
Research Article
An Information Retrieval Algorithm for Accounting Internal
Audit Using Multi-Pattern Similarity Matching

Chunguang Ma ,1 Hongjun Bei,1 Guihua Chen,2 and Jianhui Gao3

1Ningbo University of Finance & Economics, Ningbo 315010, China
2Ningbo Daocheng Construction Services Co. Ltd, Ningbo 315010, China
3Ningbo Raw Water Co. Ltd, Ningbo 315010, China

Correspondence should be addressed to Chunguang Ma; machunguang@nbufe.edu.cn

Received 31 March 2022; Revised 11 May 2022; Accepted 28 May 2022; Published 16 June 2022

Academic Editor: Muhammad Babar

Copyright © 2022 Chunguang Ma et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

�e multi-mode matching has noteworthy transformations equated with the classical multi-mode matching algorithms. It is
frequently used for the policy part of the TCP connection to connect the English characters. In this article, we analyzed the features
of multi-mode similarity for audit information retrieval in a cluttered environment. �e proposed model analyzed the per-
formance theorem of a multi-mode matching algorithm for audit information retrieval. It also analyzed the shortcomings of
existing multi-mode similarity systems and proposed a multi-mode algorithm based on the trail hash trie matching machine
suitable for mixed Chinese and English environments. �e algorithm converts the set of pattern strings into multiple �nite
automata and then builds a state driver using the set of pattern strings.�e state driver is driven by the characters of the string to be
matched in turn, and each �nite automaton is driven by the state driver to achieve similar multimodal matching with mixed
English and Chinese characters by allowing the insertion errors. �e algorithm does not need to match every character and can
make full use of the information of this unsuccessful match during the matching process and skip as many characters as possible
by combining the improved text window mechanism. It can control the upper limit of allowed errors for each pattern string. �e
matching speed is independent of the number k of allowed insertion errors. �e algorithm has comprehensive application
projections in the �elds of information auditing, database, and information retrieval, respectively.

1. Introduction

�e Internet has now been one of the most essential global
information channels. In contrast, the application of in-
formation processing technologies such as network infor-
mation retrieval and network information content auditing
has become more and more widespread, and multi-mode
matching algorithms are the core of these technologies, and
most of the problems related to network information pro-
cessing are eventually converted into multi-mode matching
problems [1, 2]. �e multi-mode matching for web infor-
mation text has signi�cant di�erences compared with the
traditional multi-mode matching. It is frequent for the
policy part of the TCP connection to consist of English
characters, whereas the content-related part of the packet

will consist of other types of characters for a variety of
reasons, along with Internet protocol encoding and language
groups in di�erent regions [3, 4]. Hence, the text to be
processed is usually composed of a mixture of characters
with di�erent encoding rules. In the case of Chinese, this
situation is more prominent because of the di�erence be-
tween simpli�ed and traditional Chinese characters, and the
text will comprise 2 or more types of characters. �e multi-
mode matching is oriented to a single-character environ-
ment, and when applied to the abovementioned mixed
environment, there are certain challenges including missed
matching and mismatching [5, 6]. �erefore, it is of great
theoretical and application value to study e�cient and
practical multi-mode matching algorithms for a mixed
environment.

Hindawi
Mobile Information Systems
Volume 2022, Article ID 6521905, 11 pages
https://doi.org/10.1155/2022/6521905

mailto:machunguang@nbufe.edu.cn
https://orcid.org/0000-0002-1177-404X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6521905

In this study, we introduce THT (threaded hash trie), a
multi-pattern technique based on a threaded whole hash trie
matching machine. %e THT algorithm is ideal for multi-
pattern matching systems in mixed foreign contexts, with
low-time complexity and tolerable space complexity. %e
characteristics of multi-mode matching for audit informa-
tion retrieval are analyzed. %e proposed solution also an-
alyzed the shortcomings of existing multi-mode matching
algorithms using the THTalgorithm.%e algorithm converts
the set of pattern strings into multiple finite automata. %e
algorithm does not need to match every character and can
make full use of the information. %e algorithm has broad
application prospects in the fields of information auditing,
database, and information retrieval.

%e rest of this article is organized as follows: In Section
2, the existing approaches used for multi-modematching are
presented. In Section 3, various theorems for multi-mode
matching in a mixed environment are presented. Section
4provides a solid foundation for our threaded hash trie
algorithm. In Section 5, the experimental results and analysis
of the THT algorithm are presented. Finally, the study is
concluded in Section 6.

2. Existing Approaches for Multi-
Mode Matching

A specific character is encoded as ASCII (American Stan-
dard Code for Information Interchange) in the English
language that occupies only one byte. On the other hand,
Chinese language character is encoded for double, simplified
characters as GB (gigabyte), with the greatest bit of each byte
set to 1. %e traditional characters are stored as BIG5 with
the highest bit set to 0. %e following characteristics are
allowed for a byte in mixed text. %e byte with both the
highest bit of 0 is an English character; the byte with the
highest bit of 1 is a simplified or conventional Chinese [7].
%is difference in encoding length and rules makes multi-
mode matching in a mixed environment extremely com-
plicated. In a single-character environment, the encoding
length of characters is the same, and the matching algorithm
only needs to match according to the fixed length and can
speed up the matching by jumping according to the rules.

However, due to the randomness of network informa-
tion, the probabilities of different coded characters in text
strings are random in mixed environments. %e problem of
mismatching will arise if the attributes of the bytes are
incorrectly determined during the matching process,
resulting in a series of matching errors by comparing the low
byte of the Chinese letter in the text string with the high byte
of the Chinese character in the pattern string, or by mis-
takenly matching the low byte of a traditional Chinese letter
with an English letter. For example, for the character string
“Expense,” (3C|62|3E|CBD1|CBF7|B2FA|C6B7|3C|2 F| 62|
3E), assuming “product (B2FA| C6B7)” is the keyword. If
there is an error in processing the character boundary, the
match starts from the lower byte D1 of “search” and the
combination of bytes becomes “3C|62|3E|CB|D1CB|F7B2|
FAC6|B73C|2F|62|3E,” which will clearly generate a series of
mismatches and lead to a missed match; if the mismatched

codes exactly form a keyword, it will lead to a false match.
%e mismatch will not be corrected until a non-Chinese
character appears if the Chinese character is followed by a
Chinese pattern string after a byte mismatch occurs. %e
mismatch will be caused if the low byte of a Chinese letter
and the high byte of the adjacent Chinese character happens
to form a pattern string. To prevent mismatching, the
common method is to filter out the non-Chinese characters
in the text string, convert it into a pure Chinese text string,
and then process it accordingly. Obviously, this requires two
scans of the text string, which wastes more system time and
has a lower matching efficiency. %is has a great impact on
real-time processing such as web information content audit
and content search. A few Chinese scholars have conducted
some research on pattern matching in Chinese and mixed
Chinese/English environments in response to the above
problems.

%ese studies have made very useful explorations on
pattern matching in mixed Chinese/English environments,
but they all have certain shortcomings. For countries that
mainly use single-byte encoding (e.g., US and UK), there is
less relevant literature because the problems discussed above
do not exist. When applied directly to Chinese character
matching, the classical DFSA algorithm available in the
literature [1] has excellent efficiency whenever compared to
the English character habitat but increases the storage space
when applied to an English character environment.%e state
transition function is typically stored in a complete hash
table of high access efficiency to achieve high matching
speed. %e same space taken up is sum_of (states) 256 that is
256 times more than the space occupied because a lot of
states rises if the same method is being used for Chinese
characters. %e number of products that are required for the
whole hash table grows rapidly, making the method im-
practical for direct application in practice. In the literature
[6], the classical multi-pattern matching algorithm DFSA is
applied to Chinese character matching, and the problem of
storage space expansion is proposed to construct a com-
binatorial state automaton by decomposing the inner code of
Chinese characters and using the idea of QS algorithm for
acceleration. %e algorithm solves the space expansion
problem when constructing a complete hash table for
Chinese characters, but it is only applicable to the pure
Chinese character environment, which will lead to byte
misalignment problem in the mixed Chinese and English
environment. %e “tagging” method is used to prevent the
misalignment problem in matching, that is, the attributes of
each bit in the pattern string and the text to be matched are
tagged [7, 8]. %e type of each bit can be divided into 3
categories that include (Type 0) ASCII for English, (Type 1)
high byte for Chinese characters, and (Type 2) low byte for
Chinese characters.

It is important that two bytes not only have the similar
value but had the same mark to be regarded a successful
match when 2 bytes are compared. In mixed Chinese and
English contexts, this method can be used to solve the
problem of byte mismatches; nevertheless, it is less pro-
ductive, so it needs or before the text string to be aligned to
mark each byte, and it does not take account the lawsuit of

2 Mobile Information Systems

mixed ACSII, GB, and BIG5 compression algorithms. A
proposal is designed that maps all Chinese letters into a set of
size 65 536 by hashing both high byte Hbyte and low byte
Lbyte of a internal code in string Chinese letter, such as
256×Hbyte + Lbyte [9]. A two-level hash table-based DFSA
case is proposed. %e algorithm uses two bytes of Chinese
characters as a minimummatching unit, which can avoid the
byte mismatch problem in the mixed Chinese and English
environment. It is also applicable to the case of three mixed
encodings, but the hash mapping operation must be per-
formed for each Chinese character in the text string to be
matched, which will undoubtedly affect the matching speed
of the algorithm. As has been seen in fact, this issue has a
substantial impact on the overall efficiency of the method. In
addition, some other papers have also studied multi-mode
matching algorithms, but they do not consider the impact of
mixed Chinese and English environments on the accuracy
and matching efficiency of the matching algorithm [e.g.,
4, 10]. %e study of an efficient and practical multi-mode
matching algorithm suitable for the mixed environment of
multiple coding characters is extremely important for the
development of accounting internal audit information re-
trieval technology and has a large theoretical and application
value [11].

3. TheoremsRelated toMulti-ModeMatching in
Mixed Environment

%e multi-mode matching in a mixed environment has its
own characteristics compared with a single-character en-
vironment as from the previous analysis. Since the number
of bytes occupied by English characters and Chinese
characters is different, two bytes of data need to be compared
to match two English characters, while four bytes of data
need to be compared to match two Chinese characters. To
facilitate the discussion later, the definitions of the number
of matches and the number of comparisons are given.

3.1.Definition:ByteLengthvs.CharacterLength. Suppose T is
a random text string containing Chinese and English
characters, where the number of Chinese characters ism and
the number of English characters is n. %e character length
of T is defined as the sum of the number of Chinese
characters and English characters contained in T, that is,
m+n. %e byte length is the number of bytes occupied by T
in memory, that is, 2m+ n. For pattern matching in an
English character environment, the number of matches and
comparisons are equal, and for an English text string, the
length of characters and bytes are also equal. However, for
multi-byte inner code characters, there is a multiplicative
relationship between the inner code lengths.

Theorem 1. If the set of pattern strings contains a pattern
string of Chinese characters, the number of matches required
to correctly complete the matching of any random text string
containing Chinese and English characters in any case is not
less than the character length of the text string.

Proof. Let T [1, 2, ...,M] be a random text string containing
Chinese and English characters to be matched, whereM is its
byte length, N is its character length, T[i] (1≤ i≤M) is a byte
of the text string, and Σ is the set of pattern strings [4].
Whether to preprocess the text T to be matched or not, the
matching algorithm can be divided into two categories: one
preprocesses T, and the other does not process it and
matches it directly. In contrast, the proof of the theorem is
also divided into two parts. □

3.1.1. Preprocessing of T. Whether the bytes in T are tagged
or the English or Chinese characters in T are removed and
converted into a single-character text string, even if only the
high byte of the Chinese character is discriminated (to
determine whether the highest bit is 1), the pre-scan requires
at least N comparisons to determine the correct attribute of
each byte T[i] (1≤ i≤M) in T. %erefore, for this type of
algorithm, the theorem holds. Since the matching must be
done after preprocessing, the number of correct matches
that can be done by such algorithms is obviously larger than
the character length N of T. %erefore, for such algorithms,
the theorem holds.

3.1.2. No Preprocessing for T. Suppose there exists a
matching algorithm A that does not preprocess, and the
number of character matches Cmp required to correctly
complete the matching for (Σ, T) in any case is less than the
character length N of T, that is, Cmp<N. Since Cmp<N, it
is obvious that in the matching process, algorithm A does
not match some characters in T, that is, algorithm A makes
at least 1 jump in the matching process. Let the characters
skipped by algorithm A be T[i, j](1≤ i≤ j≤M) and assume
that there is no mismatch before the jump. According to the
assumptions, j−i≥ 1, T[i], T[i+ 1],..., T[j] are random
characters, and the next matching starts from T[j+ 1] after
the jump, then there are two cases, which are as follows:

(i) j−i is an even number. Since T[i], T[i+ 1],...,T[j−1]
are random characters, then the number of English
characters enum is also random, which can be either
odd or even. When enum is odd, then T[j] must be
an English letter or the high byte of a Chinese letter.
However, when T[j] is the high byte of a Chinese
letter and T[j+ 1] is the low byte of the Chinese
character, matching from T[j+ 1] will obviously
bring a series of matching mismatches, so in this
case, the algorithm cannot guarantee any byte
mismatch, that is, it cannot guarantee a correct
match in all cases.

(ii) j−i is an odd number. In this case, in order to ensure
that no byte mismatch occurs when matching at T
[j+ 1], there must be an odd number of English
characters in T[i], T[i+1], ..., T[j−1], so that T[j+ 1]
can be the high byte of English characters or Chinese
characters, and matching from T[j+ 1] will not. %is
is also contradictory to the premise that T is a

Mobile Information Systems 3

random text string. %erefore, in this case, correct
matching is also not guaranteed.

Combining the above two cases, the assumption does not
hold, that is, there is no such matching algorithm such that
for (Σ, T), the number of character matches required to
complete the matching correctly in any case is less than the
character length of T. %erefore, the theorem holds for the
direct matching class of algorithms. %e above analysis
shows that the theorem holds.

Theorem 2. In the mixed English-Chinese environment, the
multi-mode matching algorithm based on jump matching has
mismatched without pre-scanning the text string to be
matched.

Proof. In the mixed English-Chinese environment, the text
string to be matched can be a random text string containing
both English and Chinese characters. %e algorithm based on
jumpmatching skips some characters in the text string during
the matching process, which is a sublinear matching algo-
rithm, and the number of matches in the matching process
will be smaller than the length of characters in the text.
According to %eorem 1, in a mixed English-Chinese envi-
ronment, the number of matches is less than the length of the
text string to be matched, and then there is a byte mismatch
problem, resulting in a missed match or a false match. □

4. Threaded Hash trie (THT) Algorithm

%is section gives a concrete implementation of the THT
algorithm. trie structure is a multilayer tree index structure
with varying depth, which uses the width-first search
strategy and finds the leaf nodes on the same level one by one
from left to right, and then moves to the next level after
finding the matching item. In the matching process, the
search pathway is a single search, which has similar search
efficiency as DFSA, but the conventional trie matching
structure must traverse the leaf nodes, which reduces the
matching speed. In this study, we extend the conventional
trie structure by setting all trie leaf nodes into a fully hashed
table of 256 size and create a fully hashed engine using the
inner code of the design stream of letters as the key value.
Chinese characters are represented by two levels of adjacent
leaf nodes in the fully hashed engine and the English letters
are represented by one level of leaf nodes. %e end of the
pattern string is represented by a special character. For
example, the inner code of the Chinese character “Hua” [12]
is 0xBBAA, and the corresponding fully hashed engine node
is as depicted in Figure 1.

It is probable to realize a full hash lookup without any
additional operations on the high and low bytes of the
Chinese character since the maximum value of a single byte
is 255. It has a very high lookup productivity as the high and
low bytes of the Chinese character are constructed separately
and there is no space expansion problem. %e fully hashed
trie matching machine is constructed in the smallest unit of
bytes and can construct the Chinese pattern string and the
English pattern string in the same trie matching machine

that has good compatibility between Chinese and English.
For example, a fully hashed trie matching machine based on
the set of pattern strings {Company, Shareholder, Employee}
is shown in Figure 2. Figure 2 shows that the inner codes of
“Company”, “Shareholder,” and “Employee” are 0xD6D0,
0xAABB, and 0xB9FA respectively.

%e number of characters in the accounting audit in-
formation table is large, unlike English characters. %e
probability of failure of the first character matching is higher
in the matching process. %erefore, the first character
complete hash table can be used to speed up the matching,
that is, only the first character is matched successfully, and
then it enters the full hash trie matching machine for
matching. %e first character complete hash table uses a
256× 256 2-dimensional array (e.g., head_index[Hbyte]
[Lbyte]) to achieve a faster matching speed by directly
indexing the high and low bytes of Chinese characters in the
matching process.

%e data structure and the pseudocode of the con-
struction algorithm required to construct the full hash trie
matching machine are shown in Algorithm 1. From %e-
orem 2, it is known that in the mixed Chinese and English
environment, the algorithm with jump matching may
produce false matches or missed matches. %e algorithm
governs the kind of characters prior to matching, and the
match pointer advances only 1 character from the initial
position of the previous match after a failed or successful
match. %e brute force matching algorithm is not very ef-
ficient since the matching pointer is backtracked during
matching, but it can dodge missed matches or false matches.

%e pseudocode of the THTmatching process is shown
in Algorithm 2. It should be noted that since findex
[kw.num].n in Algorithm 2 is the smallest unit of measure in
bytes, while n in is the smallest unit in characters, the ini-
tialization of findex in the specific program should be
converted and the Chinese and English pattern strings
should be distinguished.

5. Performance Analysis of the Algorithm

%e matching times of the THT algorithm are close to the
theoretical lower limit of the minimum number of matches
required for a correct match in the mixed Chinese and
English environment according to%eorem 1.%erefore, the
algorithm has a good matching efficiency. In the worst case,
the number of matches required to complete the matching of
T is Twlen +MAXLEN and the number of comparisons is
Tblen +MAXLEN. Hence, the time complexity of the al-
gorithm is O (Tblen +MAXLEN). Moreover, the probability
of matching failure is very high after matching the first high

. . .

.

.

. . . FF7F

7F

AA

BB FF

80

801

1

0

0

Figure 1: Tree node of Hash trie.

4 Mobile Information Systems

byte of the first character since Chinese characters are a large
character set. Hence, in practice, the number of comparisons
of the THTalgorithm is generally much smaller than the byte
length of the text to be matched.

In addition, the matching speed of the THTalgorithm is
related to the following factors:

(1) %e number of identical characters between pattern
strings, that is, the number of times the characters in
the set Ψ appear in the pattern string. %e lower the
number of identical characters, the lower the density
of clues in the constructed trie matching machine,
the lower the number of transfers required in
matching, and the higher the matching efficiency.

(2) %e probability of occurrence of a character in the set
Ψ in the text string T. Obviously, the lower the
probability of occurrence, the higher the probability
of match failure after the first character hash
matching, and the lower the matching time will be
spent if the matching pointer is directly shifted back.

(3) %e proportion of Chinese and English pattern
strings in Σ and the proportion of Chinese and
English in T. %ere are obvious differences between
Chinese and English languages, for example Chinese
language is a large character set language with a large
alphabet and short words, while the English language
has a small alphabet and long words. %ese differ-
ences make that in most cases, Chinese characters in
T do not belong to Ψ, and even if they belong to Ψ,
the probability of needing to match transfer after

successful or unsuccessful matching is small; for
English, the opposite is true. %erefore, when there
are fewer English pattern strings in the set of pattern
strings and fewer English characters in the text string
to be matched, the algorithm matches faster.

5.1. Experimental Results and Analysis. %e experimental
analysis is performed, and the results are shown in this
section. %e experimental results are carried out in the
context of text. %e results are also highlighted about the
space of the algorithms utilized in this research. %e com-
parative analysis of the proposed model is provided with
other algorithms.

5.1.1. Experimental Text and Results. Five groups of Chinese
keywords were cut out from Text 1, and the numbers of
keywords were 500, 1,000, 1,500, 2,000, and 2,500, each with
an average length of 3.7 Chinese characters, whereas five
groups of English keywords were cut out, and the numbers
were 10, 20, 30, 40, and 50; therefore, no single-word
keywords were set in the experimental process.

%e main characteristics of audit data are reflected in the
technique of sales, return, and the purchase stock of emo-
tions as shown in Figure 3. %e spaces used by the three
algorithms are shown in Table 1, where DFD and SHENL
represent the algorithms in the literature [6, 9], respectively.
%e matching time is significantly longer than the other
algorithms since the algorithm in [8] needs pre-scanning.

$

$

$Shareholder

Company
Employee

CB

C8

FABB

B9

D0

D67F63

68

69

6E

AA

65

73

65

Figure 2: A hash trie matching machine.

Mobile Information Systems 5

%erefore, no comparison experiment with the algorithm in
[8] is conducted in this study. To compare the theoretical
value of this algorithm with the actual space used, we assume
that the maximum keyword length is 10 Chinese characters
and 20 English characters, and the theoretical space used by
the THT algorithm is also given in Table 2.

Firstly, we use Text 2 and Text 4 for comparison. Since
SHENL is only applicable to the pure Chinese environment,
using Text 2 and Text 4 can ensure that each algorithm can
perform correct matching, and it is meaningful to compare
the efficiency in this case. Text 2 and Text 4 are pure Chinese
text, so there is no need to distinguish the type of characters
in the matching process. In this way, the character pro-
cessing of the four algorithms is the same, and the matching
time reflects the efficiency of the algorithms. During the
experiments, all four algorithms were able to complete the
search correctly, and the five sets of experiments for Text 2
had 11,067, 18,525, 22,987, 30,210, and 50,181 matches; the

five sets of experiments for Text 4 had 379,016, 451,942,
609,310, 941,736, and 1,636,960 matches; the time used by
each algorithm is shown in Table 1.

%e performance of the four algorithms, DFD, SHENL,
HT, and THT, was evaluated using Text 1 and Text 3 in a
mixed English and Chinese environment, and the perfor-
mance comparison is shown in Table 3. In the mixed En-
glish-Chinese environment, SHENL could not perform
correct matching, and the 5 sets of experimental matches for
Text 1 were 5,683, 9,394, 11,805, 15,426, and 31,092; the 5
sets of experimental matches for Text 3 were 189,328,
224,678, 314,580, 489,099, and 1,053,692. Table 4 shows the
number of comparisons between algorithm HT and THT
algorithm in real operation.

5.1.2. Analysis of Experimental Results. We can see that the
space required by this algorithm is less than that required by

typedef struct Head_Hash_Table{
struch Trie_Node ∗head;

}Head_Index[CI\ODE_LEN][CODE_LEN];
typedf struct Trie_Node{

struch Trie_Node ∗next[CODE_LEN];
}Trie_Node;
for(i� 0; i< key_sum; i++{

if(kw[i][0]>128){
len� strlen(kw[i]);
if(!head_index[kw[i]][0][kw[i][1]].head){

p_1�malloc(sizeof(struct Trie_Node));
head_index[kw[i]][0][kw[i][1]].head� p_1; }

else
p_1� head_index[kw[i]][0][kw[i][1]].head;

for(k� 2; k< len; k++){
if(k< len-1){
if(!p_1⟶next[kw[i][k]]){

p_2�mallow(sizeof(struct Trie_Node));
p_1⟶next[kw[i][k]]� p_1� p_2; }

else p_1� p_1⟶next[kw[i][k]]; }}
else{

}
for(i� o; i< strlen(Text)){

if(T[i]>128){
fwd_num� 2;
p� head_index[T[i]][T[i+1]].head;
if(p&&p⟶next[T[I+2]]){
p-p⟶next[T[i+2]]⟶next[T[i+3]];
m� 4;
if(End_FLAG� � p)PRINTkw;
else

while (NIULL!� p){
if(End� � P){PRINTkw; break; }
if(p⟶next[T[i+m]]){p� p⟶next[T[i+m]]⟶next[T[i+m+ 1]]; m+ 2; }
else break;

else{
fwd_num1; }

i+� fwd_num;
}

ALGORITHM 1: Complete hash trie matching algorithm.

6 Mobile Information Systems

for(i� 0; i< strlen(T)){
if(T[i]>128){ //Chinesh word
p_1� head_index[T[i]][T[i+1]].head;
if(p_1and&p_2� p_1⟶next[T[i+2]]){
if(!p_1� p_2⟶next[T[i+3]]) i+� 2;
else{
m� 4;
while(p_1){
if(END_)FLAG� � p_1) {
PRINTkw;
if(sindex[kw.num].index� �NULL){i+�m; break; }
Else{

p_1� sindex[kw.num].index; i� i+m-sindex[kw.num].n;
m� sindex[kw.num].n; }}

if(p_2� p_1⟶next[text[i+m]]){
p_1� p_2⟶next[text[i+m+1]];
if(p_1� �NULL){
if(findex[kw.num].index� �NULL){i� i+m; break; }
else{p_1� findex[kw.num].index; i� i+m–findex[kw.num].num� findex[kw.num].num; }}
m+� 2}

else{
if(findex[kw.num].index� �NULL){i� i+m; break; }
else{p_1� findex[kw.num].index; i� i+m–findex[kw.num].n; m� findex[kw.num],n}

}}}}
else i+� 2; }

else{ //English char}
}

ALGORITHM 2: THT matching algorithm pseudocode.

Feature Category
0

5

10

15

20

25

Pe
rc

en
ta

ge

Sales
Purchase in stock
Expense reimbursement
Risk Assessment

Return
Payments
Suppliers
Credit assessment

Figure 3: Types and percentages of audit data characteristics.

Table 1: Time used by each algorithm.

Number of keywords
Text 2 (s) Text 4 (s)

DFD SHENL HT THT DFD SHENL HT THT
500 0.187 0.084 0.061 0.077 5.187 2.824 2.261 2.572
1000 0.237 0.120 0.082 0.099 5.733 3.921 2.862 3.394
1500 0.265 0.145 0.097 0.101 6.255 4.645 4.177 3.881
2000 0.327 0.212 0.118 0.116 7.613 5.613 4.658 4.415
2500 0.363 0.321 0.131 0.121 8.143 6.921 5.351 4.931

Mobile Information Systems 7

DFD and SHENL algorithms from Table 1 and Figure 4. %e
space required by the DFD algorithm increases and becomes
superlinear as the number of pattern strings increases. Along
with space usage, we discuss a number of other performance
metrics in this section.

(1) Space usage. %e space required by this algorithm and
SHENL algorithm increases primarily with the number of
pattern strings and becomes sublinear. %is is due to the fact
that the DFD algorithm makes use of a complete hash table
of states, and the number of states in the state machine grows
more rapidly as the number of pattern strings grows. %e
actual space used by the THT method is far less than the
space required by the theoretical calculation, which is
consistent with the conclusion of the performance analysis
for this algorithm.

(2) Matching time. In terms of matching time, a comparison
between THTand other algorithms is presented in Figure 5.
%is comparison takes into account the time required for
matching the keywords.

As shown in Figure 5, in the pure Chinese environment,
THT algorithm takes less time than DFD algorithm and
shanl algorithm. DFD algorithm takes 46.53%, 47.09%,
45.41%, 44.49%, and 46.72%, respectively. Shanl algorithm
takes 83.75%, 78.76%, 72.79%, 69.87%, and 65.76%, re-
spectively. Its time performance is better than the other two

algorithms; for different test texts, the change pattern of time
of HT and THT algorithms is the same, that is when the
number of keywords is small, the HT algorithm uses less
time, but as the number of keywords increases, the per-
formance of THT algorithm is better than HT. %e main
reason for this is that, with a small number of keywords, the
effect of cueing is not obvious because there is not much
overlap between keywords, and the extra judgments gen-
erated by cueing lead to a slightly higher time than the HT
algorithm; however, as the number of keywords increases,
the effect of cueing becomes obvious, and accordingly, the
time of THT is less than that of the HTalgorithm.%erefore,
for THT, it is most suitable for the case of a very large
number of keywords. Table 4 shows that the actual number
of comparisons between HT and THT is much smaller than
the byte length of the text to be matched in the actual
operation, which is consistent with the theoretical analysis,
since Chinese is a large character set and the probability of
failing to match the high byte of the first character is very
high.

(3) Matching performance under a mixed environment. As
shown in Figure 6, in themixed environment, the algorithms
SHENL and DFD can perform correct matching, and the
time used is slightly higher than the matching time in the
pure Chinese environment, because the algorithm adds the
operation of distinguishing character types; SHENL algo-
rithm cannot perform correct matching, and the five groups
of Text 1 are only 51.05% and 50.20% of the correct matching
times. %e number of matches for Text 1 is only 51.05%,
50.20%, 51.15%, 50.57%, and 61.40%, and the number of
matches for Text 3 is only 49.91%, 49.66%, 51.58%, 51.89%,
and 64.32% of the correct matches; the usage time of al-
gorithm THT shows the same pattern as that of DFD al-
gorithm in the pure Chinese environment; in terms of
clustering, the pattern of HTcompared with THTis the same
as that of the pure Chinese environment. %e results show
that the performance of THT is better than that of HTwhen

Table 2: Space of the algorithms.

Number of keywords Space used (Mb)
Audit Search DFD SHENL HT THT theoretical value
501 12 1.36 0.88 0.74 2.41
1001 22 3.32 1.53 1.27 4.65
1501 32 5.71 2.16 1.77 6.81
2001 42 8.36 2.77 2.25 9.14
2501 52 10.76 3.36 2.71 11.38

Table 3: Algorithms’ matching time on mixed texts.

Number of keywords
Text 2 (s) Text 4 (s)

D.F.D H.T T.H.T D.F.D H.T T.H.T
501 0.193 0.086 0.117 6.187 2.462 3.532
1001 0.256 0.121 0.156 7.733 2.878 3.491
1501 0.280 0.202 0.176 9.255 4.326 3.782
2001 0.339 0.227 0.248 10.613 4.811 4.242
2501 0.401 0.271 0.292 10.143 5.429 4.996

Table 4: Comparing times of HT and THT.

Keywords
Text 1 Text 3

H.T T.H.T H.T T.H.T
500 2865058 2948630 143621794 145737870
1000 3166592 3212740 150451290 156107295
1500 3324754 3355030 154931714 153743596
2000 3597439 3482754 160420458 158121882
2500 3947920 3558562 176533172 163136583

8 Mobile Information Systems

500 1000 1500 2000 2500
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

Text one HT
Text one THT

Figure 6: Comparison between the algorithms (time).

1.26 3.22 5.69 8.26 10.66
0

2

4

6

8

10

12

SHENL
HT
THT theoretical value

Figure 4: Comparison between various algorithms for space usage.

500 1000 1500 2000 2500

Number of keywords

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

tim
e (

s)

Text one HT
Text one THT

Figure 5: Comparison between algorithms for keyword matching (matching time).

Mobile Information Systems 9

the keyword set is large, and it can give full play to the role of
clustering. %e above analysis shows that this algorithm out-
performs the algorithms DFD and SHENL in terms of spatial
and temporal performance and is suitable for mixed Chinese
and English environments. In Figure 7, a comparison is made
among all the algorithms in terms of computation for single
text, while in Figure 8, a comparison is made among all the
algorithms in terms of computation for mixed text.

6. Conclusion

%is article proposes a novel distance-based fast multi-
pattern similar string-matching algorithm for internal audit
information in accounting. %e algorithm uses the high and
low bytes in the information as keys to construct a fully
hashed trie matching machine and clusters the trie matching
machine according to the characteristics of the pattern string
set, so that the matching algorithm does not need to
backtrack the pointer in the matching process, which ef-
fectively improves the matching efficiency and reduces the
time and space complexity of the algorithm. %eoretical
analysis and experimental results show that this algorithm

can avoid mismatching and missing matching in the mixed
information environment, and the matching speed is sig-
nificantly better than existing algorithms, and there is no
space expansion problem. In the follow-up work, we will
further investigate the following two aspects: how to pre-
process the pattern strings and determine the best order of
pattern strings so that the constructed cue-complete hash
trie matching machine can perform best.

Data Availability

%e data underlying the results presented in the study are
available within the manuscript.

Conflicts of Interest

%ere are no potential conflicts of interest in this article.

Acknowledgments

%is work was supported by the Key Project of Teaching
Reform Fund of Ningbo University of Finance and

500 1000 1500 2000 2500

Number of keywords

0

0.1

0.2

0.3

0.4

0.5

Co
m

pu
ta

tio
n

Text two (s) DFD
Text two (s) HT
Text two (s) THT

Figure 7: Computation comparison for a single text.

500 1000 1500 2000 2500

Number of keywords

0

2

4

6

8

10

12

Co
m

pu
ta

tio
n

Text four (s) DFD
Text four (s) HT
Text four (s) THT

Figure 8: Comparison between the mixed text.

10 Mobile Information Systems

Economics (20JYZD06): Teaching Reform of “%ree-step
Progressive” Practice Courses to Cultivate Students’ Com-
prehensive Audit Ability.

References

[1] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deter-
ministic memory-efficient string matching algorithms for
intrusion detection,” in Proceedings of the IEEE Infocom,
vol. 4, pp. 2628–2639, Hong Kong, China, March 2004.

[2] S. Faro and S. Scafiti, “Efficient string matching based on a
two-step simulation of the suffix automaton,” Implementation
and Application of Automata, in Proceedings of the Inter-
national Conference on Implementation and Application of
Automata, pp. 165–177, Bremen, Germany, July 2021.

[3] A. A. Karcioglu and H. Bulut, “%e WM-q multiple exact
string matching algorithm for DNA sequences,” Computers in
Biology and Medicine, vol. 136, Article ID 104656, 2021.

[4] S. Song, G. Gu, C. Ryu, S. Faro, T. Lecroq, and K. Park, “Fast
algorithms for single and multiple pattern Cartesian tree
matching,” 8eoretical Computer Science, vol. 849, pp. 47–63,
2021.

[5] N. Liu, F. Xie, and X. Wu, “Suffix array for multi-pattern
matching with variable length wildcards,” Intelligent Data
Analysis, vol. 25, no. 2, pp. 283–303, 2021.

[6] J. P. Davis, C. Dray, N. Petrov, and E. Belanova, “Low
prevalence match and mismatch detection in simultaneous
face matching: influence of face recognition ability and feature
focus guidance,” Attention, Perception, & Psychophysics,
vol. 83, no. 7, pp. 2937–2954, 2021.

[7] K.-F. Wong, V. Y. Lum, and W. I. Lam, “Chicon-a Chinese
text manipulation language,” Software: Practice and Experi-
ence, vol. 28, no. 7, pp. 681–701, 1998.

[8] K. F. Wong, “String matching on Chinese/English mixed
texts,” Int’l Journal of Computer Processing of Chinese and
Oriental Languages, vol. 10, no. 1, pp. 115–126, 1996.

[9] F. J. Fiori, W. pakalén, and J. tarhio, “Approximate string
matching with SIMD,” 8e Computer Journal, vol. 81, 2021.

[10] A. A. Karcioglu and H. Bulut, “Improving hash-q exact string
matching algorithm with perfect hashing for DNA se-
quences,” Computers in Biology and Medicine, vol. 131, Article
ID 104292, 2021.

[11] Q.-D. Sun, X. B. Huang, and Q. Wang, “Multiple pattern
matching on Chinese/English mixed texts,” Journal of Soft-
ware, vol. 19, no. 3, pp. 674–686, 2008.

[12] Y. C. Wang, 8e Technique and Basis of Chinese Information
Processing, Shanghai Jiao Tong University Press, Shanghai,
pp. 30–31, 1990, (in Chinese).

Mobile Information Systems 11

