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The introduction of deep transfer learning (DTL) further reduces the requirement of data and expert knowledge in various uses of
applications, helping DNN-based models effectively reuse information. However, it often transfers all parameters from the source
network that might be useful to the task. The redundant trainable parameters restrict DTL in low-computing-power devices and
edge computing, while small effective networks with fewer parameters have difficulty transferring knowledge due to structural
differences in design. For the challenge of how to transfer a simplified model from a complex network, in this paper, an
algorithm is proposed to realize a sparse DTL, which only transfers and retains the most necessary structure to reduce the
parameters of the final model. Sparse transfer hypothesis is introduced, in which a compressing strategy is designed to construct
deep sparse networks that distill useful information in the auxiliary domain, improving the transfer efficiency. The proposed
method is evaluated on representative datasets and applied for smart agriculture to train deep identification models that can

effectively detect new pests using few data samples.

1. Introduction

Although they have many advantages in performance, deep
neural network- (DNN-) based methods often require expert
knowledge to label data samples for generating datasets in
training. The heavy requirement of labeled data will result
in significant training costs, which make it expensive for
extension. The deep transfer learning (DTL) can reuse well-
trained models for the identification task and transfer knowl-
edge that is learned from laboratory data to help identify in-
field data, which alleviates the dependency on labeled data-
sets to reduce the cost. However, DTL has still not changed
the fact that a considerable number of parameters need to
be calculated, because they transfer all parameters, and many
of the trained DNNs are overparametric. For example,
ResNet-18 is the network commonly used as the backbone
of DNN-based image recognition, in which up to 11.2 M
(million) parameters need to be trained during each epoch
[1]. Among these parameters waiting to be transferred, the
existence of redundant parameters which are irrelevant to

the target task would result in a large amount of unnecessary
computation and memory cost. The redundancy in the net-
work seriously affects the quality of transfer, as well as limit-
ing the possibility for popularizing. Meanwhile, the methods
of designing small efficient DNNs with fewer parameters will
also face difficulty in inheriting knowledge from DTL, due to
their unique network structure.

Agriculture is one of the most important basic indus-
tries, which covers a wide range of the world. Agricultural
production faces many risks, of which pest and disease
outbreaks are the most economic threats [2], and early
identification of plants in the field is a crucial first step
to detect and control the spread of diseases and pests
[3]. Traditional in-field plant pest and disease identifica-
tion methods rely on human’s experience of manual
observation and evaluation, with relatively low accuracy
and efficiency in detection. With the development of intel-
ligent agriculture, more technologies, i.e., remote sensing,
IoT devices, computer vision [4], and unmanned aerial
vehicle (UAV) [5], are providing new tools for in-field
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plant pest and disease detection based on automated
image recognition, which can help with large-scale early
identification. At the same time, the data is growing. As
the amount of data escalates, more identifications of plant
pests and diseases by the aid of DNN are proposed.
Images collected in the field are used to train deep net-
works, in which extracted features are used for recognition
and classification. In recent years, DNN-based methods
have been applied to the pest and disease identification
of cash crops and grain crops [6-9].

For further agricultural extension, approaches with gen-
eral applicability should be able to be used in mobile termi-
nals, smartphones, and other small devices in the edge
computing area. To this end, models must balance the per-
formance with applicability and efficiency and adapt to lim-
ited processing power on the basis of ensuring detection
accuracy. If only the most necessary parts would be trans-
ferred in DTL, it is possible to earn simplified models with
lower device requirements for image recognition tasks, which
could really reduce the computational cost and retain the
advantage of inheriting knowledge by transfer learning. The
newly proposed lottery ticket hypothesis (LTH) provides a
theoretical possibility for this [10]. It finds representative
sparse subnetworks by pruning the original network, which
can be retrained to achieve equivalent or higher performance,
but it uses fewer parameters (even only 5%-10% of the orig-
inal’s). It provides a new idea for plant pest and disease iden-
tification based on DTL: the network structure of the source
domain is firstly pruned to obtain a sparse subnetwork with
key knowledge. Then, the subnetwork, instead of the entire
network in traditional DTL, will be transferred as the solu-
tion of the target task to achieve a sparse DTL. Thus, the
requirement of expert knowledge and in-field data samples
and the calculation of parameters can be reduced
simultaneously.

As indicated above, in this paper, a sparse deep transfer
learning method is proposed and applied to solve the prob-
lem of plant pest and disease identification based on image
recognition. Firstly, a hypothesis is proposed that a transfer-
able sparse subnetwork structure can be found and its porta-
bility can be verified. Then, the steps of the method are
designed and used in DNN-based plant pest and disease
identification, to seek and transfer an optimal sparse subnet-
work to the target task to explore the application in practical
problems. Finally, simulation experiments are carried out to
show that the method can achieve an equivalent (or even
higher) recognition accuracy with a more simplified network
architecture and fewer parameters, while retaining the
advantage of utilizing existing knowledge through transfer
learning.

Thus, the main contributions can be concluded in two-
fold aspects:

(i) To relieve the lack of in-field labeled data and reduce
the cost of collecting and labeling data samples by
professionals for model training, a DTL-based
method is designed, which can moderate the depen-
dence of data in a plant pest and disease identifica-
tion deep learning model
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(ii) To cope with the defect that the DTL-based method
cannot reduce high computational complexity and
high hardware requirements, a sparse transfer strat-
egy is designed, which transfers the pruned network
structure to reduce the parameters that need to be
trained in the model, to simplify the network archi-
tecture, reduce the volume and computing cost of
the model, and thereby provide the possibility of run-
ning the model on ordinary office computers, smart-
phones, and edge computing devices for better
agricultural extension

The rest of this paper is organized as follows. Section 2 is
the related works about DNN and traditional DTL-based
plant identification and LTH. The proposed sparse transfer
hypothesis and the sparse deep transfer learning strategy
with its steps are given in Section 3. Section 4 proves the pro-
posed sparse transfer hypothesis on benchmark datasets and
verifies the performance of the proposed method on the real
dataset. Finally, Section 5 concludes the whole work and
gives future discussion.

2. Related Works

With the development and popularization of image sensors
in DNN-based plant pest and disease identification models,
the use of the convolutional neural network (CNN) is becom-
ing an important trend in agriculture. The pests and diseases
can be detected and classified by insect individuals, lesions,
and representative characteristic changes, which are usually
manifested on the leaves of affected plants [11]. Thus, com-
bined with the corresponding agricultural knowledge, images
of healthy and diseased leaves can be used as the input of
CNN to train the identification model. Methods have been
applied to a variety of food and cash crops including but
not limited to rice [12, 13], corn [14], tea [15-17], cannabis
[18], and apple [19].

In the above deep CNN-based models, there exist two
main problems:

(1) Data requirements: the high cost of training models
from scratch due to the lack of labeled data and the
requirement of expert knowledge in labeling them

(2) Model size: large-scale network architecture occupies
much memory and resources, which is not suitable
for low-computing-power devices. It increases the
difficulty of storage and transmission, which limits
the scope of application

For the contradiction between labeled data requirements
and the lack of in-field data in (1), DTL is introduced.
Mohanty et al. [20] combine DTL to improve efficiency in
training a CNN model to identify 14 crop species and 26 dis-
eases and achieve an accuracy of 99.35% with a hold-out test
set. Ramcharan et al. [21] apply DTL to identify 2 types of
pests and 3 diseases of cassava images taken in the field of
Tanzania, inheriting the knowledge of image recognition
from GoogLeNet_Inception v3, and achieve an overall accu-
racy of 93% for unseen data using 11,670 original images.
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Libo et al. [22] use DTL in real-time detection of cole diseases
and pests to solve the unbalance classes and false positives
generated in training. Thenmozhi and Reddy [23] design a
crop pest classification method based on deep CNN and
transfer learning. However, DTL usually fails to reduce the
requirement of parameters, which results in too large models
to deploy on low-computing-power hardware systems.

For (2), the network structure is optimized [24, 25], and
particular structures of small efficient CNNs are usually
designed with less computation and small volume that is easy
to popularize in application. Rahman [26] proposes a two-
stage small CNN architecture, which reduced the model size
by 99% compared to VGG-16 while remaining an accuracy of
93.3%. Xing et al. [27] develop a weakly dense CNN model
for citrus diseases and pest recognition, which is designed
from the aspect of parameter efficiency and is simple enough
for mobile devices. And regarding designing small efficient
neural networks, some state-of-the-art memory-efficient
CNN architectures, such as MobileNet [28] and SqueezeNet
[29], are usually used as backbones or references. These sim-
ple efficient neural networks usually consume less power and
take up less memory, which makes it easier to store and
deploy them on low-power hardware systems. At the same
time, by using fewer parameters, the models require less data
for convergence and will be able to avoid dense computing.
However, the biggest problem is that because of the distinc-
tion in network structure, it is difficult to combine DTL that
reuses structures and parameters with these simple CNNs,
for commonly used parameters’ weights in DTL are usually
based on dense networks such as VGG structure or ResNet
structure.

To take advantage of DTL in building resource-efficient
CNNgs, researchers have made a series of efforts [30-32]. In
2019, Frankle and Carbin proposed the LTH [10], which
can compress the model by finding representative sparse sub-
networks to replace the original dense network. Because the
subnetwork is retrainable while preserving the original per-
formance, it may provide a theoretical possibility for generat-
ing simple efficient networks from the original dense network
and then transfer it to the target task.

To sum up, in the face of these challenges, in this paper,
the LTH is modified by using it in DTL to generate transfer-
able sparse structures. Therefore, it transfers only the most
necessary knowledge while reducing the volume of the net-
work, to realize the sparse deep transfer learning.

3. Methods

The LTH states that for a feedforward DNN, there is an
implicit optimal sparse subnetwork structure which is
retrainable to achieve the same accuracy as the dense net-
work within the number of original’s iterations. It can suc-
ceed in finding the subnetwork to retain knowledge and
ability from large-scale datasets such as ImageNet in visual
recognition tasks [33]. The possibility that whether the sub-
network is able to transfer in the discussion of LTH has been
raised, but whether the transfer can always be realized
between tasks has so far been inconclusive.

In this section, on the basis of the studies above, a sparse
transfer method named WLTs-SDTL is proposed. It transfers
only the most important part of the original network, and
LTH is modified for generating sparse subnetworks in DTL.
The method is then applied in plant pest and disease identi-
fication based on image recognition.

3.1. Sparse Transfer Hypothesis for WLT-Nets

3.1.1. Reviewing the LTH. The particular subnetwork is gen-
erated when randomly initialized, and to seek for it is like
to find a “winning lottery ticket” in the original network.
We named it as a WLT-net. The retrainable WLT-net is able
to be found by unstructured pruning according to the follow-
ing conditions:

Consider a feedforward network whose loss function ¢
= &(x) and initial parameters are defined by A,. After training
and optimizing, the network achieves the minimum valida-
tion of € with the accuracy rate #% when the number of iter-
ations is n. The exists WLT-net &(x; M(A;)) from &(x) with
iteration n' < n and accuracy rate #'% > 1%, in which M(A,

)=mo ), is the Mask function; a mask m € {0, 1} is used
for determining and marking which weights will be retained
after pruning.

Then, give the definition of the domain and task in DTL:
the source domain is denoted as Dg with task T for provid-
ing transferable knowledge and the target domain is denoted
as Dy with task T'p, in which D= {x, P(X)}, X = {x}, %, -+,
x,} € x and T={y, f(x)}; y is the label space and f(x) can
be regarded as the nonlinear loss function of DNN to map
xtoy.

Thus, combined with DTL, the sparse transfer hypothesis
for WLT-nets is proposed in Assumption 1. The proof proce-
dure shows that when meeting the conditions, a task can be
regarded as generated by LTH from a larger dense DNN,
while retaining the most necessary backbone architecture
and knowledge. Conversely, the proposed hypothesis can be
used in designing a transferable WLT-net from an existing
arbitrary dense network T, to inherit whose knowledge.
The required ability is then able to transfer from Dg to Dy
through a small efficient WLT-net that is isomorphic to T,
which completes the process of a WLT-net-based sparse
DTL.

Assumption 1. Sparse transfer hypothesis for WLT-nets.

For the task T waiting to be solved, we modeled it as
DNN. The network can be regarded as T in Dy, where T';
~E(x: M(1).

According to the reverse reasoning of LT hypothesis, 3T
, the corresponding dense network in Dg, which makes T} to
be the WLT-net of T, only if T'; satisfies the following con-
ditions simultaneously.

When the loss function € achieves minimum validation
(compared with T):

(1) The number of iterations is #n < ng

(2) The percentage of accuracy rate is #; > #g



(3) &(x; M(A,)) is able to be obtained from T'g by unstruc-
tured pruning using the Mask function M(A;)

M();,) =mo A, and mask m € {0, 1

Now that T} is viewed as the WLT-net generated from T
, which is proven that it can keep the performance in LT
hypothesis, it provides a shortcut to transfer knowledge
through sparse structures.

When meeting the conditions, a small efficient network
can be regarded as the sparse part of a larger dense DNN.
In this way, transferable knowledge can be sought from an
isomorphic structure in Dg for reusing in Dy, to realize the
sparse DTL.

The WLT-net in LTH has been proven to retain the orig-
inal network’s performance with only 5%-10% of parameters
left. In particular, when A, is used for initializing retraining,
the performance is better than that of random initialization.
It shows that (1) the main functions of the network are
retained in the most important parameters and (2) when
the original dense network is initialized, knowledge and skills
are simultaneously initialized into the particular WLT-net.
Since WLT-net is retrainable, these knowledge and skills
are able to transfer within a sparse network backbone as long
as the network T in the target domain has an identical
structure.

3.2. WLT-Net-Based Sparse Deep Transfer Learning. In this
section, the specific methods and steps of WLTs-SDTL are
proposed. The process is illustrated in Figure 1.
Concretely, the steps of implementation are as follows:
Step 1. Locate and identify Dg in DTL. The structure of T'g
will determine the subsequent sparse structure.

(i) When Dg is representative in the corresponding
research field, such as ImageNet, which consists of
a vast scale of generic data samples, a well-trained
T using a high-performance hardware device could
always be promising

(ii) It should be reasonable for choosing a DNN, which
has been trained and used to solve certain problems
in the practical application, to be the T’

(iii) Itis also able to train a new DNN from scratch as T'g,
if the task is too unique to seek references. Then, the
proposed method will compress it with an accept-
able additional computation cost to get a simple effi-
cient network that is easy to promote and deploy

Step 2. Prepare to seek WLT-nets in the DNN of T.

(i) Based on the proposed sparse transfer hypothesis for
WLT-nets, an iterative pruning algorithm will be
used. The weight of initial parameters in T is
denoted by A;, while after n time iterations, A,
denotes the weight when the loss function achieves
minimum validation. In addition, A, (a<n) is
recorded, preparing for late reset, a skill to speed up
convergence and improve accuracy
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(The optimal WLT-net)

F1GURE 1: Process of the WLTs-SDTL method.

(ii) u is defined as the rating standard score to measure
the contribution of parameters’ weights in DNN,
whose definition is

#(A;) = max <0, AMA'> (1)

Step 3. Generate WLT-nets by unstructured pruning.

(i) Rank y by score. The Mask function M(A;,) =mo A,

is introduced, using a mask m € {0, 1}"1| to determine
whether a parameter should be remained

(ii) Set a pruning ratio p for each epoch. Then, in the
layers of DNN, for the weights of parameters whose
scores are in the top p%, use the mask m =1 to label
them on behalf of retaining. Oppositely, the residual
(100 — p)% parameters will be pruned, whose masks
m are set to 0. The value of p can be defined for each
layer separately

Step 4. Parameters are processed according to the value of
the mask m obtained in step 3.

(i) For parameters whose mask m=1, reset their
weights to the recorded A, in step 2

(ii) For parameters whose mask m =0, prune them.
Their weights will be frozen in the subsequent train-
ing of DNN, which results in a sparse network
architecture

(iii) Different from the original LTH, the variation trend
of weight is considered. The weights of the parame-
ters being pruned are frozen at 0 only when they
tend to 0. When the variation trend of weights in
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the training is moving away from 0, they are frozen
at A,

Step 5. Repeat step 2 to step 4, until the optimal transfer-
able WLT-net & is obtained.

Step 6. Use & as T+ in the target domain Dy to realize the
sparse DTL based on the optimal WLT-net. In the fine-tuned
training dataset of Dy, initialize the DNN with A,, while the
frozen parameters are not trained.

This way, important skills and information can be inher-
ited from Dg through the transfer of a sparse WLT-net archi-
tecture. The requirement of data samples and computing
parameters in the DNN training are both reduced.

Compared with the original LTH, in the proposed WLTs-
SDTL method, we have made optimizations and improve-
ments in the following three aspects:

(i) The LTH is extended and modified for generating
sparse networks in DTL. By regarding T as a
WLT-net of Tg, the correlation between Dg and Dy
is established, enabling knowledge to be transferred
between tasks. When following the idea in the origi-
nal LTH, T should be initialized using a A, in D,
not A,, so that the knowledge obtained from Dy will
be lost. In the proposed WLTs-SDTL, since we
regard T as a part generated from Ty, it can then
be initialized naturally with A, conforming to the
LTH, while retaining the performance. Thus, the
proposed method can achieve the knowledge trans-
fer using sparse WLT-net effectively

(ii) There is a more reasonable standard to evaluate
parameters in pruning. In the pruning process of
the original LTH, the rating standard score y in
Mask function M which evaluates the contribution
of parameters’ weights is defined as y = |A, | . Clearly,
it failed to consider the sign change of parameters in
training, i.e., across the zero axis. As shown in for-
mula (1), the proposed y emphasizes the role of
signs, which leads to a correct expression of the
trend in weight changing. Comparative experiments
prove that it can improve the final performance of
the sparse network

(iii) Further consider the influence of the trend in weight
changing during training on the freeze and reset of
parameters. In the original LTH, after pruning, the
parameters will be reset at A; (m = 1) or frozen at 0
(m = 0). Subsequently, the late reset [33] is proposed
to use the recorded weights after a period of training
iterations for the reset, to make the convergence faster
and the final accuracy higher. In the proposed WLT's-
SDTL method, we also adopt it that A (« < 1) is used
for resetting parameters instead of A; in step 4.

Furthermore, since the late reset is effective, considering
the frozen ones, the weights of pruned parameters will be fro-
zen at 0 to avoid subsequent training, but why 0?

A reasonable explanation is that these weights contribute
less to the network and are not important. However, if it

really does not matter, these weights could be set to any value,
instead of a particular 0, without affecting the network’s per-
formance. In experiments that freeze these parameters to A;,
it shows that, similar to late reset, the validity might depend
on whether a specific value can reflect the changing trend
of weights in training to some extent. When freezing at 0 cor-
rectly, it is equivalent to letting weights whose trends are get-
ting closer to 0 reach to their final value in advance. Thus, in
the paper, a parameter will be frozen at 0 only if its trend
tends to be 0. When the trend is away from 0, freeze the
parameter at its value in A, to reduce the impact.

4. Experiment

In this section, experiments are designed to verify the
hypothesis and evaluate the performance of the proposed
method in actual solutions. Firstly, the proposed sparse trans-
fer hypothesis for WLT-nets and WLTs-SDTL are verified on
the benchmark datasets. Then, the WLTs-SDTL method is
used to design a detection model based on image recognition
and applied to actual solutions of plant pest and disease iden-
tification using open-source lab datasets. Finally, a small scale
of real datasets that we collected in Chongqing, China, is used
in training a model that realized the citrus greening disease
(Haunglongbing) identification. The experiments of training
models are run on the server which contains 2 Inter Xeon Sil-
ver 4110 8-core CPUs and 2 NVIDIA Tesla M60 GPUs (128
G), while some validations are able to run on ordinary office
computers since the sparse models are used.

4.1. Verification of WLT-Net-Based Sparse DTL. The sparse
transfer hypothesis for WLT-nets is verified on the bench-
mark datasets, i.e., CIFAR-10 and SmallNORB. Specifically,
define a DNN-based task Tg on the Dg using CIFAR-10,
and the proposed method is used to find transferable sparse
WLT-net, which will be used as T'; in DTL. The accuracy
and computational load of the model after transfer will be
compared with those of the fully connected dense DNN
structure trained on SmallNORB, the dataset of D.. Through
the above approaches, it validates whether the modified
hypothesis is able to realize a sparse DTL to reduce the
parameters while maintaining the accuracy in the proposed
WLTs-SDTL method.

4.1.1. Datasets. Identification of plant pests and diseases can
be modeled as a multiclassification task based on image rec-
ognition. Therefore, two of the classical datasets, CIFAR-10
[34] and SmalINORB [35], are chosen for designing a simple
experiment to evaluate the feasibility of the hypothesis, which
are widely used in identifying ubiquitous objects and
regarded as the benchmark to validate various models. The
properties of the datasets are shown in Table 1. Since the
channel and image size of T are different from those of D,
channel conversion and 4-pixel padding are applied at the
training time.

4.1.2. Settings. About the structure of the network, which
contains both the original fully connected dense DNN and
the sparse WLT-net generated from it, ResNet-18 is chosen
for the backbone. As the classical deep residual network’s
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TaBLE 1: Properties of experimental parameters.
Dataset CIFAR-10 SmalINORB
Class 10 5
Train 50,000 40,000
Test 10,000 10,000
Image size 32x32%x3 28 x28x1
Domain Dy Dy

SGD [5¢73, 173, 1e7*] with
momentum 0.9, weight decay le™,
and learning rate = 0.01

Parameter settings

18-layer version (with 17 convolution layers and 1 fully con-
nected layer, 11.2 M parameters to train), it is also used in the
original LTH, so the same configuration is set for the exper-
iments. Settings of experimental parameters are shown in
Table 1 too. The pruning rate in finding WLT-net is set to
20% with batch size 128, the maximum number of iterations
30,000, and at most 50 epochs in each iteration. 10 rounds of
iterative pruning are performed to find the optimal WLT-net.
During the operation, only the convolution layers will be
pruned. When retraining the transferred sparse network in
T'; for optimizing, by convention, weights of the convolution
layers are frozen and only the fully connected layer is fine-
tuned.

4.1.3. Verify the Sparse Transfer Hypothesis for WLT-Nets.
Firstly, experiments are designed to validate the performance
of WLT-net compared with the original dense network on D¢
. After training in the source domain CIFAR-10, the original
dense ResNet-18 achieved an average accuracy of 89.43% in
the test dataset, with 11,173,962 parameters used.

The experimental results are shown in Figure 2, to display
the relationship among the pruning level, number of remain-
ing parameters, and average accuracy. When only 10.7% of
the original parameters are retained after pruning
(1,212,145 used), an average accuracy of 89.24% is still able
to be achieved. As illustrated in the figure, it is proven that
the pruning method in the proposed sparse transfer hypoth-
esis for WLT-nets can guarantee the accuracy and reduce
parameters while generating sparse subnetworks.

4.1.4. Verify WLTs-SDTL. Then, on the basis of the above
analysis, to validate whether the sparse WLT-net can inherit
knowledge from T'g, more experiments are designed, and the
effect of initialization on the results is compared. As for
SmallNORB on Dy, when training a dense ResNet-18 from
scratch, the average accuracy achieves 89.9%. The optimal
WLT-net generated in each round under different pruning
levels is transferred to T'y, respectively, and the accuracy is
compared. Since the influence of trend in weight change dur-
ing training has been further considered in this paper, to bet-
ter compare and prove the effectiveness of the proposed
method, four kinds of initialization approaches are used for
the sparse network separately: (a) original LTH (using A,),
(b) random initialization, (c) late reset method (using A,),
and (d) proposed WLTs-SDTL. The performance of the orig-
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FIGURE 2: Experimental results: verify the sparse transfer hypothesis
for WLT-nets.

inal dense network before pruning is used as the baseline.
The experimental results are shown in Figure 3.

As the experimental data shows, a better performance
can be obtained than that of training dense DNN directly
when proper pruning is carried out. It proves that the
WLTs-SDTL can transfer the necessary ability from T in
Dg to Ty in Dy. The sparse transferable structure is able to
greatly save the cost of training parameters, while the overall
accuracy can be kept, which realizes a sparse DTL. Compared
with the initialization approaches (a), (b), and (c), the pro-
posed WLTs-SDTL is more effective on the whole. At the
same time, according to the results, when running a deep-
level pruning on the original model, in which only 10% of
the parameters remains (1,212,145 compared with the origi-
nal 11,173,962), the precision loss is acceptable sometimes,
which corresponds to the original LTH. Thus, when the tar-
get task T'; can accept a slight performance loss in exchange
for generalization ability, it offers the possibility of using
DNN-based deep computing methods on devices with low
computational power such as mobile terminals, smart-
phones, or edge computing devices.

In summary, experiments on benchmark datasets have
verified the feasibility of the proposed sparse transfer hypoth-
esis for WLT-nets and WLTs-SDTL.

4.2. Identification of Pests and Diseases Based on WLTs-
SDTL. In this section, the proposed WLTs-SDTL is used to
train a sparse network from a dense detection model based
on image recognition and applied in actual solutions of plant
pest and disease identification. Specifically, the common dis-
eases of tomato leaves are identified, inheriting the ability
from ImageNet and using open-source lab datasets for T s
fine-tuning training.

4.2.1. Datasets. The ResNet-18 network pretrained on Ima-
geNet is used as Dg to provide the necessary knowledge from
weight of parameters. As for the T} in identifying pests and
diseases on tomato leaves, the PlantVillage dataset is chosen.
The PlantVillage [36] is an open-source image dataset of
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F1GURE 3: Experimental results: using WLTs-SDTL on benchmark
datasets.

leaves from 14 crops, which contains 26 categories of plant
pests and diseases and corresponding healthy leaves.

Since the samples of different categories in the original
dataset are uneven, the crop tomato with sufficient samples
is selected, in which categories with fewer samples and
images with poor quality are eliminated. Then, data enhance-
ment methods such as horizontal flip are used to adjust the
sample size of each category to the same. Finally, a total of
8 categories of pests and diseases/1 healthy leaf are defined;
meanwhile, the image size is adjusted to 64 x 64 uniformly.
The specific properties of the dataset are shown in Table 2.

4.2.2. Settings. Deeper-level pruning is carried out. 15 rounds
of iterative pruning are performed to find the optimal WLT-
net, with at least 3.6% of the parameters being retained
(406,495 compared with 11,173,962 in the original dense
net). Other experimental settings are the same as them in
the previous section.

4.2.3. Identify Pests and Diseases of Tomato Leaves. The
experimental results are shown in Figure 4. The identification
model using dense ResNet-18 can achieve 96.44% accuracy
after training in D, and a series of sparse networks with dif-
ferent volumes are obtained, respectively, using WLTs-
SDTL.

The highest accuracy is up to 97.69% in pruning level 5,
when 67% of the parameters are removed. By and large,
WLTs-SDTL can guarantee the accuracy in plant identifica-
tion while reducing parameter computation. When pruning
properly, the accuracy can be higher than that of the original

TaBLE 2: Properties of the PlantVillage dataset.

Category Sample set Training set
Tomato healthy 1,592 1,500
Tomato bacterial spot 2,127 1,500
Tomato early blight 1,000 1,500
Tomato late blight 1,910 1,500
Tomato Septoria leaf spot 1,771 1,500
Tomato spider mites 1,653 1,500
Tomato mosaic virus 373 Unused
Tomato leaf mold 952 1,500
Tomato target spot 1,404 1,500
Tomato TYLCV 5,357 1,500
12.00 M - — 98.00
] — 96.44%
8.00 M I— ***** s = 56.00
4.00 M ll m|_ I I R PP
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FIGURE 4: Experimental results of WLTs-SDTL on the PlantVillage
dataset.

dense net. If the optimal performance is required, fine-
grained pruning can be gradually carried out between levels
near the best accuracy, which is between 30% and 50% in this
set of experiments. For example, we can set the pruning rate
to 10% or less in each round, to find a balance between per-
formance and volume of the model.

When only 3.6% of the parameters are retained, the
sparse network is still able to achieve an accuracy of
93.16%, with no other than 406,495 parameters to be trained.
Considering that the accuracy is acceptable in daily identifi-
cation tasks, it verifies that the proposed WLTs-SDTL can
generate a small efficient network suitable for mobile termi-
nals or edge computing devices with low computational
power in the practical application of pest and disease
identification.

4.3. Using WLTs-SDTL for Real Collected Data Identification.
In this section, a small scale of datasets collected in Chong-
qing, China, is used in training the identification model to
detect the citrus greening disease (Haunglongbing), com-
bined with lab data. Citrus greening (Haunglongbing) is a
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FIGURE 5: The composition of the dataset: (a) samples in PlantVillage; (b) collected samples; (c) process of clipping.
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FIGURE 6: Experimental results of using WLTs-SDTL in identifying
Haunglongbing.

devastating disease in the world citrus production, which
seriously restricts the development of the citrus industry
[37]. The etiolation of leaves can be used for its in-field
identification.

4.3.1. Datasets. We have collected 1,266 images from Chong-
qing, China, as well as from Internet and monographs, in
which 238 samples are Haunglongbing. In the process of
photographing samples in the field, there may be more than
one leaf in a photo, and more training samples can be obtained
through clipping, as illustrated in Figure 5(c). Haunglongbing
can also be identified by fruit; however, due to the lack of sam-
ples, images of diseased fruit are screened out. After the clip-
ping, filtering, and image intensification operations, 1,500
samples are generated for training. Meanwhile, in the category
orange haunglongbing of the PlantVillage dataset used in Sec-
tion 4.2.1, which contains 5,507 images of leaves, 5,000 images
are randomly selected (Figure 5(a)). Finally, the training data-
set of 6,500 samples is created.

4.3.2. Settings. 15 rounds of deep-level iterative pruning are
performed, while the other experimental settings are the
same as them in the previous section. About the initial weight
used for late reset, two kinds of options are chosen: (1) the
weight of ResNet-18 was pretrained on ImageNet, which
has been used as Dg in Section 4.2.1 and (2) the final weight
A of identification task Ty in Section 4.2.3 has been trained
on PlantVillage datasets. The contrast experiment is designed
to compare whether the proposed method can inherit better
ability from a more similar domain.
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4.3.3. Identifying Haunglongbing. After training on the origi-
nal dense network, when performing a traditional intensive
DTL (no parameters pruned), the initial weight (1) achieves
97.14% accuracy while the final weight (2) achieves 98.06%.
Then, the proposed WLTs-SDTL is used, respectively; the
relationship of accuracy and remaining parameters is shown
in Figure 6. The highest accuracy is not even able to achieve
94% when training a dense ResNet-18 from scratch, and
pruning the network will lead to the loss of overall accuracy;
its performance on simplified WLT-net can be no longer dis-
cussed in this section (because the performance will not be
better than that using DTL).

The experimental results show that, compared with train-
ing directly, DTL can achieve better initial performance in
identifying citrus Haunglongbing disease under the help of
collected data. And regarding the proposed sparse DTL, the
following are obtained:

(1) As the parameters decrease, the overall accuracy
declines. However, it is still within an acceptable range
and higher than no-transfer dense network. When the
weight from a similar identification task is used in (2)
shown in Section 4.3.2, a higher initial accuracy can be
obtained, and the trend of accuracy is more stable in
subsequent sparsification than (1) shown in Section
4.3.2. Thus, a similar task, which has been well trained
for identifying other pests and diseases, might be a bet-
ter initial choice in practical application

(2) Although fewer parameters are used, the model can
achieve higher accuracy in some pruning levels: in
(1) shown in Section 4.3.2, among the 3rd to the 5th
levels, the average accuracy, respectively, achieves
97.20%, 97.28%, and 97.46% when 51.2%, 40.96%,
and 32.77% of the parameters remain higher than
the original 97.14%. And in (2) shown in Section
4.3.2, in the 3rd and 4th pruning level, it achieves
98.26% and 98.13% compared with the original
98.06%, while it is 97.99% in the 5th level. The reason
is that sparsification reduces the redundancy of
parameters, and the negative feedback of low-
contribution parameters is inhibited

(3) Fine-grained pruning in the optimal range can be
proceeded for the best performance. And in the
experimental results of this paper, note that the range
is always between 50% and 30%. Therefore, we spec-
ulate that in the proposed WLTs-SDTL, the priority
could be given to these pruning levels when models’
performance is preferred. And when the volume of
the model needs to be compressed as much for widely
deploying, it shows that the sparse model can use
about 10% of the original parameters (accuracy
96.67% when using 8.59%) to maintain an acceptable
performance close to that of the original. The limiting
small model with only 3.6% of the original parame-
ters is also taken into account, whose accuracy is able
to achieve 94.01%, still higher than that of the dense

net without transfer, and is more likely to be used
for low-computing-power devices or edge computing
devices

To sum up, when the proposed WLTs-SDTL is used in an
actual solution of identifying diseases of plants, the sparsifi-
cation of the network can be realized through pruning to save
the computational overhead of parameters while maintaining
or even improving performance. Thus, the balance between
performance and model size can be dynamically adjusted,
and the deployment possibility of low-computational-
power equipment is provided.

5. Conclusion

In this paper, a sparse deep transfer learning model is pro-
posed. The method is aimed at modeling the identification
of plant pest and disease with limited collected data in the
field, and a sparse DTL strategy is designed to transfer only
the most important architecture and optimize models’ size.

Specifically, (1) the sparse transfer hypothesis is proven,
which succeeds in modifying LTH to reduce the parameter
computation in DTL by generating sparse transferable
WLT-nets. (2) The sparse transfer method named WLTs-
SDTL is formally proposed, in which the compressing strat-
egy is designed to construct a deep sparse network, distills
useful information from the auxiliary domains, and improves
the transfer efficiency. (3) The proposed method is applied to
detect pests and diseases with few data samples in training
deep identification models. The hypothesis is verified by the
benchmark dataset; meanwhile, the proposed method is eval-
uated on the representative datasets.

Experimental results show that when the proposed
method is used in actual solutions, the sparsification of the
network can save the cost of computing parameters while
maintaining or sometimes improving the performance,
thereby dynamically adjusting the balance between the
model’s accuracy and size, providing the deployment possi-
bility in low-computational-power devices.

Moreover, the sparse strategy can be promoted in identi-
fying new pests and diseases of the plant with few data and
even widely used in other tasks based on image recognition
and lack of data. On that occasion, depending on specific
tasks, it is supposed to wisely choose the suitable network
architecture and balance the accuracy and volume of models.

In the future, the proposed method will be studied on
more other domains to overcome the scarcity of data and
the redundancy of model parameters, improving the effec-
tiveness of sparse deep transfer learning.

Data Availability
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