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'e multiple sequence alignment (MSA) problem is essential in biological research for finding a specific relationship between the
biologic sequences and their function. 'is study proposes a decomposition and dominance-based multiobjective artificial bee
colony optimization algorithm for MSA (MOABC/D-MSA). MOABC/D-MSA uses three kinds of searching strategies to obtain a
group of nondominated solutions with high quality and diversity of an MSA problem. A decomposition-based employed bee
strategy is proposed to search for high-performance solutions of theMSA, while insuring their diversity. A nondominated sorting-
based onlooker strategy searches for the solutions near the Pareto front (PF) to guide the subsequent searching. 'e scout bee
strategy facilitates the algorithm to get out of the local optimal. A comparative experiment is implemented on BAliBASE 3.0, a
benchmark for MSA algorithms. Experimental results show that the proposed algorithm has competitive performance with state-
of-the-art metaheuristic algorithms. Furthermore, nondominated solutions of MOABC/D-MSA have a more uniform distri-
bution in the objective space.

1. Introduction

'e multiple sequence alignment (MSA) problem aims to
find shared fragments among three or more sequences. In
general, the sequences to be aligned are biological sequences,
such as nucleotides, amino acids, and proteins.'e results of
the alignment are a set of sequences that are transformed
from the original sequences by inserting several gaps. 'e
sequences in the alignment solution have the same length.
From the alignment results, researchers could identify re-
gions that exist the same elements among the sequences.
'ese regions could reveal potential relations among the
input sequences, such as the evolutionary relationship
among the sequences [1] and the influence of special sites on
structure and function.

'e MSA problem has been proven to be an NP-com-
plete problem with the sum-of-pairs (SP) metric [2] and NP-
hard for most of the existing metrics [3]. 'erefore, re-
searchers have paid a lot of attention to developing an ef-
fective and efficient approach for MSA. Different kinds of
algorithms are proposed to solve the MSA problem.

Literature [4] finds six main groups of different ap-
proaches for dealing with biologicalMSA problems: (1) exact
methods, (2) progressive methods, (3) consistency-based
methods, (4) iterative methods, (5) evolutionary algorithms,
and (6) structure-based methods.

'e metaheuristic algorithms, including evolutionary
algorithms and swarm intelligence algorithms, have shown
competitive performance in optimizing MSA problems.
Literature [4] proposed a hybrid multiobjective meta-
heuristic for MSA, which combines the shuffled frog-leaping
optimization algorithm with the fast and accurate Kalgin
algorithm. Literature [5] proposes a characteristic-based
framework for MSA, which extracts the characteristics of
unaligned input sequences and aligns the sequences with the
specific configuration according to the characteristics. Ten
kinds of characteristics are considered in this study; they are
divided into three groups. A multiobjective evolutionary
algorithm for MSA (MOMSA) is proposed in reference [2].
MOMSA is a biobjective aligner based on the framework of
MOEA/D. 'e Tchebycheff approach is adopted for sub-
problem design. Furthermore, this study proposes a tree-
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based initialization method and a gap-reinserting-based
mutation operator. Literature [6] proposes a quantum-in-
spired heuristic optimization method for MSA, where a
quantum-inspired GVN routine is designed. Literature [1]
proposes a multiobjective formulation for MSA for inferring
the evolutionary history relating the sequences known as
phylogenetic trees. ProbPFP [7] combines the partition
function and the hidden Markov model (HMM). 'e pa-
rameters of the HMM are optimized by particle swarm
optimization (PSO). Literature [8] proposes an algorithm
that employs sparse approximation to reduce the compu-
tational cost for the relaxation. Literature [9] proposes a
hybrid artificial bee colony (ABC) optimization algorithm
for MSA. 'is algorithm performs a single-point crossover
for the employed bee phase. It performs a multiple mutation
operator that contains four kinds of mutations operators for
the onlooker bee phase. 'e Kalign2 algorithm is imple-
mented in the scout bee phase to align a segment of the
sequences.

Early literature evaluates the alignments by one score
function. However, when optimizing the MSA problem,
researchers have more than one requirement for aligned
sequences. For example, researchers hope to find as many
similar fragments as possible. Meanwhile, they want to insert
gaps as much as possible. To meet the different requirements
of researchers, the MSA problem is designed to contain
multiple optimization objectives. Researchers have proposed
different definitions of multiobjective MSA problems. Ref-
erence [4] adopts the weighted sum-of-pairs function with
affine gap penalties (WSP) and the number of conserved
total column (TC) score. Reference [5] uses the Q-score (i.e.,
sum-of-pairs (SP) score) and total column (TC) score as the
objective functions. In reference [2], the MSA problem is a
biobjective minimization problem, where the first objective
function is the scoring function that minimizes the number
of gaps and the second objective function is the opposite of
the SP function. Four new objectives are proposed in ref-
erence [1]as follows: nongap columns for the calculation of
entropy, the similarity of columns containing one or more
gaps, the similarity of columns containing no gap, and the
number of consecutive gaps. Reference [8] develops a re-
laxed formulation for the MSA problem based on a re-
gression-coding framework.

Since the optimization objectives in a multiobjective
MSA are conflicted in most cases, it is hard to optimize all
objectives simultaneously. In practice, the optimization al-
gorithm solves the multiobjective problem by working out a
set of solutions that reflects the trade-off of the objectives.
'e relationship between the solutions of the set of solutions
is Pareto nondominated.

Metaheuristics have been proven to be effective in op-
timizing multiobjective problems [10–13]. In this study, a
typical metaheuristic algorithm, ABC [14], is adopted to
optimize a multiobjective MSA problem. ABC is one of the
popular metaheuristic algorithms. It mimics the behaviors of
three kinds of bees: employed bees, onlooker bees, and scout
bees. 'e earliest ABC for MSA known in this research is a
single-objective algorithm [15]. 'e motivation for using

ABC in this research is that its searching strategy is suitable
for solving a complicated multiobjective problem. 'e ABC
uses different kinds of searching strategies; therefore, it can
balance the convergence speed and solution quality. Fur-
thermore, the coupling between the three stages of the ABC
is low, and the algorithm designer can design targeted
strategies for solving MSA problems according to their
needs. When optimizing a multiobjective MSA problem, the
algorithm needs to handle two tasks: making the solutions
converge to the Pareto frontier (PF) of the problem and
ensuring the uniform distribution of solutions. 'e de-
composition strategy is adopted in this study. A decom-
position-based algorithm could obtain a set of evenly
distributed nondominated solutions. It has shown strong
performance in approximating the shape of the PF of the
multiobjective problem. Furthermore, to improve the ef-
fectiveness and efficiency of the algorithm, the ABC needs to
be well designed. For the proposed ABC, the employed bees
are utilized for making the solutions converge to the PF and
be distributed uniformly; the task of the onlooker bees is
accelerating the convergence speed of the algorithm; the
scout bees aim to prevent the algorithm from falling into
local optimums, which is a common phenomenon during
the iterations of ABC.

'is study proposes a novel ABC algorithm for multi-
objective MSA based on decomposition and dominance
(MOABC/D-MSA). MOABC/D-MSA uses the decomposi-
tion-based multiobjective optimization strategy to ensure
the diversity of solutions. 'erefore, it can provide MSA
users the information about the shape of the PF, which is
essential to decision-making. 'e main contribution of this
study is as follows:

(1) A novel ABC algorithm for MSA is proposed. 'e
proposed algorithm considers both the solution
quality and diversity. 'e employed bee stage ach-
ieves even distribution of solutions while optimizing
the MSA problem.'e onlooker bee stage can obtain
high-quality solutions based on superior solutions
found by employed bees. 'e scout bee could fa-
cilitate the algorithm in avoiding local optimums.

(2) A decomposition-based employed bee searching
strategy is employed for optimizing the MSA prob-
lem. 'e proposed algorithm decomposes the mul-
tiobjective MSA problem into several scalarized
subproblems. 'e solutions of subproblems are used
to construct a nondominated solution set. 'is
strategy allows the algorithm to obtain a group of
solutions distributed in the objective space uniformly.

(3) A nondominance sorting-based onlooker bee
searching strategy is proposed. 'is strategy allows
the proposed algorithm to improve the quality of
alignments by utilizing high-quality solutions that
have been searched.

(4) An experimental study on an MSA benchmark is
implemented. 'e experiment compares the pro-
posed algorithm with state-of-the-art evolutionary
and metaheuristic algorithms.
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'e remaining parts of this study are organized as fol-
lows: the second section introduces the definition of the
multiobjective MSA problem in the proposed study. Section
3 describes the design and implementation of the proposed
MOABC/D-MSA. 'e fourth section compares the
MOABC/D-MSA with state-of-the-art metaheuristics on
BAliBASE 3.0, a benchmark MSA test suite. 'e last section
summarizes the proposed work and predicts the research
direction of metaheuristic algorithms for MSA.

2. Problem Definition

In this study, the multiobjectiveMSA problem is defined as a
three-objective optimization problem.

'ere are three objectives in the problem: single
structure induced evaluation (STRIKE), percentage of totally
conserved columns (%TC), and percentage of non-gaps (%
nonGap). STRIKE aims to maximize the accuracy of the
alignment. Maximizing %TC ensures there are more col-
umns that the residues are exactly the same, that is, more
conserved or special regions within an alignment. Maxi-
mizing the %nonGap encourages the aligner to reduce the
number of gaps in the aligned sequences. 'e MSA problem
is represented by the mathematical form as shown in the
following equation:

maximizeF(S) � (STRIKE (S),%TC(S),%nonGap(S)).

(1)

Strike evaluates the accuracy of an alignment based on
structural information of, at least, one sequence of the
alignment. 'is structural information is commonly re-
trieved from the Protein Data Bank [16].

Using the structural information as a source for amino
acid frequencies and contacts, a log-odds contact matrix is
estimated by measuring the ratio between the frequency of
each possible contact and its expectation, given the back-
ground frequency of each single amino acid. Given any pair
of amino acids i and j, the score for their contacts can be
estimated as follows:

Mij � 10 × ln
fij

fifj

􏼠 􏼡, (2)

where fij is the frequency of contacts involving i and j

across all observed residue-residue contacts and fi and fj

are the single residue frequencies in the dataset considered.
%TC takes into account the number of columns that are

fully aligned with exactly the same compound. TC is defined
as shown in the following equation:

%TC(S) � 100􏽘
L

l�1

totalColumn Sl( 􏼁

L
, (3)

where Sl is the lth column of S, Sl � sil∀i � 1, . . . , k, and
totalColumn(Sl) is defined as follows:

totalColumn Sl( 􏼁 �
1, if sil � s1l∀i � 2, . . . , k

0, otherwise
􏼨 (4)

%nonGap measures the number of residues with respect
to the number of gaps into the alignment. 'is objective
function is shown in the following equation:

%nonGap(S) � 100􏽘
k

i�1
􏽐
L

j�1

is NotGap sij􏼐 􏼑

k × L
, (5)

where sij represents the symbol in the jth position of the ith

sequence in the alignment S. 'e function isNotGap for a
specific residue is defined in the following equation:

isNotGap(residue) �
1, if residue � ′′ − ′′

0, otherwise

⎧⎨

⎩ , (6)

where the symbol “—” is a placeholder that is used to align
subsequences.

3. MOABC/D-MSA

3.1. Representation of Individuals. Since the solution for an
MSA problem is a sequence of characters and gaps, this
study adopted an encoding strategy that records the posi-
tions of gaps for each sequence. 'e adopted representation
uses the format (begin, end) to store the position of a gap or
several consecutive gaps.

Figure 1 illustrates the solution representation in this
study. 'e solution s has four regions that exist gap or gaps:
the fifth character, the eleventh to the fourteenth characters,
the eighteenth character, and the twentieth to twenty-first
characters. 'is solution is represented by the s′ in Figure 1.

3.2.Crossover andMutationOperators. 'e search behaviors
of the bees are based on crossover and mutation operators.
Similar to most of the metaheuristics for MSA, this study
employs a single-point crossover operator. For two solutions
p1 and p2 that len(p1) � len(p2) � lp, the crossover oper-
ator generates a random integer d between zero and lp. 'en
each sequence of p1 is divided into two parts after the dth

position, assuming that they are k sequences, p1 is divided to
p1
1,1, p2

1,1, . . . , p1
1,k, p2

1,k􏽮 􏽯. For p2, each sequence is cut after
the last character of the corresponded sequence of p1 that is
not gap.

After the division, a child solution c1 is constructed by
connecting the first part of p1 and the last part of p2. 'e
other child solution c2 is constructed by connecting the last
part of p2 and the last part of p1. Since all sequences should
have the same length, the crossover operator should adjust
the new sequences by inserting gaps into them.'e length of
all sequences of the child solutions is the length of the longest
sequence.'is length is calculated according to the following
equation:

lnew � max max p
1
1,i + p

2
2,i􏼐 􏼑􏼐 􏼑, i � 1, . . . , k. (7)

For a sequence whose length is shorter than lnew, the
crossover operator inserts gaps between the two segments
from p1 and p2 to make the sequence’s length reach lnew.

'ere are three kinds of mutation operators adopted in
the proposed algorithm:
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(i) Shift-closed gaps. Closed gaps (i.e., a series of se-
quential gaps) in a sequence are randomly chosen
and shifted to another position randomly. At last,
gaps columns (i.e., columns that only contain gaps)
are removed.

(ii) Nongap group splitting. A non-gap group (i.e., a
series of characters between two gaps) is selected
randomly. 'en, this operator split the nongap
group into two groups by inserting a gap at a
random position. Finally, gaps columns are deleted.

(iii) Adjacent gap groups merging. For this operator, two
adjacent gaps groups are selected and merged by
shifting the nongap group between the two gap
groups to the right.

3.3. Algorithm Overview. 'e proposed algorithm searches
for the optimal alignment by simulating the behavior of bees
collecting nectar.'ere are two kinds of bees in the proposed
algorithm that performs different kinds of searching be-
havior: employed bees and onlooker bees. Algorithm 1
shows the framework of the proposed MOABC-MSA.
First, the algorithm initializes N random food sources that
represent N candidate alignments. Meanwhile, an archive
NA for storing nondominated solutions is initialized as
NULL. 'en the algorithm executes searching procedures of
employed bees, onlooker bees, and scout bees.'eMOABC-
MSA repeats the searching behaviors of two kinds of bees
until it meets the stop criterion. Finally, the algorithm
outputs nondominated solutions and their corresponding
scores. Figure 2 shows the alignment process of the proposed
algorithm.

3.4. Food Source Initialization. 'e initial food sources are
created by MUSCLE [17], a nonmetaheuristic method.
MUSCLE creates a group of precomputed alignments. 'is
approach can reduce the execution time of the proposed
algorithm.

3.5. Decomposition-Based Employed Bee Phase. 'e
employed bees in this study perform a decomposition-based
multiobjective optimization, which can obtain solutions
with both high quality and diversity.'e diversity is essential
for the algorithm since it has an important influence on the
subsequent optimization. Algorithm 2 shows the execution
process of the employed bee stage.

Each employed bee is assigned a food source. 'e single-
point crossover operation is performed. 'e proposed al-
gorithm calculates the Euclidean distance between the food
sources. For each food source, its nearest T food sources are
defined as its neighbors. When executing the crossover
operator, for the ith bee, the first individual of the crossover

operation is the ith food source and the second individual is
randomly selected from neighbors of the ith food source.

After the crossover, two new candidate alignments are
generated. 'en the proposed algorithm performs shift-
closed gaps mutation operator on the two candidate
alignments and generates two offspring alignments.

Next, all offspring alignments are evaluated by the ob-
jective functions. 'en the algorithm should select optimal
solutions from original alignments and offspring to update
the food sources.

'e selection stage adopts the decomposition-based idea.
'e proposed algorithm generates Nweight vectorsω1 toωN
that are uniformly distributed in the objective space. 'e
weight vectors are utilized in building scalarized subprob-
lems. In this study, the penalty-based boundary intersection
(PBI) approach [18] is adopted in designing subproblems.
'e number of subproblems equals the number of weight
vectors. For the ith weight vector, its corresponding sub-
problem is constructed as follows:

minimizeg
pbi

x |ωi, z
∗

( 􏼁 � d1 + θd2, subject tox ∈ Ω, (8)

where

d1 �
z∗ − F(x)( 􏼁

Tωi

�����

�����

‖ω‖
and d2 � F(x) − z∗ − d1ωi( 􏼁

����
����, (9)

where z∗ is the ideal point that satisfies z∗i � minN
i�1fi(·), and

each dimension of z∗ is the minimum value among all
candidate solutions.

Since each subproblem is a scalarized function, the al-
gorithm can obtain the unique optimal solution of each
subproblem in each iteration. 'e optimal solutions for the
sub-problems are the new food sources.

3.6. Nondominated Sorting-Based Onlooker Phase. 'e
searching behavior of onlooker bees is guided by the
searching results of employed bees.

s: REDH-PDLIQ----NAK-K--

s’ : (5,5),(11,14),(18,18),(20,21)

Figure 1: Illustration of individual representation.

Input: sequences to be aligned;
Output: aligned sequences;
initialize N random food sources;
initialize non-dominated set NA;
evaluate food sources;
while termination criterion is false do
employed bees execute search behaviour;
onlooker bees execute search behaviour;
for each sub-problem do
if is not updated for k iterations then
scout bee execute search behaviour;

end if
end for
update non-dominated set NA;

end while
output non-dominated solutions in NA;

ALGORITHM 1: Algorithm framework of MOABC/D-MSA.
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To guide the food sources converge to the PF, the on-
looker bees prefer to exploit high-quality solutions founded
by employed bees. Meanwhile, the proposed algorithm
should maintain the diversity of food sources. 'e diversity
of food sources is important for fitting the PF. Furthermore,

maintaining the diversity of food sources could help the
proposed algorithm to avoid being trapped in local optimal.

At this stage, each onlooker selects a food source to
search. Since the employed bees have obtained the quality
information of food sources, each onlooker bee selects a food

Step 1: Food source initialization

Food source 1

Food source N

Unaligned Sequences MUSCLE Initialized food sources

Step 2: Employed bees phase

Food sources Single-point crossover Shi�-closed gaps
mutation Food sources

Step 3: Onlooker bees phase

Step 4: Onlooker bees phase

Food soures Non-dominated sorting Selection probability

Single-point
crossover

Shi�-closed gaps
mutati on

Non-gap group
splitting

Adjacent gap
group merging Food sources

Single-point
crossover

Shi�-closed gaps
mutati on

Non-gap group
splitting

Adjacent gap
group merging Food sources

Not updated for k
iterations?

Terminate?

pi = 
M — i + 1

∑ M
j=1 j

Aligned Sequences

Figure 2: Alignment process of the proposed algorithm.
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source to search based on the quality information. MOABC/
D-MSA uses a nondominated ranking-based roulette wheel
selection. 'is method ranks the food sources according to
their Pareto dominance relationship. 'en, it uses the
roulette wheel selection to guarantee that the nondominated
food sources are more likely to be selected.

Inspired by the fast nondominated sorting method [19],
the proposed algorithm divides the food sources into several
ranks. 'e first rank is nondominated solutions among all
food sources. 'e second rank is nondominated solutions
among food sources except the first rank.'e rest of the food
sources are sorted in the same manner.

When selecting food sources, an onlooker bee first selects
a rank. Assuming that there are M ranks among the food
sources, the selected probability of the ith rank is calculated
according to the following equation:

pi �
M − i + 1

􏽐
M
j�1 j

. (10)

Each onlooker bee generates a random number between
zero and one. 'en, it selects a specific rank according to the
roulette wheel method. Finally, the onlooker bee selects a
food source randomly from this rank.

After selecting a food source, each onlooker bee per-
forms a single-point crossover operation. 'en it performs
the shift-closed gaps mutation, nongap group splitting
mutation, and adjacent gap groups merging mutation in
sequence.

Finally, similar to the employed bee phase, the new
solutions are merged with the food sources, and the pro-
posed algorithm updates the food sources by the non-
dominated and crowded-based sorting selection [20]. 'e
onlooker bee stage is described in Algorithm 3.

3.7. Scout Bee Phase. 'e scout bees aim to facilitate the
algorithm avoiding local optimum. 'ey watch the food
sources in every iteration, but they work when the optimal
solution of a subproblem is not updated for more than k

iterations. 'e scout bees perform the same crossover op-
erator andmutation operator with the onlooker bees. For the

crossover operation, the scout bees select a solution from the
neighbor of the food source as the mating partner. Finally,
the scout bee updates the food sources of the nonupdated
subproblems. Algorithm 4 shows the searching behavior of
the scout bee.

3.8. Complexity Analysis. According to Algorithms 2–4, the
time complexity of the employed bee phase, onlooker bee
phase, and scout phase are all O(n2). 'erefore, the time
complexity of MOABC/D-MSA is O(n2). Furthermore, the
scout bee phase is not always performed during the opti-
mization process. Meanwhile, MOABC/D-MSA does not
require an external archive, and it only maintains a food
source set. 'erefore, its space complexity is O(n).

4. Experimental Study

'is section proposed a comparison study. 'e performance
of the proposed MOABC/D-MSA is compared with meta-
heuristics on benchmark dataset.

4.1. Benchmark Dataset. Benchmark alignment database
(BAliBASE) [21] is a benchmark dataset for evaluating the
performance of algorithms for MSA problems. BAliBASE is
developed by manually aligning based on 3-D structures of
proteins. 'is study uses the 3.0 version of BAliBASE to test
the proposed algorithm. BAliBASE includes thousands of
challenging sequences. It is widely accepted in the research
of MSA problem. 'erefore, using BAliBASE as the
benchmark can help researchers to investigate the perfor-
mance of the proposed algorithm. 'ere are 218 sets of
sequences in BAliBASE 3.0, and they are divided into six
families as follows: RV11, RV12, RV20, RV30, RV40, and
RV50.

'is experiment selects twenty-seven test cases from
BAliBASE 3.0 to implement the comparative study between

Input: N food sources;
Output: N new food sources;
initialize ω1 to ωN;
calculate neighborhood of each food source;
while termination criterion is false do

for each employed bee do
perform single-point crossover operation;
perform shift-closed gaps mutation operation;

end for
evaluate offspring solutions;
merge food sources and offspring solutions;
find optimal solution of each sub-problem;
update food sources;

end while

ALGORITHM 2: Searching behavior of employed bees.

Input: N food sources;
Output: N new food sources;
perform fast non-dominated sorting;
calculate selected probability for each food source;
select a food source for each onlooker by roulette wheel

selection;
while termination criterion is false do
for each employed bee do
perform single-point crossover operation;
perform shift-closed gaps mutation operation;
perform non-gap group splitting;
perform adjacent gap groups merging;

end for
evaluate new solutions;
merge food sources and new solutions;
perform non-dominated and crowded-based sorting

selection;
update food sources;

end while

ALGORITHM 3: Searching behavior of onlooker bees.
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the proposed MOABC/D-MSA and other genetic and
metaheuristic algorithms. 'e selected instances are as
follows: BB11001, BB11005, BB11018, BB11020 in RV11,
BB12001, BB12013, BB12022, BB12035, BB12044 in RV12,
BB20001, BB20010, BB20022, BB20033, BB20041 in RV20,
BB30001, BB30008, BB30015, BB30022 in RV30, BB40001,
BB40013, BB40025, BB40038, BB40048 in RV40, BB50001,
BB50005, BB50010, and BB50016 in RV50.

4.2. Peer Competitors. 'is study compares the proposed
MOABC-MSA with several state-of-the-art evolutionary or
metaheuristic algorithms. 'e competitor algorithms in-
cludes NSGA-II [22], MOEA/D [2], GAPAM [23], MO-
SAStrE [24], and HMOABC [25].'e parameters of the peer
algorithms are set according to their original literature.

4.3. Static Results. 'is section compares the statistical re-
sults of the algorithms on STRIKE, %TC, and %nonGap.
Meanwhile, the executing times of the algorithms are
recorded and compared. Each algorithm runs each test cases
for 30 times to avoid randomness. 'e termination criterion
is set as 25,000 times of evaluation to guarantee the fairness
of the experiment. For MOABC/D-MSA and HMOABC,
both the number of employed bees and the number of
onlooker bees are set to 20. For the other algorithms, the size
of their populations is set to 20.

Tables 1–6 list the best value of STRIKE, %TC, and %
nonGap among solutions found by the tested algorithms for
each test case. Tables 1–3 list that for instances in RV11,
RV12, and RV20, MOABC/D-MSA obtains the optimal
STRIKE, %TC, and %nonGap on all test cases. For BB30008,
both MOABC/D-MSA and MOEA/D obtain the optimal %
TC. For BB30015 and BB50010, MOEA/D obtains the op-
timal %TC. For BB40048, results of NSGA-II obtain the best
%nonGap. For the other test cases in RV30, RV40, and

RV50, MOABC/D-MSA outperforms the compared algo-
rithms in all three objectives.

Figure 3 shows the box plots of running time of the tested
algorithms. Subfigures (a)–(f) exhibit the running times of
the algorithms on BB11001, BB12001, BB20001, BB30001,
BB40001, and BB50001, respectively. 'e box plot is an
effective tool in showing the distribution of data. In this
experiment, each box in a box plot represents the distri-
bution of running times for the 30 runs of independently
repeated experiments of a specific algorithm. 'ere are five
horizontal lines in a box, from top to bottom, the lines
represent the maximum value, the three-quarter median, the
median, the quarter median, and the minimum value. 'e
circles around the box represent an unusual value. 'e box
plots show that the running time of MOABC/D-MSA is
stable, in each subfigure, the box of the MOABC/D-MSA is
thin. Furthermore, the location of the MOABC/D-MSA’s
boxes is low, which means that the proposed algorithm
consumes less time. Although MOABC/D-MSA takes a little
longer time than NSGA-II and MOEA/D, the running time
of the proposed algorithm is significantly better than
HMOABC, GAPAM, and MO-SAStrE. 'e boxplots show
that the MOABC/D-MSA is an effective algorithm. 'e
efficiency is an essential performance indicator in evaluating
the algorithm for MSA. An efficient algorithm can ensure
that the algorithm can process a large number of biological
information sequences in a short time, which is practical and
valuable in practice.

4.4. Hypothesis Results. 'is study uses the Wilcoxon
signed-rank hypothesis test [26] to investigate the difference
between the performance of the MOABC/D-MSA and re-
sults of the competitors.'e objective values of each solution
are normalized to a real number between zero and one, and
then the normalized solutions are evaluated by the IGD
indicator [27]. 'e IGD indicator works out a scalarized

Input: sequences to be aligned;
Output: aligned sequences;

initialize N random food sources;
initialize non-dominated set NA;
evaluate food sources;
while termination criterion is false do
for each sub-problem do
if the optimal solution is not updated for more than k iterations then
perform single-point crossover operation;
perform shift-closed gaps mutation operation;
perform non-gap group splitting;
perform adjacent gap groups merging;

end if
end for
evaluate new solutions;
merge food sources and new solutions;
find optimal solution of each sub-problem;
update food sources;

end while

ALGORITHM 4: Searching behavior of scout bee.
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Table 1: Comparison on RV11.

Test case MOABC/D-MSA HMOABC NSGA-II MOEA/D GAPAM MO-SAStrE

BB11001
STRIKE 3.25 3.07 2.94 2.98 2.79 2.88
%TC 7.89 7.48 7.40 7.37 6.84 7.42

%nonGap 94.84 89.46 93.75 92.98 90.57 91.44

BB11005
STRIKE 3.14 3.09 2.89 2.94 2.67 2.88
%TC 8.04 6.90 6.59 6.54 6.38 6.52

%nonGap 93.68 87.56 92.64 90.53 88.24 83.20

BB11018
STRIKE 3.58 3.07 2.75 2.84 2.39 2.58
%TC 8.44 7.35 7.03 6.89 5.35 5.24

%nonGap 94.37 87.36 92.58 92.46 90.45 91.85

BB11020
STRIKE 3.38 3.25 2.93 2.86 2.37 2.25
%TC 7.33 7.28 7.29 7.25 7.32 7.30

%nonGap 93.53 90.45 92.37 92.59 91.43 92.50
Bold numbers indicate the optimum values.

Table 2: Comparison on RV12.

Test case MOABC/D-MSA HMOABC NSGA-II MOEA/D GAPAM MO-SAStrE

BB12001
STRIKE 2.74 2.52 2.60 2.58 2.47 2.35
%TC 3.79 3.62 3.74 3.75 3.68 3.71

%nonGap 84.40 80.43 82.13 81.37 78.48 79.63

BB12013
STRIKE 2.97 2.73 2.63 2.68 2.74 2.70
%TC 3.79 2.59 3.62 3.55 2.98 2.82

%nonGap 84.03 80.38 83.44 82.56 81.47 78.38

BB12022
STRIKE 2.81 2.63 2.72 2.69 2.54 2.60
%TC 3.66 3.47 3.58 3.21 3.46 3.29

%nonGap 82.94 80.65 82.56 81.53 82.08 81.32

BB12035
STRIKE 2.76 2.51 2.69 2.65 2.55 2.49
%TC 3.73 3.50 3.71 3.68 3.41 3.59

%nonGap 82.30 79.73 82.21 81.99 80.35 81.02

BB12044
STRIKE 2.71 2.46 2.58 2.59 2.32 2.44
%TC 3.74 3.56 3.67 3.66 3.69 3.52

%nonGap 82.39 79.93 81.95 80.61 78.16 77.08
Bold numbers indicate the optimum values.

Table 3: Comparison on RV20.

Test case MOABC/D-MSA HMOABC NSGA-II MOEA/D GAPAM MO-SAStrE

BB20001
STRIKE 0.69 0.67 0.54 0.58 0.42 0.51
%TC 0.21 0.09 0.13 0.10 0.14 0.08

%nonGap 41.22 38.85 40.06 39.57 38.30 36.94

BB20010
STRIKE 0.48 0.42 0.47 0.41 0.39 0.44
%TC 0.27 0.22 0.25 0.23 0.18 0.20

%nonGap 40.18 36.94 39.82 37.81 38.89 39.06

BB20022
STRIKE 0.28 0.24 0.26 0.25 0.25 0.24
%TC 0.21 0.18 0.19 0.17 0.17 0.15

%nonGap 39.42 38.22 38.57 38.26 37.26 37.01

BB20033
STRIKE 0.56 0.50 0.55 0.52 0.49 0.54
%TC 0.26 0.19 0.24 0.22 0.17 0.21

%nonGap 41.27 38.48 40.53 36.52 34.83 35.66

BB20041
STRIKE 0.37 0.32 0.34 0.35 0.29 0.31
%TC 0.20 0.14 0.18 0.16 0.11 0.13

%nonGap 40.28 36.53 39.39 34.55 32.17 33.68
Bold numbers indicate the optimum values.
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score for each nondominated solution set. Finally, the IGD
value of each solution set is utilized in the hypothesis test.
Table 7 lists the p values between the results of MOABC/D-

MSA and results of the peer algorithms. 'e significance
level is set at 0.05 in this study. If the p value is less than 0.05,
it indicates that the result ofMOABC/D-MSA is significantly

Table 4: Comparison on RV30.

Test case MOABC/D-MSA HMOABC NSGA-II MOEA/D GAPAM MO-SAStrE

BB30001
STRIKE 1.75 1.63 1.65 1.67 1.54 1.56
%TC 0.33 0.29 0.32 0.30 0.25 0.22

%nonGap 50.77 43.70 49.42 50.04 44.66 42.97

BB30008
STRIKE 1.85 1.68 1.74 1.77 1.63 1.66
%TC 0.33 0.27 0.31 0.33 0.25 0.22

%nonGap 51.40 42.34 50.06 50.56 49.28 44.30

BB30015
STRIKE 2.44 2.18 2.35 2.39 2.22 2.15
%TC 0.35 0.34 0.35 0.36 0.29 0.28

%nonGap 49.07 43.92 48.91 47.40 43.21 40.06

BB30022
STRIKE 2.06 1.74 1.93 1.95 1.86 1.88
%TC 0.41 0.34 0.39 0.40 0.36 0.36

%nonGap 48.52 46.03 47.60 47.88 42.52 43.94
Bold numbers indicate the optimum values.

Table 5: Comparison on RV40.

Test case MOABC/D-MSA HMOABC NSGA-II MOEA/D GAPAM MO-SAStrE

BB40001
STRIKE 3.50 2.99 3.45 3.47 3.09 3.14
%TC 0.42 0.23 0.36 0.33 0.27 0.29

%nonGap 31.13 27.62 30.75 30.90 28.84 27.56

BB40013
STRIKE 3.79 3.22 3.67 3.54 3.48 3.26
%TC 0.33 0.21 0.29 0.27 0.20 0.26

%nonGap 31.01 27.45 29.84 29.98 27.59 25.86

BB40025
STRIKE 3.59 3.44 3.53 3.58 3.32 3.17
%TC 0.38 0.26 0.34 0.25 0.27 0.30

%nonGap 29.03 25.34 28.77 27.40 24.59 22.05

BB40038
STRIKE 3.33 2.98 3.21 3.25 3.08 3.04
%TC 0.36 0.28 0.35 0.35 0.33 0.29

%nonGap 29.88 26.36 29.24 29.34 28.37 27.75

BB40048
STRIKE 3.47 3.05 3.36 3.42 3.06 3.11
%TC 0.27 0.22 0.24 0.25 0.18 0.20

%nonGap 29.97 26.58 30.13 28.44 27.93 26.55
Bold numbers indicate the optimum values.

Table 6: Comparison on RV50.

Test case MOABC/D-MSA HMOABC NSGA-II MOEA/D GAPAM MO-SAStrE

BB50001
STRIKE 2.11 1.88 1.97 2.04 1.83 1.65
%TC 0.39 0.27 0.35 0.33 0.28 0.31

%nonGap 70.05 55.93 69.90 67.34 62.98 63.51

BB50005
STRIKE 2.03 1.48 1.95 1.88 1.57 1.62
%TC 0.35 0.30 0.34 0.33 0.24 0.25

%nonGap 69.01 62.48 68.45 63.44 61.50 60.24

BB50010
STRIKE 1.89 1.56 1.84 1.80 1.61 1.69
%TC 0.36 0.26 0.36 0.37 0.25 0.32

%nonGap 63.33 59.02 62.75 60.45 59.93 57.28

BB50016
STRIKE 1.89 1.37 1.88 1.67 1.34 1.42
%TC 0.32 0.19 0.30 0.31 0.24 0.25

%nonGap 64.01 58.99 63.90 61.52 59.31 60.04
Bold numbers indicate the optimum values.
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better than the result of the competitor. According to Ta-
ble 7, except for BB40038, BB50010, and BB50016, MOABC/
D-MSA outperforms all its competitors in the test cases.
Experimental results show that the results of the proposed
algorithm are significantly better on most of the test cases.

On BB40038, although the results of MOABC/D-MSA
cannot significantly outperform NSGA-II and MOEA/D,
according to Table 5, its results outperform the two algo-
rithms in the aspect of %TC, %nonGap, and STRIKE. On
BB50010, there is no significant difference between the
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Figure 3: Box plots of running time. (a) BB11001. (b) BB12001. (c) BB20001. (d) BB30001. (e) BB40001. (f ) BB50001.
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results of MOABC/D-MSA and the results of NSGA-II,
MOEA/D, GAPAM, and MO-SAStrE. On BB50016, al-
though the results of MOABC/D-MSA cannot significantly
outperform MOEA/D and MO-SAStrE, according to Ta-
ble 6, its results outperform the two algorithms in the aspect
of %TC, %nonGap, and STRIKE.

4.5. Solution Distribution. 'e statistical results show that
nondominated solutions of MOABC/D-MSA can obtain the
optimal results on all three objectives. Since the objectives
cannot be optimized simultaneously, the results indicate that
the distribution of results of MOABC/D-MSA is more
uniform than the results of compared algorithms. Figure 4

Table 7: Comparison on BAliBASE test cases.

Test case HMOABC NSGA-II MOEA/D GAPAM MO-SAStrE
BB11001 0.005 0.005 0.005 0.005 0.005
BB11005 0.005 0.005 0.005 0.005 0.005
BB11018 0.005 0.005 0.005 0.004 0.05
BB11020 0.005 0.005 0.005 0.05 0.05
BB12001 0.05 0.005 0.05 0.05 0.05
BB12013 0.005 0.005 0.005 0.005 0.005
BB12022 0.005 0.003 0.004 0.005 0.005
BB12035 0.005 0.005 0.005 0.005 0.005
BB12044 0.005 0.005 0.005 0.005 0.005
BB20001 0.005 0.01 0.05 0.005 0.005
BB20010 0.005 0.05 0.01 0.01 0.01
BB20022 0.005 0.01 0.01 0.005 0.005
BB20033 0.005 0.05 0.01 0.005 0.005
BB20041 0.005 0.05 0.05 0.005 0.005
BB30001 0.005 0.005 0.01 0.005 0.005
BB30008 0.005 0.005 0.005 0.005 0.005
BB30015 0.005 0.01 0.01 0.005 0.005
BB30022 0.005 0.01 0.01 0.005 0.005
BB40001 0.005 0.05 0.05 0.005 0.005
BB40013 0.005 0.01 0.01 0.01 0.01
BB40025 0.01 0.05 0.0 5 0.005 0.01
BB40038 0.005 0.01 0.01 0.005 0.005
BB40048 0.01 0.01 0.10 0.01 0.01
BB50001 0.005 0.005 0.01 0.005 0.005
BB50005 0.005 0.01 0.05 0.005 0.005
BB50010 0.005 0.10 0.10 0.01 0.01
BB50016 0.005 0.05 0.10 0.005 0.01

95

90

85

80

75

70
0
1

2
3

4
5

6
7

3.0
2.5

2.0
1.5

1.0
5

STR
IKE

%TC

%
no

nG
ap

MOABC/D-MSA

NSGA-II

(a)

2.7
2.6 2.5

2.4
2.3 2.2

2.1
2.0

68
70
72
74
76
78
80
82
84

%
no

nG
ap

1.0
1.5

2.0
2.5

3.0
3.5

4.0
4.5

%TC

STR
IKE

MOABC/D-MSA

NSGA-II

(b)

Figure 4: Comparison of the distribution of solutions of MOABC/D-MSA and NSGA-II. (a) BB11001. (b) BB12001.
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illustrates the distribution of nondominated solution sets of
MOABC/D-MSA and NSGA-II on BB11001 and BB12001,
respectively. 'e figures show that solutions of MOABC/D-
MSA have more comprehensive coverage of the PF. In this
case, MOABC/D-MSA can provide solutions that meet
different demands of users and researchers.

4.6. Discussion. Experimental results show that MOABC/D-
MSA can obtain a better solution on all objectives when
optimizing the three-dimensional multiobjective MSA
problem. 'is result means that MOABC/D-MSA not only
obtains solutions that are close to the PF of the problems but
also obtains uniform solution distribution. In other words,
MOABC/D-MSA achieves a good balance between con-
vergence and diversity of solutions.

Meanwhile, MOABC/D-MSA is an efficient algorithm.
For the same evaluation times, the running time ofMOABC/
D-MSA is competitive among the tested algorithms. 'is
performance might be due to the fact that the proposed
algorithm does not introduce additional calculations and
complex search steps. Efficiency is important for the met-
aheuristics. In addition, MOABC/D-MSA avoids local op-
timum and controls the randomness during the research. An
efficient algorithm could execute more iterations at the same
time; therefore, it is more likely to obtain high-quality
solutions.

Since the decomposition-based strategy is adopted in the
employed bee phase, MOABC/D-MSA controls the uniform
distribution of solutions. 'is strategy maximizes the dif-
ference between understandings while ensuring the quality
of the nondominated solutions. In this way, the algorithm
can provide more solutions that meet the different demands
of algorithm users.

5. Conclusion

'is study proposes MOABC/D-MSA, a decomposition-
based artificial bee colony optimization algorithm for
solving the MSA problem. 'e searching behavior of the
employed bees is based on the PBI method, a decomposi-
tion-based strategy. 'e proposed algorithm considers both
the convergence performance and the distribution of the
alignments. 'e employed bees not only make the food
sources converge to the PF but also ensure the distribution of
the food sources, reflecting the real shape of the PF. 'e
onlooker bees of MOABC/D-MSA accelerate the converging
of food sources by utilizing high-quality solutions. MOABC/
D-MSA uses the scout bee to get out of the local optimum.
'is study implements a comparative study on BAliBASE
3.0. 'e experimental results verify that MOABC/D-MSA
has competitive convergence performance. Furthermore,
nondominated solutions generated by MOABC/D-MSA
show better performance in reflecting the PF the MSA
problems. 'e superior distribution performance provides
stronger decision support for biological researchers. For
future studies, improving efficiency is a tough task and
promising research direction.
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[25] Á. Rubio-Largo, M. A. Vega-Rodŕıguez, and D. L. González-
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