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)e Internet of)ings (IoT) is one of the latest internet evolutions. Cloud computing is an important technique which realizes the
computational demand of largely distributed IoT devices/sensors by employing various machine learning models. Gradient
descent methods are widely employed to find the optimal coefficients of a machine learning model in the cloud computing.
Commonly, the data are distributed among multiple data owners, whereas the target function is held by the model owner. )e
model owner can train its model over data owner’s data and provide predictions. However, the dataset or the target function’s
confidentiality may not be kept in secret during computations. )us, security threats and privacy risks arise. To address the data
and model’s privacy mentioned above, we present two new outsourced privacy-preserving gradient descent (OPPGD) method
schemes over horizontally or vertically partitioned data among multiple parties, respectively. Compared to previously proposed
solutions, our methods improve in comprehensiveness in a more general scene. )e data privacy and the model privacy are
preserved during the whole learning and prediction procedures. In addition, the execution performance evaluation demonstrates
that our schemes can help the model owner to optimize its target function and provide exact prediction with high efficiency
and accuracy.

1. Introduction

)e Internet of )ings (IoT) is the latest internet evolution
which provides multifarious novel digital, smart services and
products by integrating abundant devices into networks [1].
It enables the communication between the physical world
and the cyberspace [2]. IoTsystem contains radio-frequency
identifications, wireless sensor networks, and the cloud
computing [3]. Cloud computing realizes the computational
demand of large-scale distributed IoT devices or sensors
through various machine learning methods. Since IoT de-
vices have tiny memory, the collected data are required to be
stored and managed by the cloud servers [3–5]. Data can be
downloaded from the cloud for different purposes such as
machine learning. However, since there may exist sensitive
data such as physiological data, location data, and some
other data which are closely related to our personal infor-
mation [6], this exposes the data to security breaches.

)erefore, IoTnot only provides convenience but also brings
about security and privacy issues [7]. How to deal with
security, privacy, and trust has been one of the main barriers
in developing IoT in the real world [8, 9]. Most of the
existing work on the protection of sensitive data is based on
the secure communication channels and authorization [10].
In our paper, we focus on the protection of sensitive data in
machine learning or deep learning. )e data can be pro-
tected during the transmission phase, the computation
phase, and the prediction phase. Furthermore, the com-
putation and prediction results’ privacy can also be
preserved.

In machine learning or deep learning, the prediction
function is usually called the decision model. )e model
coefficients’ quality determines the accuracy of the model. In
order to minimize the error of the model, the optimal co-
efficients are indispensable. )is process is called model
learning. Gradient descent methods are effective methods to
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find the optimal coefficients of the decision model, such as
linear regression, hyperplane decision classification, and
neural networks. Gradient descent methods conclude four
types: classical gradient descent method (GD), stochastic
gradient descent method (SGD), minibatch stochastic gra-
dient descent method (minibatch SGD), and momentum.
)rough these methods, the optimal prediction function can
be obtained after several iterations.

In the cloud computing, the cloud server offers huge
storage and computing capacity.)emodel owner initializes
the prediction function, and the training data are distributed
among different data owners who hope to get desired results
with these data by cloud servers without exposing their
privacy. )ese data form an enormous training dataset
which is divided into different disjoint subsets held by
different data owners.)e dataset partition can be horizontal
or vertical. )e number of data owners can be two, even
more than two. As is known to all, the channel transmission
is not secure in our real life. In addition, data owners, the
model owner, and the cloud server do not trust each other.
When they train a decisionmodel together, they worry about
that any other participant may get information from their
own data. So, they encrypt their training data or the decision
model with their own public keys or blind their data to
preserve confidentiality before delivering them to the cloud
server. )e training data and the decision model can be kept
confidential during the whole cloud computing. After fin-
ishing training the decision model, the model owner learns
the model securely based on the training dataset with the
help of the cloud server. At this time, the clients can get the
prediction about their request data from the cloud server
according to this decision model.

At present, although a lot of researchers focus on the data
privacy protection or the model privacy protection when
gradient descent methods are utilized to optimize machine
learning models, few schemes can provide both data privacy
and model privacy at the same time. Beyond that, some
privacy-preserving gradient descent schemes can protect
data owners’ privacy, but they are not applied to an out-
sourcing computation. In addition, the dataset’s partition is
usually horizontal or vertical in the distributed system. In
many previous literature studies, few schemes can be applied
to two different partitioned datasets at the same time. Be-
sides, both training data and the decision model are held
only by data owners rather than the model owner. In fact, it
is more practical that the models are held by the model
owner rather than the data owner. Motivated by the above,
we construct two novel outsourcing gradient descent
methods to solve these problems.

Generally speaking, it is necessary to preserve the privacy
of the training data, the decision model, and the request data
during the model training. Assume that there exists a
training dataset X, and the corresponding label vector is y.
Each row of the dataset represents one sample x with a set of
attributes. By f(x), we denote the prediction function which
maps the sample xi into its corresponding category label yi.
According to the partition of the dataset, each data owner
has part of data samples or part of the attributes. )e model
owner holds the coefficients of the prediction function f(x).

)e target of data owners and the model owner is to
minimize the error of the prediction function and obtain the
optimal coefficients ultimately through the gradient descent
methods. )us, the model owner holds the optimal decision
model. )en, it can provide the client accurate prediction. In
this paper, we focus on outsourced gradient descent
methods over distributed data amongmultiple parties which
conclude data owners, the model owner, the cloud server,
and the client. Both horizontal and vertical partition of the
dataset are discussed. For the horizontally partitioned
dataset, two or multiple data owners hold different samples
with the same attributes, whereas two or more data owners
hold all same samples but with different sets of attributes
when the dataset is vertically partitioned.

1.1. Contributions. To address the privacy when performing
gradient descent methods by multiple parties via the cloud
computing, we propose two OPPGD schemes over hori-
zontally or vertically distributed data. Our main contribu-
tions of this paper are summarized as follows:

(1) We design an outsourced privacy-preserving scalar
product (OPPSP) algorithm. )e cloud server
computes the inner product of two vectors encrypted
under different keys securely. For example, one data
owner and the model owner hold one vector, re-
spectively. Both parties first encrypt their own vector
with their own key and send the encrypted vector to
the cloud server.)en, the cloud server computes the
scalar product of these two encrypted vectors.

(2) We propose two secure and comprehensive
schemes to perform OPPGD over horizontally or
vertically distributed dataset, respectively. )e
number of data owners can be two or more than
two. )e prediction functions are linear regression
or neural networks. )e OPPGD schemes are ap-
plied to classical GD, SGD, minibatch SGD, and
momentum. It is worth noting that our schemes are
with higher applicability and practicability con-
trasted with other schemes.

(3) We demonstrate that our OPPGD schemes are
privacy-preserving. )e computational cost and
communication complexities are discussed. )e
analyses show that our OPPGD schemes are with
high efficiency and accuracy.

1.2. Organization. )e remainder of this paper is as follows.
In Section 2, we discuss the related works on privacy-pre-
serving gradient descent methods. In Section 3, we briefly
introduce some preliminaries, Elgamal homomorphic
cryptosystem [11], and gradient descent methods. In Section
4, we describe the system model, problem statements, the
threat model, and the system requirements. We present two
OPPGD schemes and prove their correctness, security, and
complexity in Section 5. )e performance evaluation of the
schemes is analyzed in Section 6. Section 7 makes a con-
clusion on our OPPGD schemes.
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2. Related Works

In this section, we review works on privacy-preserving
gradient descent methods among parties. According to the
existence or absence of cloud servers, the existing works can
be classified into two categories.

2.1. /e Absence of Cloud Servers. Wan et al. [12] presented
the first privacy-preserving scheme for gradient descent
methods. )ey proposed a generic formulation of gradient
descent methods by defining the prediction function f(x) as
a composition g°h(x). )e formulation is used to perform
the specific iteration-based algorithm in linear regression or
neural networks. In our paper, we also use this formulation.
However, the partition of the dataset discussed in their
scheme [12] is only vertical. Han et al. [13] extended the
scheme [12] to the horizontally distributed dataset and
proposed the least square approach to perform gradient
descent methods. Both schemes [12, 13] utilize a secure
scalar product to gain their privacy preservation, but they
cannot be applied to the outsourced model. Gabor Danner
and Jelasity [14] designed a novel fully distributed privacy-
preserving minibatch SGD that can avoid collecting any
personal data centrally. )eir scheme does not require the
precise sum of gradients. A tree topology and homomorphic
encryption are employed to produce a “quick and dirty”
partial sum. )e protocol can resist collusion attacks.
Hegedus and Jelasity [15] adopted differential privacy
technology to solve privacy-preserving stochastic distributed
gradient descent methods. Mehnaz et al. [16] designed two
secure gradient descent schemes over horizontally parti-
tioned data and vertically partitioned data via a secure sum
protocol. Later, they designed a secure gradient descent
method scheme [17] without Yao’s circuits over the arbi-
trarily partitioned dataset. Based on output perturbation,
Wu et al. [18] devised a novel “bolt-on” differentially private
algorithm for stochastic gradient descent.

2.2./eExistence ofCloud Servers. Liu et al. [19] designed an
encrypted gradient descent method. Both data owners and
the cloud server perform operations collaboratively to learn
the target function without leaking any data privacy. )ey
extended their scheme to the outsourced model by utilizing
the BGN cryptosystem. However, their protocol is only
suitable for a two-party scenario. Shokri and Shmatikov [20]
learnt an accurate neural network model without sharing
input datasets by using the stochastic gradient descent
method. After the parameter server initializes the parameter
vector, it updates the parameters with the help of the cloud
server without leaking any privacy. Kim et al. [21] provided a
practical frame for mainstream learning models such as
logistic regression. )ey calculated the gradient descent
method securely by using homomorphic encryption, but this
is inefficient. Since the required bit length of ciphertext
modulus per iteration is too long, it also takes up too much
space. Francisco-Javier et al. [22] realized training super-
vised machine learning over ciphertext. )rough the gra-
dient descent method, the server optimizes the predicted

training model without exposing the data or the training
model. Mohassel and Zhang [23] used the stochastic gra-
dient descent method to construct new and efficient privacy-
preserving machine learning protocols for linear regression,
logistic regression, and neural network. )eir protocol is
involved with a two-server model. Data providers distribute
their private data among two noncolluding servers, while the
servers train models on the joint data through secure two-
party computation techniques. Li et al. [24] also presented a
multikey privacy-preserving deep learning scheme in the
cloud computing environment. )eir protocols realize
outsourced multilayer backpropagation network learning
via the gradient descent methods. Ma et al. [25] took ad-
vantage of two noncolluding servers’ framework to build a
new outsourced model of the privacy-preserving neural
network. However, the model owner can only make pre-
diction rather than learning the model itself.

2.3. /e Other Works on Privacy Preservation for Machine
Learning. Aside from the above privacy-preserving gradient
descent methods, there are also plenty of other works on
privacy-preserving computation over distributed data among
multiple parties under the cloud environment. Liu et al. [26]
constructed an efficient privacy-preserving method to com-
pute outsourced data. )ey [27] also proposed a privacy-
preserving outsourced calculation toolkit, which allows data
owners to securely outsource their data to the cloud for
storage and calculation. Rady et al. [28] designed a new ar-
chitecture that achieves the confidentiality and integrity of
query results of the outsourced database. Yu et al. [29] devised
a verifiable outsourced computation scheme over encrypted
data by employing fully homomorphic encryption and
polynomial factorization algorithm. Chamikara et al. [30]
presented an efficient and scalable nonreversible perturbation
algorithm of data mining without leaking privacy of big data
via optimal geometric transformations. Li et al. [31] proposed
a novel outsourced privacy-preserving classification scheme
based on homomorphic encryption. In their scheme, multiple
parties outsource securely their sensitive data to an untrusted
evaluator for storing and processing. Li et al. [32] devised a
novel scheme for a classifier owner to provide users with the
privacy-preserving classification service by delegating a cloud
server. However, they focus on two concrete secure classifi-
cation protocols: naive Bayes classifier and hyperplane de-
cision classifier. Park et al. [33] described a privacy-preserving
naive Bayes protocol. No intermediate interactions are re-
quired between the server and the clients. Hence, their
protocols can alleviate the heavy computational cost of fully
homomorphic encryption. Li et al. [34] proposed an out-
sourced privacy-preserving C4.5 decision tree algorithm over
both horizontally and vertically partitioned datasets. )ey
used the BCP cryptosystem to present an outsourced privacy-
preserving weighted average protocol. Rong et al. [35] pre-
sented a series of privacy-preserving building blocks for
verifiable and privacy-preserving association rule mining
under the hybrid cloud environment. Li et al. [36] used an
efficient homomorphic encryption with multiple keys to
design an outsourced privacy-preserving ID3 data mining
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solution. Xue et al. [37] built a differential privacy-based
privacy-preserving classification system for secure edge
computing. Yang et al. [38] realized privacy-preserving
medical record sharing in the cloud computing environment.
Kaur et al. [39] devised an efficient privacy-preserving col-
laborative filtering for the healthcare recommender system
over arbitrary distributed data. In our work, we aim at de-
signing outsourced privacy-preserving gradient descent
methods among multiple parties. To the best of our knowl-
edge, there has not been any work which addresses the issue
comprehensively.

3. Preliminaries

In this section, we introduce some preliminaries for our
outsourced privacy-preserving gradient descent schemes.

3.1. /e Elgamal Homomorphic Cryptosystem. )e Elgamal
cryptosystem [11] comprises the following algorithms:
preparation, key generation, encryption, and decryption:

Preparation (λ): given a security parameter λ. )e
system generates the public parameter PP as follows.
)e system first chooses a large prime number N and a
random number g less thanN. And it publishes the
multiplicative cyclic group G of prime order N with the
generator g. )e public parameter PP � (Ng)

KeyGen (PP): taking PP as the input, each party Pi

randomly selects a number ski less than N as its private
key and computes pki � gskimodN as its public key.
Encpki

(Mi): Pi selects a random integer ri which is
coprime to (N − 1) and encrypts its plaintext Mi with
the public key pki to generate the ciphertext
Ci � (Ci1Ci2)

Ci1 � g
rimodN

Ci2 � pkri

i mmodN
(1)

Decpki
(Ci): each party Pi decrypts Ci with its secret key

ski and obtains the plaintext Mi. )e decryption
process is

Mi � Ci2C
−ski

i1 modN (2)

Its correctness is early confirmed.

Ci2C
−ski

i1 modN � pkri

i Mi( 􏼁 g
ri( 􏼁

− skimodN

� g
skiri Mi􏼐 􏼑 g

ri( 􏼁
− ski modN

� Mi

(3)

)e semantic security of the Elgamal cryptosystem is
based on the hardness assumption of discrete logarithm
problems over finite fields.

3.2. /e Key Conversion System. As for the secure out-
sourced computation over the dataset among multiple
parties, the essential difficulty is how to deal with different

ciphertexts encrypted under different keys which are sent
frommultiple parties. Based on Gentry’s fully homomorphic
encryption [40], we transform the ciphertext under different
keys into the ciphertext under the same key. Take two
parties, Alice and Bob, as an example. Assume that their
respective key pairs are (pkaska) and (pkbskb). For a
plaintext m, its ciphertext encrypted under key pka is [m]pka

.
)e goal is to switch encrypted [m]pka

into a new ciphertext
[m]pkb

which is encrypted under the public key pkb. )e
conversion can be divided into the following steps:

Rekey generation (pkbska): taking pkb and ska as the
input, it outputs the rekey 􏽦ska � 􏽦skai􏽮 􏽯

I

i�1, where
􏽦skai⟵Encrypt(pkbskai) is the i-th binary represen-
tation of ska

Reencryption (pkb, [m]pka
): taking public key pkb and

ciphertext [m]pka
as inputs, it outputs 􏽥m � 􏽥mi􏼈 􏼉

I

i�1,
where 􏽥pi⟵Encrypt(pkb[pi]pka

)

Evaluation algorithm (pkbDΠ, 􏽥pi
􏽦skai): taking the public

key pkb, rekey 􏽦ska, ciphertext 􏽥m, and a decryption circuit
DΠ, it outputs [m]pkb

⟵Evaluate(pkbDΠ 􏽥m􏽦ska)

3.3. Gradient Descent Methods. Assume that D is the dataset
of data samples, (xiyi)| i � 1, 2 . . . N􏼈 􏼉, where the vector xi �

[xi1xi2 . . . xim] presents the i-th sample’s m attributes and yi

denotes the target attribute. )e goal is to determine a pre-
diction function f(x) such that f(xi) is as close to yi as
possible. )us, when one makes prediction about the test data,
the basic strategy is to make the prediction function to produce
the smaller error. Gradient descent methods are always applied
to search f(x)’s optimal coefficients. )e technique can
minimize the prediction error. )e whole process can be
described as follows. At the beginning, one determines the loss
function L(x), randomly initializes a coefficient vector off(x),
and calculates the current error about the learning dataset. If
the current error is not ideal, one can take the derivative of
L(x) with respect to the vector, modify the coefficient vector,
and update f(x) based on the derivative. )en, one recal-
culates the loss and repeats optimizing its model until the
minimum error appears. To this end, one can generate the
optimal value through several iterations.

)ere are four main gradient descent methods, such as
classical GD, SGD, minibatch SGD, and momentum. In
classical GD, the loss function is determined by all samples
in each iteration which leads to high computational com-
plexity. For SGD, the loss function is determined by a
random sample every iteration which reduces computing
overhead. However, this method has one weakness that,
sometimes, the final coefficient vector may be the local
optimal value rather than the global optimal value.When the
loss function is determined by a batch of random samples
every iteration, the gradient descent method is called
minibatch SGD. )e minibatch SGD has classical GD’s and
SGD’s advantages and overcomes their weaknesses. So far,
SGD is the most widely applied in machine learning. Mo-
mentum is the latest gradient descent method which greatly
improves the accuracy and speed of the prediction. Beside
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the learning rate η, the coefficient vector ω � cω − η∇ω in
momentum contains a new parameter c, the attenuation
rate. However, our schemes can be applied to the above four
main gradient descent methods.

)e error function of every sample xi is E(f(xi)yi) � (12)

(yi − f(xi))
2. Given l arbitrary samples, the loss function is

L �
1
l

􏽘

l

i�1
E f xi( 􏼁yi( 􏼁 �

1
2l

􏽘

l

i�1
yi − f xi( 􏼁( 􏼁

2
(4)

)eprediction functionf(x) is a composition function of
two functions g(z) and z � h(x), where g(z) is any dif-
ferentiable function and h(x) is a linearly separable function:
h(xi) � 􏽐

m
j�1 ωjxij, where ω � (ω1ω2 . . . ωm) is the coeffi-

cient vector of the prediction function. When l � 1, the
method is SGD, when 1< l<N, the method is minibatch
SGD, whereas when l � N, the method is GD. Subsequently,
we update the coefficient vector ω � ω − η∇ω, where ∇ω �

zLzω and η is a constant parameter called learning rate.When
the coefficient vector is ω � cω − η∇ω, where c is a constant
parameter called attenuation rate, this method is momentum.

For each sample xi, there is a derivative zE(f(xi)yi)zω.
)us, we calculate ∇ω � (zLzω) � (1l) 􏽐

l
i�1 zE(f(xi)yi)zω

zE f xi( 􏼁yi( 􏼁

zω
�

zE f xi( 􏼁yi( 􏼁

zf xi( 􏼁

zf xi( 􏼁

zω

�
zE f xi( 􏼁yi( 􏼁

zf xi( 􏼁

zg h xi( 􏼁( 􏼁

zh xi( 􏼁

zh xi( 􏼁

zω

(5)

As the function f(x) changes, ∇ω is also different. Here,
we discuss two specific functions used in linear regression
and neural network.

In linear regression, the prediction function for an ar-
bitrary sample xi is f(xi) � 􏽐

m
j�1 ωjxij. )en,

zE f xi( 􏼁yi( 􏼁

zω
�

z

zω
1
2

yi − f xi( 􏼁( 􏼁
2

􏼒 􏼓

�
1
2
xi yi − f xi( 􏼁( 􏼁

�
1
2

xif xi( 􏼁 − xiyi( 􏼁

(6)

In neural networks, f(x) is also called as activation
function that is a sigmoid function, (z) � 1(1 + e− αz), or
tanh function, f(z) � (eαz − e− αz)(eαz + e−αz). If the func-
tion is a sigmoid function, the prediction function for an

arbitrary sample xi is f(xi) � 1(1 + e
− α􏽐

m

j�1 ωjxij ). )en,

zE f xi( 􏼁yi( 􏼁

zω
�

z

zω
1
2

yi − f xi( 􏼁( 􏼁
2

􏼒 􏼓

� −
1
2
α yi − f xi( 􏼁( 􏼁f xi( 􏼁 1 − f xi( 􏼁( 􏼁

� −
1
2
α yi − f xi( 􏼁( 􏼁f xi( 􏼁 1 − f xi( 􏼁( 􏼁

�
1
2
α xiyif

2 xi( 􏼁 + xif
2 xi( 􏼁 − xif

3 xi( 􏼁 − xiyif xi( 􏼁􏼐 􏼑

(7)

)rough the Taylor expansion formula, the function
f(x) can be expanded into a polynomial T(a). )en, we
have

zE f xi( 􏼁yi( 􏼁

zω
≈
1
2
α xiyiT

2
􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠ + xiT
2

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠⎛⎝

− xiT
3

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠ − xiyiT 􏽘
m

j�1
ωjxij

⎛⎝ ⎞⎠⎞⎠

(8)

4. Models and Requirements

4.1. System Model. As shown in Figure 1, the system
comprises five entities: data owners, a model owner, a cloud
server, a key conversion server, and a trusty decryption
server. Each entity is described as follows:

Data owner (DO): after receiving the public parameter
PP, each DO generates their own key pair and encrypts
their data.)en, DOs send their respective ciphertext to
the cloud server, depicted as Step 1 in Figure 1. After
MO has finished training the model, one DO can re-
quest the CS and MO to make prediction.
Cloud server (CS): assume that CS can provide DOs
and MO with unlimited computation and storage
service. After receiving vectors encrypted by every
DO and MO, the CS executes the OPPSP algorithm
and finally sends the encrypted results back to DOs as
Step 2.
Model owner (MO): MO holds the target function
which contains the coefficient vector, learning rate, or
the attenuation rate. MO encrypts the target function’s
coefficients with its own key and then sends the ci-
phertext to the CS and executes the OPPSP algorithm.
After receiving ∇ω, MO updates its model until it gets
the optimal coefficients. Moreover, it can provide DO
with prediction services.
Key conversion server (KCS): KCS runs the conver-
sion algorithm and switches different ciphertexts
encrypted under DOs’ respective keys into a new
intermediate ciphertext under the same key, which is
depicted as Step 3.
Trusty decryption server (TDS): assume that TDS is
trusty. It only provides decryption service. TDS will
not conspire with other parties. After receiving new
encrypted results from the KCS as Step 4, the TDS
decrypts these results and performs few computations
to acquire the final results. In the end, TDS sends the
intermediate results back to the MO, as depicted in
Step 5.

In our system model, each entity is semihonest except
TDS. All the entities have some background knowledge of
the attribute names, class names, and the number of their
attributes. Each data owner has a part of the complete
dataset, which can be partitioned horizontally or vertically.
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When the dataset is distributed vertically, all data owners
have the class value vector. )e complete attribute dataset X

is of size n × m, and the target vector y is represented as
follows:

X �

x1,1 · · · x1m

⋮ ⋱ ⋮

xn1 · · · xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y � y1y2 . . . yn􏼂 􏼃
T

(9)

where yi is xi’s corresponding class value.
For the horizontally partitioned dataset, each data

owner has n samples with all the attributes and the cor-
responding class value, as described in Figure 2. For the
vertically partitioned dataset, each data owner has mi at-
tributes with all the samples and the corresponding class
value. )e data owner Pi’s data can be depicted as in
Figure 3

)e scheme consists of the preparation phase, the
training phase, and the prediction phase. An overview of the
scheme can be described as follows:

Preparation phase: according to the public parameter
PP, DOs and MO generate their respective key pairs.
)ey also share a secret value k in advance. )en, DOs
encrypt their dataset with their respective keys, while
MO encrypts the coefficient vector of its model with his
public key. )en, DOs and MO send their ciphertext to
CS, respectively.
Training phase: CS performs the OPPSP algorithm and
sends the results back to DOs. Next, DOs perform
decryption and send the results to the KCS. KCS
switches these encrypted results and sends the final
results to the TDS. TDS decrypts the results and sends
the results to theMO.MO can update the coefficients to
optimize the model.
Prediction phase: with the help of the CS, the MO
makes prediction for the DO’s query.

4.2. Problem Statement. Let Di be the dataset of data owner
DOi. All datasets are disjoint and composed of the complete
dataset. Each dataset Di � xi

j􏽮 􏽯 ⊂ X is of size pi, where the
integers j ∈ [1pi] and i ∈ [1t]. If the dataset is partitioned

horizontally, xi
j ∈ Rm. If the dataset is partitioned vertically,

xi
j ∈ Rn. MO holds the coefficient vector ω ∈ Rm of the target
function f(x) and the target vector y ∈ Rm

Our goal is to train the MO’s target function with DOs’
datasets. MO needs to get ∇ω to optimize the coefficients of
the target function f(x) after renewing coefficients over
MO’s coefficients and DOs’ datasets. We discuss two kinds
of machine learning methods: linear regression and neural
network. For linear regression, each MO’s task is to obtain
encrypted xi(yi − f(xi)) of every sample xi with the help of

Cloud server (CS)

Data owners (DOs)

(3) Ciphertext

(1) Encrypted data

(2) Encrypted results
Key conversion server

(KCS)

Trusty decryption server
(TDS)

(4) Switches ciphertext

(5) In
ter

mediate
 re

sults

(1) Encrypted coefficient
vector Model owner (MO)

Figure 1: )e system model.
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Figure 2: Horizontally partitioned dataset.
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Figure 3: Vertically partitioned dataset.
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the CS. For the neural network, each MO’s task is to obtain
xif(xi)(yi − f(xi))(1 − f(xi)) for every sample xi. After
getting the results ∇ω, MO chooses one gradient descent
method to refresh its coefficients. In the end, MO can
provide accurate prediction services about the query
through its optimal target function.

Since each Pi encrypts Di with its public key pki andMO
encrypts its coefficients with its public key pk, CS performs
computations only over encrypted data. TDS performs the
decryption algorithm of the final results, while DO and MO
share a secret value k. )is can prevent the TDS from getting
the information about the coefficients.

4.3. /reat Model. Assume that all the entities except TDS
are semihonest, honest-but-curious. In other words, these
entities follow the protocol, but they may try to obtain as
much as secret information from the message which they
receive.

Consider two kinds of adversaries in this model: an ex-
ternal adversary and an internal adversary. An external ad-
versary may obtain some information, i.e., encrypted data or
encrypted results, during every iteration via public channels.
An internal adversary could refer to a malicious data owner
DO, the model owner MO, the cloud server CS, or the key
conversion server KCS. )e goal of a malicious DO is to
extract the coefficients of target function f(x). An internal
adversary KCS tries to extract the intermediate results and the
MO’s coefficient vector, while the goal of an adversary MO is
to reveal the information of each DO’s partitioned dataset. In
addition, if the CS is an internal adversary, it tries to acquire
MO’s coefficients or DO’s datasets.

4.4. Privacy Requirements. In the outsourced gradient de-
scent schemes, privacy preservation is essential. In our
model, we assume that the cloud server is semihonest. In
order to measure the extent of privacy preservation, now, we
define two privacy preservation levels.

Definition 1. Explicit privacy leakage means that privacy
may be exposed during the computation of the cloud server
or among the message transmission over public channels. If
an outsourced computation scheme can prevent the explicit
privacy leakage, we call it achieving the level-1 privacy.

Definition 2. Implicit privacy leakage means that one’s
privacy may be leaked by deducing from results of the cloud
server. If an outsourced computing scheme can prevent the
implicit privacy leakage, we call it achieving the level-2
privacy.

In our OPPGD scheme, DOs’ data and MO’s coefficient
vector are uploaded to the cloud server in the ciphertext.

Explicit privacy leakage means that DOs’ data or MO’s
coefficient vector and final desired results are leaked during
the scheme. Implicit privacy leakage means that it is im-
possible to deduce DOs’ data orMO’s coefficient vector from
intermediate results. Our OPPGD schemes can realize level-
1 privacy or level-2 privacy.

5. Two OPPGD Schemes

In this section, we present two outsourced privacy-pre-
serving gradient descent schemes over horizontally parti-
tioned data or vertically partitioned data. For simplicity, we
make the following assumptions.When data are horizontally
partitioned, each DO has only one record with all the at-
tributes and the class value. When data are vertically par-
titioned, each DO has one attribute of all the samples and the
corresponding class vector. An outsourced privacy-pre-
serving gradient descent scheme is composed of the prep-
aration phase, the training phase, and the prediction phase.
Now, we first describe the OPPGD scheme over horizontally
partitioned data.

5.1. OPPGD Scheme over Horizontally Partitioned Data

5.1.1. Preparation Phase. )e phase is involved with several
essential algorithms, parameter generation, key pair gen-
eration, and encryption.

Step 1: the system runs Algorithm 1 to generate PP �

(g, N) and SP � k

Step 2: after receiving the PP, DOs, MO, and TDS
operate Algorithm 2 to obtain their own key pair
(pkiski), (pkM skM), and (pk∗ sk∗)
Step 3: DO encrypts its xi and yi to be
[xi]pki

� pkri

i ximodN and [yi]pki
� pkri

i yimodN.
)en, MO encrypts its coefficient vector ω to be
[[ω1]pkM

[ω2]pkM
. . . [ωm]pkM

] by Algorithm 3, where
xi � (xi1xi2 . . . xim) and [ωi]pkM

� pkrM

M ωimodN

5.1.2. Training Phase

Step 4: each DO sends their encrypted [xi]pki
and [yi]pki

to the CS, and MO sends [ω]pkM
to the CS.

Step 5: CS operates Algorithm 4 and obtains the
encrypted scalar product vector S after receiving [xi]pki

,
[yi]pki

, and [ω]pkM
from DOs and MO, where

si � [xi]pki
· [ω]pkM

. In addition, CS also makes some
other computations over some components of ∇ω. To
be specific, CS computes Ii1 and Ii2 in the linear re-
gression model or computes Ii3, Ii4, Ii5, and Ii6 in the
neural network model,
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Input: the security parameter λ
Output: the public parameter PP � g, N􏼈 􏼉, a secret value k

(1) generate a prime N, choose a primitive element g in Z∗N
(2) generate a secret value k

(3) end

ALGORITHM 1: Parameter generation.

Input: the public parameter PP gN􏼈 􏼉 and a secret value k

Output: the key pair (pk sk)

(1) choose sk<N

(2) compute pk � gskmodN

(3) end
(4) return (pk sk)

ALGORITHM 2: Key pair generation.

Input: the key pair (pk sk), a message m, and a random integer ri which is a coprime to N − 1
Output: the encrypted message [m]pk
(1) choose a random integer r which is a coprime to N − 1
(2) compute [m]pk � pkrmmodN, grmodN
(3) end
(4) return [m]pk and grmodN

ALGORITHM 3: Encryption.

Input: two encrypted vectors [a]A and [b]B, where a � (a1a2 . . . am) and b � (b1b2 . . . bm)

Output: encrypted scalar product s

(1) CS computes s � 􏽐
m
j�1 [ai]A · [bi]B

(2) end
(3) return s

ALGORITHM 4: Outsourced privacy-preserving scalar product.

Input: an encrypted message [m]pk, its corresponding key pair (pk sk), and ciphertext grmodN

Output: m
(1) compute: m � [m]pk · g− rskmodN

(2) end
(3) return m

ALGORITHM 5: Decryption.
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I1′ � g
2skirixiyimodN

I2′ � g
skMrMxi 􏽘

m

j�1
ωjxijmodN

I3′ � g
2skMrMxiyiT

2
􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠modN

I4′ � g
2skMrMxiT

2
􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠modN

I5′ � xi􏼂 􏼃pki
s
3
i � g

3skMrMxiT
3

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠modN

I6′ � xi􏼂 􏼃pki
yi􏼂 􏼃pki

si � g
skMrxiyiT 􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠modN

(10)

Step 6: CS sends the above encrypted results to the DO.
After receiving encrypted scalar product S, DO per-
forms decryption operation. )e TDS and the MO
perform decryption as shown in Algorithm 5
Step 7: once DOs receive encrypted results Ii1Ii2 or Ii3,
Ii4, Ii5, Ii6 from CS, DO runs Algorithm 5 to get the new
ciphertext:

kI′
′

1 � kxiyi􏼂 􏼃pk∗

kI′
′

2 � kxi · 􏽘
m

j�1
ωjxij

⎡⎢⎢⎣ ⎤⎥⎥⎦

pk∗

kI′
′

3 � kxiyiT
2

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

pk∗

kI′
′

4 � kxiT
2

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

pk∗

kI′
′

5 � kxi T
3

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠modN⎡⎢⎢⎣ ⎤⎥⎥⎦

pk∗

kI′
′

6 � kxiyiT 􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

pk∗

(11)

Step 8: DO blinds above ciphered data with the security
parameter k to be kI1′kI2′ in the linear regression model
or kI3′, kI3′, kI5′, kI6′ in the neural network model.
Step 9: DO sends these blinded encrypted results to the
KCS.
Step 10: KCS operates Algorithm 6 to convert the
blinded encrypted results kI1′, kI2′ or kI3′, kI3′, kI5′, kI6′ to

be new results kI1′ and kI′
′

2 in the linear regression
model or kI′

′

3 , kI′
′

4 kI′
′

5 , and kI′
′

6 in the neural network
model,

kI∗1 � kxiyi

kI∗2 � kxi 􏽘

m

j�1
ωjxij

kI∗3 � kxiyiT
2

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠

kI∗4 � kxiT
2

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠

kI∗5 � kxiT
3

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠

kI∗6 � kxiyiT 􏽘
m

j�1

ωjxij (12)

which are all encrypted under the TDS’s key pk∗

Step 11: subsequently, the KCS sends the above in-
termediate results kI′

′

1 , kI′
′

2 or kI′
′

3 , kI′
′

4 , kI′
′

5 , kI′
′

6 to the
TDS.
Step 12: TDS runs Algorithm 5 and gets where

Ii1 � xi􏼂 􏼃pki
yi􏼂 􏼃pki

� g
2skirixiyimodN

Ii2 � xi􏼂 􏼃pki
si � g

2skiri+skMrMxi 􏽘

d

j�1
ωjxijmodN

Ii3 � xi􏼂 􏼃pki
yi􏼂 􏼃pki

s
2
i

� g
4skiri+2skMrxiyi 􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠

2

modN

Ii4 � xi􏼂 􏼃pki
s
2
i � g

3skiri+2skMrM xiT
2

􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠modN

Ii5 � xi􏼂 􏼃pki
s
3
i

� g
4skiri+3skMrMxi T

3
􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠modN

Ii6 � xi􏼂 􏼃pki
yi􏼂 􏼃pki

si

� g
3skiri+skMrxiyiT 􏽘

m

j�1
ωjxij

⎛⎝ ⎞⎠modN

(13)
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and then TDS makes some simple computations: kl1 �

kI∗2 − kI∗1 � k(xi 􏽐
m
j�1 ωjxij − xiyi) in the linear re-

gression model or kl2 � kI∗3 + kI∗4 − kI∗5 − kI∗6 �

k(xi 􏽐
m
j�1 ωjxij − xiyi) in the neural network model to

get the final results kl1 or kl2
Step 13: TDS sends kl1 or kl2 to the MO.

5.1.3. Prediction Phase

In this phase, DO requests prediction with the help of
the CS and MO.
Step 14:MO receives kl1 or kl2 and removes the security
parameter k to obtain different ∇ω of each sample xi

Step 15: then, the MO chooses one gradient descent
method and then optimizes its coefficient vector
through Algorithm 7

Step 16: each of the DO encrypts a query feature vector
[qi]pki

, and the MO encrypts its optimal coefficient
vector [ω]pkM

Step 17: each of the DO and MO sends [qi]pki
and

[ω]pkM
to the CS, respectively.

Step 18: finally, MO, CS, and DO operate together to
help the DO to extract the prediction results by op-
erating subprotocol prediction (Algorithm 8).

5.2. OPPGD Scheme over Vertically Partitioned Data. )e
OPPGD scheme over vertically partitioned data is a little
different from the OPPGD scheme over horizontally parti-
tioned data. After receiving [xi]pki

, [yi]pki
, and [ω]pk, CS

executes Algorithm 4 n times in the first scheme, whereas CS
operates Algorithm 4 nm times in the second scheme. )is is
because one record’s m attributes are sent to the CS by its DO,

Input: the ciphertext [ms]pko
of the message ms with the original public key pko, the decryption circuit DΠo

of the original encryption,
and the target key pk∗

Output: the ciphertext [ms]pk∗ of the message ms.
(1) compute: [ms]pk∗←Evaluation (pkbDΠo

[ms]pko
[sko]pk∗)

(2) end
(3) return [ms]pk∗

ALGORITHM 6: Ciphertext conversion.

Input: the update information ∇ω, the coefficient vector ω, the learning rate η, and the attenuation rate c

Output: the renew coefficient vector ω’

(1) compute ω’ � ω − η∇ω or ω’ � cω − η∇ω
(2) end
(3) return ω’

ALGORITHM 7: Renewing the coefficient vector.

Initialization: DO’s encrypted query feature vector [qi]pki
, the corresponding key pair (pki, ski), MO’s encrypted coefficient vector

[ω]pkM
, and the corresponding key pair (pkM, skM), where qi � (qi1qi2 . . . qim) and ω � (ω1ω2 . . .ωm)

Target: prediction result pr′
Step 1: DO and MO send [qi]pki

and [ω]pkM
to the CS, respectively.

Step 2: CS computes pr, whereas
pr � 􏽘

m

j�1[qij]pki
[ωij]pkM

�

􏽘
m

j�1g
skiri+skMrM qij · ωijmodN

Step 3: CS sends pr to the MO.
Step 4: MO runs Algorithm 5 and decrypts pr with its key pair (pkM, skM) and obtains pr � 􏽐

m
j�1 gskiri qijωijmodN

Step 5: MO sends pr to each DO.
Step 6: MO runs Algorithm 5 to decrypt pr with its key pair (pkM, skM) and gets access to the desired prediction result:
pr′ � 􏽐

m
j�1 qij · ωijmodN

ALGORITHM 8: Subprotocol prediction.
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respectively. In addition, when the KCS receives the blinded
encrypted results, it needs to add blinded encrypted results
together m times to get the inner product of a record and the
coefficient vector. For simplicity, we omit the same steps of the
OPPGD scheme over vertically partitioned data as the steps of
the OPPGD scheme over horizontally partitioned data.

5.3. Scheme Correctness. Now, we prove the correctness of
our proposed OPPGD scheme over horizontally partitioned
data. )e correctness of the other scheme can be verified in a
similar manner.

Theorem 1. MO can correctly obtain ∇ω to update its co-
efficient vector.

Proof. After receiving [xi]pki
, [yi]pki

, and [ω]pk, CS com-
putes an encrypted scalar product S, where
si � 􏽐

m
j�1 gskiri+skMrωjxijmodN. For linear regression, CS

calculates I1 and I2, whereas for the neural network, CS
calculates I3, I4, I5, and I6. After receiving the encrypted
results from the CS, each DO decrypts the message sent from
the CS and obtains I1′ and I2′ or I3′, I4′, I5′, and I6′ in linear
regression or the neural network, respectively. )en, it
blinds these encrypted results with k to be kI1′ and kI2′ or kI3′,
kI4′, kI’5 , and kI6′ and sends them to the KCS. Consequently,
KCS converts the ciphertext into kI′

′

1 and kI′
′

2 or kI′
′

3 , kI′
′

4 ,
kI′
′

5 , and kI′
′

6 under the key pk∗ of the TDS. TDS decrypts the
above intermediate results through Algorithm 5 to produce
kI∗1 and kI∗2 or kI∗3 , kI

∗
4 , kI
∗
5 , and kI∗6 .)en, it computes kI∗2 −

kI∗1 or kl2 � kI∗3 + kI∗4 − kI∗5 − kI∗6 and generates the final
results kl1 or kl2 for linear regression or the neural network.
Ultimately, after the MO receives them, he removes the
security parameter k and obtains ∇ω � xi 􏽐

m
j�1 ωjxij − xiyi

in linear regression or ∇ω � (12)α(xi yiT
2(􏽐

m
j�1 ωjxij) +

xiT
2(􏽐

m
j�1 ωjxij) − xiT

3(􏽐
m
j�1 ωjxij) − xiyiT(􏽐

m
j�1 ωjxij)) in

the neural network which are equal to equation (3) or
equation (5), respectively. )en, MO can achieve accurate
∇ω □

6. Privacy and Complexity Analysis

We will analyze the privacy, computational cost, and com-
munication overhead of the OPPGD scheme over horizon-
tally partitioned data.We can perform analysis of the OPPGD
scheme over vertically partitioned data in terms of the privacy,
computational cost, and communication overhead in almost
the same way. For simplicity, we omit the latter.

6.1. Privacy Analysis. According to the definitions of two
different privacy levels in Section 4.4, we conduct the privacy
analysis of our proposed OPPGD scheme over horizontally
partitioned data.

Proof. Upon the hardness assumption of the Diffie–Hell-
man problem, our proposed OPPGD schemes achieve level-
1 privacy against any probabilistic polynomial-time
adversary. □

Proof. Now, we show that our scheme can preserve MO’s
model privacy and DO’s data privacy.

In Step 3 of Algorithm 3, MO and DO hide their input
via Elgamal encryption. After receiving [xi]pki

, [yi]pki
, and

[ω]pk, the CS runs Algorithm 4 and obtains the encrypted
scalar product S. Especially, MO’s and every DO’s encrypted
input are gskMrMωmodN and
gskiriximodNgskiri yimodN􏼈 􏼉

n

i�1. Upon the hardness as-
sumption of the Diffie–Hellman problem, although CS
knows MO and DO’s public keys gskimodN and
gskrmodN, it is still impossible for them to acquire their
secret keys ski and sk. Since the randomness ri and r are
chosen by DO and MO, respectively, any adversary who
attempts to solve {gskiri yimodN, gskMrMωmodN} from the
public keys {grimodN, grMmodN} will have to be faced
with two instances of Diffie–Hellman problems. )us, DO’s
xi and yi and MO’s ω will not be exposed to other parties.
When the KCS performs Algorithm 6 to convert the
encrypted results {I1′I2′, I3′I4′, I5′, I6′}, it receives MO and DO’s
secret keys encrypted under the TDS’s public key. However,
TDS is a trusty decryption server, so KCS cannot obtain
TDS’s secret key, which means KCS knows nothing about
MO and DO’s secret keys and their private value. So, the
encrypted results {kI1′kI2′kI3′kI4′kI5′kI6′} cannot leak any secret
information. Next, TDS runs Algorithm 5 and obtains
encrypted ∇ω. However, without the secret value k, TDS
cannot obtain ∇ω. Hence, MO’s model parameters will not
be exposed.

Since MO’s coefficient vector, gradient ∇ω, and DO’s
data will not face the privacy problem, our OPPGD schemes
can provide level-1 privacy. □

Theorem 3. Upon the hardness assumption of knapsack
problems, our OPPGD schemes can provide level-2 privacy
against any probabilistic polynomial-time adversary.

Proof. After receiving the encrypted results from the CS,
DOs run Algorithm 5 to generate new encrypted results
under MO’s key. For linear regression, DO knows {I2′,
gskrmodN, xiyi}. For neural networks, DO knows {I3′I4′, I5′,
I6′, gskrmodN, xiyi}. However, with the knowledge of the
information, it is still impossible to acquire ω.)is is because
that the knapsack problem is assumed to be difficult: given a
scalar product z and a vector a, it is hard to find vector b that
satisfies z � ab

Consequently, MO’s coefficient vector and gradient
results ∇ω cannot be deduced from the intermediate results
all over the scheme.

)erefore, we conclude that our schemes can achieve
level-2 privacy. □

6.2. /eoretical Efficiency Analysis. Now, we carry out the
theoretical efficiency analysis of the schemes. We consider
the situation for linear regression. Assume that the MO
chooses the SGD method to update its coefficient vector
within one epoch. In essence, MO optimizes its coefficients
within several epochs. In the following, we analyze the
feasibility of our proposed schemes in detail in terms of
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computational cost and communication overhead. Both
computational cost and communication overhead are shown
in Table 1

6.2.1. Computational Cost. Assume that the dataset contains
n records, each of which hasm attributes, and one class value
in the OPPGD scheme over horizontally partitioned data. In
Step 3, DOs and MO operate Algorithm 3 O(mn + n) and
O(m) times, respectively. )us, O(mn + n + m) multiplica-
tions are required. In Step 5, CS performs OPPSP to calculate
encrypted scalar product S. It requires 3mn multiplications
and O(n(m − 1)) additions. In Step 7, DO performs nm
decryptions to generate the encrypted results which are under
theMO’s key. In Step 8, DO needsO(2mn) multiplications to
blind encrypted results with the security parameter K. In Step
10, KCS performs O(2mn) multiplications to convert the
encrypted results into new results. In Step 12, TDS performs
O(2mn) decryptions and makes mn subtractions to obtain
the final results. In Step 14, MO performs O(mn) multipli-
cations and obtains ∇ω. MO operates SGD to update its
coefficient vector by executing O(m) times of multiplications
and additions. In Step 16, both DO and MO perform O(m)

encryption operations to encrypt their query and the optimal
coefficient vector. In Step 18, in order to generate prediction
results, CS performs O(mn) multiplication and O(m − 1)
additions, while both DO and MO perform one encryption
operation, respectively.

6.2.2. Communication Overhead. Next, we analyze the
communication complexity of each entity in our proposed
schemes. In Step 4, DO and MO communicate with CS n

rounds and one round, respectively. It takes

O((2nm + 2m)|N|) bits to transmit. In Step 6, since CS sends
the encrypted results to DOs, its communication overhead
required is O(n). So, it requires O(2nm|N|) bits. Moreover,
in Step 9, when each DO sends blinded encryption results to
the KCS, the communication overhead is O(n). )us,
O(2nm|N|) bits are required to be transmitted. In Step 11,
KCS sends new intermediate results to TDS via O(1) round
with O(nm|N|) bits. In Step 13, the communication over-
head between TDS and MO is O(1). It costs O(nm|N|) bits
to transmit. In Step 17, DO and MO send the encrypted
feature vectors to CS, respectively, with the communication
overhead of O(2) which costs O(2nm|N|) to transmit. In
Step 18, O(2) communication cost is required for the DO to
obtain its desired prediction results, while O(2nm|N|) bits
are transmitted. Hence, the communication cost of the
scheme is O(3n + 7) in total.

Table 1: Complexity cost of the proposed OPPGD scheme.

Phase
Preparation Training Prediction Total

Computation cost

DO Multiplications O(mn + n) O(3mn) O(2m) O(4mn + n + 2m)

MO Multiplications O(m) O(mn) O(m + 1) O(2m + mn + 1)

Additions O(m) O(m)

CS Multiplications O(3mn) O(m + 1) O(3mn + m + 1))
Additions O(mn − n) O(m − 1) O(mn + m + n − 1)

KCS Multiplications O(2mn) O(2mn)

TDS Multiplications O(2mn) O(2mn)

Additions O(mn) O(mn)

Communication overhead Total round O(n + 1) O(2n + 2) O(4) O(3n + 7)

Total bits to transmit O((mn + 2m)|N|) O(6nm|N|) O(4nm|N|) O((11nm + 2m)|N|)

Table 2: Running time of the OPPGD scheme with the dataset of n tuples.

Tuples KeyGen (ms) Encryption (ms) Training (ms) Prediction (ms)
1000 279.47 293.07 31146.57 0.06
2000 559.03 585.97 31338.61 0.06
3000 838.42 878.63 31507.91 0.06
4000 1117.97 1172.11 31677.20 0.06
5000 1397.61 1464.20 31846.51 0.06
6000 1677.09 1756.98 32015.80 0.06
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Figure 4: )e running time in the KeyGen algorithm.
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7. Performance Evaluation

In this section, we evaluate the efficiency of the OPPGD
scheme over horizontally partitioned data by using a custom
simulator built in JAVA. )e running time of the OPPGD
scheme over vertically partitioned data can be evaluated in a
similar way.)e scenario we focus on in our paper is the data

are partitioned among multiple data owners, and the target
function is owned by the model owner. )e model owner
can not only train its model over data owner’s data but also
provide users with predictions. To the best of our knowledge,
no other prior work in the literature discusses this scenario.
So, we present detailed performance evaluation of our
schemes rather than comparing them to previous works.
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Figure 5: )e running time in the encryption algorithm.
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Figure 6: )e running time in the KeyGen algorithm, the encryption algorithm, and the training phase.

Table 3: )e running time of the key generation algorithm and the evaluation algorithm based on the key dimension.

Key bit-length KeyGen (s) Evaluation (s) Training (s)
2048 bits 40 31 31.8
8192 bits 480 180 180.8

Security and Communication Networks 13



)ere are five entities in the scheme: the model owner MO,
the data owner DO, the cloud server CS, the key conversion
server KCS, and the trusty decryption server TDS.

We run the data owners DOs and the model owner MO
on a laptop with Intel Xeon(R) E5-1620 3.50 GHZ CPU
processor and 16GB RAMmemory.)e cloud server CS, the
key conversion server KCS, and the trusty decryption server
TDS sides are operated on a computer with Intel(R) Core
(TM) i7-4770 3.40GHz CPU processor and16GB RAM
memory.

In our experiments, DO’s data X are represented as one
n∗m matrix, where n ranges from 1000 to 6000 and m � 50.

We evaluate the computational efficiency of our OPPGD
schemes without considering communication latency. We
simulate four stages: the KeyGen algorithm, the encryption
algorithm, the training phase, and the prediction phase. As
the data size n changes, the corresponding time cost is also
different. When the key bit-length is 2048 bits, the running
time of each stage of the schemes with the number of data
tuples can be seen from Table 2. )e calculation of the
OPPGD scheme is mainly in the training stage, while the
calculation cost of the rest stages is very low. We use the
histogram to explicitly present the running time in the
KeyGen algorithm and the encryption algorithm in Figures 4
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Figure 8: )e running time of each entity in the OPPGD scheme with different key bit-lengths.
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Figure 7: )e running time of the key generation algorithm and the evaluation algorithm based on the key dimension.

Table 4: )e total time cost of each entity in the OPPGD scheme.

Tuples DO (ms) MO (ms) CS (ms) KCS (ms) TDS (ms)
1000 52.48 13.09 41.95 26.09 28.43
2000 104.93 26.13 83.89 52.19 57.67
3000 157.38 39.18 125.66 78.28 86.5
4000 209.83 52.23 167.76 104.38 115.34
5000 262.28 65.27 209.43 130.47 144.17
6000 314.73 78.33 251.31 156.57 173.01
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and 5. )e running time in the KeyGen algorithm, the
encryption algorithm, and the training phase is shown in
Figure 6. In addition, when the data dimension is 6000, the
running time mainly verified in the KeyGen algorithm, the
evaluation algorithm, and the training phase based on
various key bit-lengths is different. So, we simulate these
stages and the running time, as shown in Table 3 and
Figure 7. When the key bit-length is 2048 bits, the total
running time of each entity in our OPPGD scheme is shown
in our Table 4. According to the variation of the tuples or key
bit-lengths, the running time of each party is shown in
Figure 8

8. Conclusion

Massive work on the protection of sensitive data of IoT
devices is based on the secure communication channels
and authorization. In our paper, we focus on the pro-
tection of data which are collected by the IoT devices,
stored, and calculated on the cloud end and the privacy of
the machine learning model which is held by the MO.
Gradient descent methods are employed comprehensively
to train a machine learning model in the cloud computing
environment. In order to preserve data privacy and model
privacy during the cloud computing, we propose two
secure schemes to perform outsourced privacy-preserving
gradient descent methods over a horizontally or vertically
distributed dataset. )e proposed schemes enable the
model owner (MO) to train its learning model and obtain
the optimal coefficient vector based on the dataset owned
by the DO with the help of CS, TDS, and KCS. After the
MO improves its model, it can offer prediction service to
the DO. Both the privacy of the MO’s model and DO’s
dataset can be protected. Complexity and performance
evaluation are also given in detail. In the future work, we
will try to optimize our system to reduce the number of
entities.
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