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We propose two variable weighted iterative reconstruction algorithms (VW-ART and VW-OS-SART) to improve the algebraic
reconstruction technique (ART) and simultaneous algebraic reconstruction technique (SART) and establish their convergence.
In the two algorithms, the weighting varies with the geometrical direction of the ray. Experimental results with both numerical
simulation and real CT data demonstrate that the VW-ART has a significant improvement in the quality of reconstructed images
over ART and OS-SART. Moreover, both VW-ART and VW-OS-SART are more promising in convergence speed than the ART
and SART, respectively.
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1. INTRODUCTION

Many image reconstruction problems can be modeled by the
following linear system:

y = Rx, (1)

where y = (y1, y2, . . . , yn)T ∈ Rn is the observed data, n is the
number of the projection datum, x = (x1, x2, . . . , xm)T ∈ Rm

is the original image (T denotes the transpose of a matrix, R
is the real number field, andm is the number of pixel, namely,
image array is

√
m × √m) and R = (ri j) is an n ×m matrix.

Image reconstruction is to estimate the original image x from
the observed data y. Since (1) is usually ill-conditioned and
the data in practice are noisy and very large, a solution by
direct method involving the matrix R is infeasible [1]. In-
stead, some iterative methods, such as the algebraic recon-
struction technique (ART) [2], simultaneous algebraic re-
construction technique (SART) [3], and expectation maxi-
mization (EM) algorithms [4], have been developed for im-
age reconstruction. The iterative algorithm is a promising ap-
proach to achieve a better image quality in CT. However, lim-
itations exist with respect to the required computation time.

In order to accelerate the convergence of iterative algo-
rithms in image reconstruction, several improvements were
designed based on the SART and EM algorithms. One re-
markable technique is the ordered subset (OS) (also called

block iterative (BI)) versions of the simultaneous schemes
[5]. There are some guidelines to be considered [6] in the
selection of subsets and blocks, but the relaxation parame-
ters are fixed in numerical implementations [7, 8]. In this
paper, we propose variable weighted OS-SART (VW-OS-
SART) and variable weighted ART (VW-ART) algorithms.
Since the weights are considered in these subsets, the recon-
structed images by VW-ART are better than those by OS-
SART, VW-OS-SART, and ART. The reconstruction speeds of
these algorithms are faster than those by OS-SART and those
of ART.

The structure of the manuscript is as follows. In
Section 2, we introduce a method for subset partition and
corresponding weights selection. In Section 3, we derive the
VW-OS-SART and VW-ART algorithms. In Section 4, we
discuss the convergence property of the proposed algorithms.
In Section 5, we apply our algorithms to simulated and prac-
tical data. In Section 6, we discuss some relevant issues and
conclude the paper.

2. SUBSETS PARTITION AND WEIGHTS SELECTION

The main idea of ordered subset method is to partition the
dataset into several subsets. It is crucial to find an effec-
tive way for the partitioning. In each iteration, we hope that
the image is improved as much as possible with a lower
computational cost. Hence, each subset should contain as
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much complementary tomographic information as possible
and have a relatively small size for computational balance.
One of the natural subset partitions is formulated by divid-
ing the projection data according to the projection angles.
For example, for system (1), the 2D image array is

√
m×√m,

then there are n/
√
m projections and

√
m identical detector

bins per projection. The projection angle interval [0, 2π] can
be divided into T subintervals of the same length (T is the
number of the subintervals):
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(2)

There are 2n/T
√
m the observed projection angles in each

subinterval.
The projections are sequenced according to geometrical

direction of the ray. The projection data of rays are sequenced
according to geometrical position. Denote the index of pro-
jection datum by B = {1, 2, . . . ,n}. Then we partition the
index set B into T nonempty subsets

Bt =
{
it1, it2, . . . , itn(t)

}
,

B = {1, 2, . . . ,n} =
⋃

1≤t≤T
Bt.

(3)

Each Bt contains all the indices of projection data in the tth
angle subinterval in (2). The subsets Bt are not necessarily
disjoint.

The weights of the all projection data in one projection
angle are equal. We define

μ1(α) = T

2π
r, μT(α) = 1− μ1(α), t = 1, 0 ≤ r ≤ 2π

T
,

μt(α)= T

2π
r, μ[T/2+t−1](α)=1−μt(α), t �= 1, 0 ≤ r ≤ 2π

T
,

μt(α) = 2− T

2π
r, μ[T/2+t](α) = 1− μt(α), r >

2π
T

,

(4)

where α = (4π/T)(t − 1) + r, (t = 1, 2, . . . ,T/2, 0 ≤ r <
4π/T). μBt (yi) is the weighted of the ith projection datum yi
in Bt, then μBt (yi) = μt(α), where α is the projection angle of
yi.

See Figure 1 for the geometrical interpretation of the
weights selection. In each projecting angle subinterval, the
weights locate on the two-segment line. Therefore the
projection data index set B is divided into T subsets
{B1,B2, . . . ,BT}, and the weight corresponding to each sub-
set is given by μBt (yi) which satisfies

T∑
t=1

μBt

(
yi
) = 1, i = 1, 2, . . . ,m. (5)
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Figure 1: Geometrical interpretation of the weights selection in for-
mula (4), α denote projection angle, μt(α) denote the weighted of
the projection data at α projection angle in tth subinterval, μt(α) =
0, when t �= [α/4π/T] + 1, ([x] denote the integral part of x).
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3. VARIABLE WEIGHTED VERSION OF OS-SART AND
VARIABLE WEIGHTED ART ALGORITHMS

Let V and W be two positive definite diagonal matrices of or-
der m and n, respectively. The following general Landweber
scheme was studied in [1]:

x(l+1) = x(l) + λlV
−1RTW

(
y − Rx(l)), (6)

where λl > 0 is the relaxation coefficient in the lth iteration.
When

V = diag
{ n∑
i=1

ri1,
n∑
i=1

ri2, . . . ,
n∑
i=1

rim

}
,

W = diag
{

1∑m
j=1 r1 j

,
1∑m

j=1 r2 j
, . . . ,

1∑m
j=1 rn j

}
,

(7)

then (6) is the SART [5]

x(l+1)
j = x(l)

j + λl
1∑n

i=1 ri j

n∑
i=1

ri j∑m
j=1 ri j

(
yi − Rix(l)), (8)

where Ri is the ith row of R.
According to the partitioning and weighting strategies

proposed in Section 2, the variable weighted version of the
OS-SART algorithm (VW-OS-SART) can be written as

x(l+1)
j = x(l)

j + λl
1∑

i∈B[l]
ri jμB[l] (yi)

•
∑
i∈B[l]

μB[l] (yi)
ri j∑m
j=1 ri j

(yi − Rix(l)),
(9)

where [l] = l mod (T) + 1 for l ≥ 0. The iteration process
from l = νT to l = (ν + 1)T is called one cycle, in which each
subset Bt is visited exactly once. When

V = diag
{ ∑

i∈B[l]

ri1μB[l] (yi),

∑
i∈B[l]

ri2μB[l] (yi), . . . ,
∑
i∈B[l]

rimμB[l] (yi)
}

,

W = diag
{
μB[l]

(
y1
)
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j=1 r1 j

,
μB[l]

(
y2
)
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j=1 r2 j

, . . . ,
μB[l]

(
yn
)

∑m
j=1 rn j

}
(10)

then (6) is the same as (9).
When V = I , W = diag{μ1/

∑m
j=1 r

2
1 j ,μ2/

∑m
j=1 r

2
2 j , . . . ,

μn/
∑m

j=1 r
2
nj}, (6) becomes the ART [1]. The variable weighted

version of this algorithm, called VW-ART, can be written as

x(l+1)
j = x(l)

j + λl
ri jμi∑
j r

2
i j

(
yi − Rix(l)), (11)

where i = l mod (n) + 1, and

μi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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μ(2)
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{μBt (yi)}

(2ν + 1)n ≤ l < 2(ν + 1)n, ν = 0, 1, 2, . . . .
(12)

4. CONVERGENCE ANALYSIS

Let
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(13)

where Ri and Wi are the ith row of R and the ith diagonal
element of W , respectively. Denote

C =

⎛
⎜⎜⎜⎜⎝

R1

R2
...
RT

⎞
⎟⎟⎟⎟⎠ , b =
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⎞
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where C = (ci j)(2n−T√m)×m, b is a 2n− T
√
m dimension vec-

tor, then we have a linear algebraic system

Cx = b. (15)

Equation (1) is consistent if and only if (15) is consistent,
and they have exactly the same solution set. The OS version
of the Landweber scheme of (15) can be written as

x(l+1) = x(l) + λlV
−1CT

[l]W[l]
(
b[l] − C[l]x

(l))

= x(l)
j + λl

1∑
i∈B[l]

ri jμB[l]

(
yi
)

•
∑
i∈B[l]

μB[l]

(
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) ri j∑m

j=1 ri j

(
yi − Rix(l)),

(16)

where W[l] = diag{∑m
j=1 c1 j ,

∑m
j=1 c2 j , . . . ,

∑m
j=1 c(2n−T√m) j}.

Formula (16) is the same as the VW-OS-SART formula (9).
Similar to that in [5], we get the following convergence

results.

Theorem 1. If 0 < λl < 2, for all l ≥ 0,
∑

l λl = ∞, and
liml→∞λl = 0, then the sequence {x(l)} generated by (9) con-
verges to x(∗) + PVx(0) even with inconsistent data. Here, PV
is the orthogonal projection from Rm to the kernel of R with
respect to the inner product 〈·, ·〉V .

VW-ART algorithm is a special ART algorithm, where
the relaxation parameters {λl} are special sequence, namely,
the relaxation parameters are λlμi (where μi ≤ 1). If the
sequence {x(l)} generated by the ART algorithm converges,
the sequence{x(l)} generated by the VW-ART algorithm (11)
converges, too. That is the following theorem.
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Theorem 2. If 0 < λlμl < 2, for all l ≥ 0,
∑

l λl = ∞, and
liml→∞λl = 0, then the sequence {x(l)} generated by (11) con-
verges to x(∗) + PVx(0).

In order to study the speed of convergence, we call fin-
ishing one VW cycle 2 iteration numbers, because the con-
suming time of one VW-OS-SART cycle is almost twice as
that of one OS-SART cycle (T/2 ordered subsets), and the
time of one VW-ART cycle is twice as that of one ART cy-
cle [9]. Namely, the iteration numbers in variable weighted
algorithm are always even.

5. EXPERIMENT RESULTS

To test the performance of the VW-OS-SART, and compare
it with OS-SART and VW-ART, we code all of them in the
programming language C on a PC (RAM: 256 MB, CPU: In-
tel P4 2.8 GHz) under Windows XP operating system. The
image array is 256 × 256, with 256 gray levels. Projections
are simulated (or obtained in experiment) over 360◦ with
the uniform sampling scheme. There are totally 360 projec-
tions, 256 identical detector bins per projection. Pseudo ran-
dom noises satisfying Gauss distribution are added to the
Shepp-Logan phantom data, with variance being 2.5% of im-
age mean, and the relaxation sequence λl = 2. The numbers
of subsets T = 72, each Bt containing nine projections, that
is, m = 2562, n = 256× 360. The weights are computed as in
Section 1. For example, if y is one of the 256 projections with
the projection degree 1◦, then μA1 (y) = 0.2,μA72 (y) = 0.8; if
y is one of the 256 projections with the projection degree 5◦,
then μB1 (y) = 1; if y is a projection with the projection de-
gree 8◦, then μB1 (y) = 0.4,μB37 (y) = 0.6; if y is one of the 256
projections with the projection degree 10◦, then μB37 (y) = 1.

In Figure 2, we present a Shepp-Logan phantom and
the images reconstructed by the above algorithms (the ini-
tial value of iterative reconstruction is x(0) = (0, 0, . . . , 0)).
It can be seen from Figure 2 that all the reconstructed im-
ages by VW-ART are better than those by OS-SART, VW-
OS-SART (relaxation parameter is 2) and ART. The recon-
structed speeds of VW-OS-SART are faster than those by OS-
SART; the reconstruction speeds of VW-ART are faster than
those of ART (see Figure 3).

Since the true image is known in the Shepp-Logan phan-
tom experiment, to quantify the performance of the VW-
OS-SART and VW-ART formulas, the mean square error is
computed from the images in the CT phantom experiment.
In Figure 3, we present the difference of the mean square er-
ror of the reconstructed images by ART, VW-ART, OS-SART,
and VW-OS-SART.

In the practical data experiments we use a cylindrical ob-
ject of 80 mm in diameter, with 14 apertures of different di-
ameters inside, and scan with X-ray generator with 220 KVp
and 10 mA. The whole scan time is 1.5 second. The dis-
tance between the focus and the detector is 1.000 mm; the
distance between the center of rotation and the detector is
50 mm. Figure 4(a) shows the image profile of the object,
Figures 4(b)–4(e) show the images reconstructed via differ-
ent algorithms (λl = 0.15, computation time 600 seconds).

(a) Shepp-Logan
phantom

(b) OS-SART

(c) VW-OS-SART (d) ART

(e) VW-ART

Figure 2: Phantom experiment. The gray range is from 0 to 255.
(a) is the Shepp-Logan phantom. (b)–(e) are reconstructed images
with the above algorithms.

The images reconstructed by the VW-ART (Figure 4(e)) are
better than those reconstructed by the OS-SART, the VW-
OS-SART, and the ART (Figures 4(b)–4(d)) in quality. The
criterion of comparison is the resolution of images, namely,
whether the apertures can be detected.

6. DISCUSSIONS AND CONCLUSION

In our experiments, we have found that for both VW-OS-
SART and VW-ART, the partition of ordered subset affects
the quality of reconstruction image. And the selection of
weights for each projection is crucial to variable weighted al-
gorithms, and it can be a piece-wise linear function, Gaussian
function and so on. The convergence conditions for VW-OS-
SART and VW-ART are guidelines for the selection of the
relaxation parameters. The relaxation parameters in ART al-
gorithm and VW-ART algorithm are generally smaller than
those in SART algorithm and VW-OS-SART algorithm.

The partition of the subsets is generally based on the geo-
metrical relationship of projections. The weights selection is
given by linearity in this paper, and it can be given by an ex-
ponential as well, which is similar to ordered subsets method,
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Figure 3: Plot of mean square error as a function of iterative number in the Shepp-Logan phantom experiments.

(a) Image profile (b) OS-SART

(c) VW-OS-SART (d) ART

(e) VW-ART

Figure 4: Reconstructed images by different algorithms using the
practical data. The gray range is from 0 to 255.

generally, “increasing the number of the subsets accelerates it-
erative convergence, but there is a point beyond which image
quality degrades due to lack of either tomographic or statistical

information within subsets” [6]. The number of subsets may
affect the convergence of the algorithm. Instead of partition-
ing the data in the projection domain, another way is to par-
tition the pixel set in the image domain, which is under in-
vestigation.

In conclusion, we have proposed the VW-OS-SART and
VW-ART algorithms and established their convergence. The
proposed algorithms have been evaluated with Shepp-Logan
phantom and practical data. In VW-OS-SART and VW-
ART algorithms, the sum of the weighted of each projec-
tion data is 1, the weighting varies with the geometrical di-
rection of the ray, the weight and partitioning procedures
are intuitively reasonable and easy to be implemented. We
use a weighted partitioning scheme such that each sub-
set contains equal-spaced angle X-rays only, then these al-
gorithms can have a significant improvement in the qual-
ity of reconstructed images over ART and SART, the ex-
perimental results on both digital phantom and real CT
data have demonstrated that the VW-ART has a significant
improvement in the quality of reconstructed images over
ART and SART; both VW-ART and VW-OS-SART are more
promising in convergence speed than ART and SART, respec-
tively.

APPENDIX

PROOF OF THEOREM 1

Let x(∗) be the minimal V norm solution of the problem,
where the V norm is defined as ‖x‖2

V = 〈x, x〉V = 〈Vx, x〉,
and PV is the orthogonal projection from Rm to the kernel of
R (the kernel of C is identical with that of R) with respect to
the inner product 〈·, ·〉V , and ‖R‖V ,W is the operator norm
from Rm (with 〈·, ·〉V ) to Rn(with 〈·, ·〉W ). The following
lemma is proved in [1].
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Lemma A.1. Assume that there exists ρ > 0 such that
‖Rt‖V ,Wt ≤ ρ for t = 1, 2, . . . ,T and 0 ≤ ρ2λl ≤ 2, if (15)
is consistent and

∑
l

min
(
ρ2λl, 2− ρ2λl

) = ∞, (A.1)

then the sequence {x(l)} generated by (16) converges to x(∗) +
PVx(0). If

∑
l

λl = ∞, lim
l→∞

λl = 0, (A.2)

then the sequence {x(l)} generated by (16) converges to x(∗) +
PVx(0), even if (15) is inconsistent.

Because (1) is consistent if and only if (15) is consistent,
the formula (16) is the same as formula (9). The following
lemma of Theorem 1 is proved in [1].

Lemma A.2. Assume that there exists ρ > 0 such that
‖Rt‖V ,Wt ≤ ρ for t = 1, 2, . . . ,T and 0 ≤ ρ2λl ≤ 2, if (1)
is consistent and

∑
l

min
(
ρ2λl, 2− ρ2λl

) = ∞, (A.3)

then the sequence {x(l)} generated by (9) converges to x(∗) +
PVx(0). If

∑
l

λl = ∞, lim
l→∞

λl = 0, (A.4)

then the sequence {x(l)} generated by (9) converges to x(∗) +
PVx(0), even if (1) is inconsistent.

To establish the convergence of the proposed algorithms,
we estimate ‖C‖V ,W with the corresponding V and W as fol-
lows:

‖Cx‖2
W =

n∑
i=1

1∑
j ci j

∣∣∣∣
∑
j

ci jx j

∣∣∣∣
2

=
n∑
i=1

1∑m
j=1 μ

(1)
i ri j +

∑m
j=1 μ

(2)
i ri j

×
∣∣∣∣

m∑
j=1

μ(1)
i ri jx j +

m∑
j=1

μ(2)
i ri jx j

∣∣∣∣
2

=
n∑
i=1

1∑m
j=1 ri j

∣∣∣∣
∑
j

ri jx j

∣∣∣∣
2

=
n∑
i=1

( m∑
j=1

ri j

∣∣∣∣
m∑
j=1

ri j∑m
j=1 ri j

x j

∣∣∣∣
2)

≤
n∑
i=1

( m∑
j=1

ri j

( m∑
j=1

ri j∑m
j=1 ri j

∣∣xj∣∣2
))

=
m∑
j=1

( n∑
i=1

ri j
∣∣xj∣∣2

)
= ‖x‖V ,

(A.5)

where the inequality is according to the convexity of the func-
tion t �→ t2. Therefore, ‖C‖V ,W ≤ 1, we can choose ρ to be 1,
and get the convergence result.
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