it remains true if an integrable function is added to the right

side of (7.6). If u(t) is given and bounded, also if
∫∞

0 sP (s)ds <∞, the function

H(t) =

∫ ∞
t

u(t− s)P (s)ds

is integrable. These results are summarized and formalized in the follow theorem.

Theorem 17. Theorem 2 (Section 3) (Brauer, 1978). Let x∞ be an equilibrium of (7.4), and suppose∫ ∞
0

H(s)ds <∞,∫ ∞
0

P (s)ds <∞,∫ ∞
0

sP (s)ds <∞.

If the solution u = 0 of the (7.7) is uniformly asymptotically stable, then the equilibrium x∞ of

the (7.3) is uniformly asymptotically stable.

The Invariance Principle

The Invariance principle used in chapter 3, in order to show global stability through Lyapunov

function is a extension of the LaSalle’s Invariance Principle for ODE (LaSalle, 1976). The Invariance

principle for IDE, definition of Lyapunov function and details can be found in LaSalle (1976) and Burton

(2005).

Theorem 18. (LaSalle’s Invariance Principle) (LaSalle, 1976) Let Ω ⊂ D be a compact set that is

positively invariant with respect to the system x′ = f(x). LetL : D → R be a continuously differentiable

function such that L′(x) ≤ 0, ∀x ∈ Ω. Let E be the set of all points in Ω where L′(x) = 0. Let Y be the

largest invariant set in E. Then every solution starting in Ω approaches Y as t goes to infinity.
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