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To study the tensile and fracture properties of the specimen under the quasistatic loading, the Brazilian disc splitting method and
the notched semicircular bend (NSCB) method were used to test the tensile properties of coal specimens, and the fracture
properties of NSCB specimens with different notch depths were tested and analyzed. )e applicability of plane strain fracture
toughness KIC and J-integral fracture toughness in evaluating the fracture properties of coal specimens was discussed. )e
influence of notch depth on the fracture toughness measurement of the NSCB specimen was studied. Combined with the surface
strain monitoring of specimens during loading and the industrial CT scanning image of damaged specimens, the deformation
characteristics of coal specimen under loads and the distribution law of crack after failure were analyzed.)e results show that the
NSCB test is suitable for measuring the tensile strength of a coal specimen; when the dimensionless notch depth is β� 0.28, the
dispersion of plane strain fracture toughnessKIC of the NSCB specimen is the smallest. Besides, the plane strain fracture toughness
of coal is obviously affected by the notch depth and dimensionless stress intensity factor. )e J-integral fracture toughness can be
used to effectively evaluate the fracture performance of specimens.

1. Introduction

)e tensile and fracture properties of rock are of great sig-
nificance for rock mass stability control [1], rock hydraulic/gas
fracturing [2], and roadway roof support design [3, 4]. Many
scholars have carried out extensive research on the mechanism
of tunnel deformation instability and rock burst. Zhang et al.
[5] established an energy integral model for the rockburst-
inducing area and a friction work calculation model for the
plastic area. If the remaining energy after the coal seam is
broken in the rockburst-inducing area is greater than the
friction work required for the coal to burst out, then a
rockburst accident will occur. Zhang et al. [6] also propose a
robust classifier ensemble to predict squeezing conditions in
rock tunnels. Seven individual machine-learning classifiers
were aggregated using weighted voting methods to establish
the classifier ensemble. In the research field of seepage and

failure of rock mass, Ma et al. [7, 8] quantitatively analyzed the
characteristics of water-sediment flow in rock fractures by
computational fluid dynamics (CFD). Based on the two-phase
flow theory, a resistance model of water-sediment flow in
fractures was established and verified by a laboratory-scale test.
Among these studies, the testing of relevant mechanical
properties of coal rocks is critical. )e accurate and effective
parameter measurement of tensile and fracture properties of
coal rock has always been a research hotspot in rockmechanics
and mining engineering. At present, the determination
methods for the tensile strength of rock materials in the
laboratory mainly include the direct tensile test, the Brazilian
disc splitting test, beam bending test, and semicircular bend
test [9]. )e direct tensile test is the most direct method to
obtain the tensile strength of rock materials. However, the
direct tensile test requires special fixtures, and the specimen
processing is difficult [9]. In the Brazilian disc splitting test, the
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internal stress distribution of the specimen is complex, and the
compressive stress on the specimen axis is 3 times the tensile
stress [10], leading to the tendency of fracture failure for
specimens.)e rectangular beam three-point bending test [11]
has good effect in the tensile strength test, but it is difficult to
process raw coal into a rectangular beam specimen, and the
specimen is easily damaged by the notch and grinding. In
recent years, the semicircular bend test has been widely used to
test the tensile properties of rock or asphalt due to its simple
operation and specimen processing. However, there are few
reports about the semicircular bend test of specimens.

To measure the fracture toughness of mode I rock ma-
terials, the International Society for Rock Mechanics (ISRM)
recommends four types of specimens: short rod (SR), chevron
bend (CB), cracked chevron notched Brazilian disc
(CCNBD), and notched semicircular bend (NSCB) specimens
[12]. Fowell et al. [13–15] compared SR, CB, and CCNBD
specimens. It was found that there were many unfavorable
factors in SR and CB tests, such as the lower load required for
the specimen failure, larger core, complex loading system, and
complicated preparation of short rod specimens; the test
device and fixture required for CCNBD specimens were
relatively simple, and CCNBD specimens were easier to
prepare and can be used for the toughness test of various
fracture modes. Kuruppu et al. [12, 16] believed that the
NSCB test has the advantages of fewer specimens and simple
loading device in testing mode I fracture toughness of rock
materials under quasistatic loading. However, the analysis of
crack propagation characteristics and the influence of notch
depth in the fracture toughness test of rock materials using
the NSCB specimens is still limited.

Besides, the NSCB testing method has been successfully
applied to the fracture performance test of asphalt mixture
[17, 18], mineral mixture [19], marble [20, 21], concrete [22],
limestone [23], and other materials. However, there are
relatively few experimental studies on the fracture toughness
of coal specimens under the quasistatic condition. Coal is a
complex heterogeneous anisotropic material, and the
complex spatial distribution of its components and bedding
increases the dispersion of NSCB test results for coal.
)erefore, it is necessary to perform semicircular bend tests
and NSCB tests to study its tensile and fracture properties.

In this paper, the quasistatic BD tests and SCB tests of
specimens were carried out to compare the measured tensile
strength, and then, the applicability of the NSCB method in
measuring the tensile strength of specimens was analyzed.
)e fracture toughness of NSCB specimens with different
notch depths was measured, and the influence of notch
depth on the fracture toughness test results was studied.
Combined with the surface strain monitoring of specimens
under loads and CTscanning images of damaged specimens,
the deformation and crack distribution characteristics of
specimens under loads were analyzed.

2. Specimen Preparation and Test Method

2.1. Specimen Collection and Processing. )e specimens,
belonging to bituminous coal, were taken from the coal
seam 11 of Xinzhouyao mine to the northeast of Datong

coalfield, Shanxi Province. )e moisture content of the
specimen was 4.13%, ash content was 2.04%, volatile
content was 25.81%, fixed carbon content was 69.17%,
density was 1.301 g/cm3, elastic modulus was 5.41 GPa,
and Poisson’s ratio was 0.24. Table 1 shows the maceral
composition of Datong coal. According to the Brazilian
disc specimen preparation method recommended by
ISRM [24], 15 disc specimens (4 of which were BD
specimens for testing) of Φ 50mm × 25mm were drilled
parallel to the coal and rock bedding plane and processed.
Within the angle of 40–50° between the notch surface and
the bedding surface of the disk specimen, 10 disc speci-
mens were cut in half to form 20 semicircular SCB
specimens. )en, 12 specimens were taken and slit per-
pendicular to the bottom surface at the center of the
bottom; then, 3 groups of NSCB specimens with the notch
width of 1mm and the notch depth a of 4mm, 7mm, and
10mm, respectively, were taken. )ere were 4 specimens
in each group. Table 2 shows the parameters of BD, SCB,
and NSCB specimens.

ISRM suggests that when the NSCB method is used to
test the mode I quasistatic fracture toughness of rock ma-
terials, the support point spacing S and specimen diameterD
should be 0.5≤ S/D≤ 0.8 [12]. In this paper, S/D� 0.8 was
selected for testing, and the geometric dimension of NSCB
specimens is shown in Figure 1. In the SCB tests of specimen,
the influence of cutting loss of the specimen on tensile
strength was considered, and the spacing between support
points and specimen diameter S/D� 0.8 was selected re-
ferring to previous studies [25].

2.2. Test Equipment and Process. )e tensile and fracture
tests of semicircular specimens were carried out by using
the Shimazu AGS-H5KN precision electronic universal
test loading device [11]. )e loading was controlled by
displacement, and the loading rate was 0.2 mm/min.
During the loading, the load and displacement data system
were automatically recorded, and the sampling interval
was 0.1 s. )e SCB and NSCB specimens were placed on
the top of the two supports, respectively, and the support
spacing was 4 cm. )e damaged specimens were scanned
by using the ACTIS5.0-225X-ray Industrial CT testing
system to observe the internal crack distribution
characteristics.

In the fracture toughness test of BD, SCB, and NSCB
specimens, strain gauges were set at different positions on
the surface of specimens for deformation monitoring. Fig-
ure 2 shows the specific position and number of strain
gauges. In BD specimens, 1#–4# strain gauges were arranged
at equal intervals (6mm) from the center of the specimen to
the lower boundary; in SCB specimens, only one group of
strain gauges were set radially at the center of the bottom
surface to record the tensile strain changes; in NSCB
specimens, two groups of strain gauges were arranged on the
line connecting the upper loading point and the notch, the
distance between the center of 1# strain gauge and the
loading point was 2mm, and the distance between the center
of 2# strain gauge and the end of the notch was 1.5mm.

2 Shock and Vibration



3. Tensile Properties of Specimens

To compare the differences of tensile strength obtained by
the BD test and SCB test, 8 specimens in two groups were
carried out for BD and SCB tests. )e loading-displacement
data were recorded during the test, and the strain-time curve
was obtained by using strain gauges. After the test, speci-
mens were scanned by CT to analyze the internal fracture
characteristics of the specimen.

3.1. BD Test Results. Table 3 shows the peak load, peak
displacement, and peak time of four BD specimens. )e
tensile strength of specimens can be obtained from the
following equation:

σt �
2Pmax

π Dt
, (1)

where σt is the tensile strength, MPa; Pmax is the ultimate
load, N; and D and t are the diameter and thickness of
specimens, mm. )e tensile strength and mean value of
specimens can be calculated by the abovementioned
equation.

Figure 3 shows the loading-displacement curves of four
BD specimens. It can be found that the peak displacement of
four BD specimens is in the range of 0.5–0.8mm, that is, the
specimens fail rapidly after the radial strain reaches 1%–
1.6%. )e average tensile strength of the BD specimen is
1.749MPa, and the dispersion coefficient is 0.18. Figure 4

Table 1: Maceral composition of Datong coal.

Desmocollinites Telocollinite Telinite Corpocollinite Semifusinite Fusinite Inert detritus Mineral
2.43 42.3 14.5 0.9 14.8 10.2 3.2 11.67

Table 2: Parameters of specimens for BD, SCB, and NSCB tests.

Mechanical property Specimen number D (mm) t (mm) M (g) a (mm) a/R

Tensile strength

BD-1 49.22 25.55 63.91 — —
BD-2 49.22 23.79 59.44 — —
BD-3 49.20 25.22 63.29 — —
BD-4 49.20 24.71 59.00 — —

SCB-0-1 49.13 25.13 29.45 0 0
SCB-0-2 48.63 24.20 26.45 0 0
SCB-0-3 49.17 25.07 30.04 0 0
SCB-0-4 48.49 24.28 25.67 0 0

Fracture toughness

NSCB-4-1 48.89 25.39 28.05 4 0.16
NSCB-4-2 49.03 25.31 28.58 4 0.16
NSCB-4-3 49.08 25.55 27.96 4 0.16
NSCB-4-4 48.50 24.81 26.75 4 0.16
NSCB-7-1 48.73 24.13 26.75 7 0.28
NSCB-7-2 48.63 24.20 26.21 7 0.28
NSCB-7-3 49.04 25.25 27.91 7 0.28
NSCB-7-4 48.97 25.33 27.27 7 0.28
NSCB-10-1 49.03 24.79 26.86 10 0.4
NSCB-10-2 49.01 25.50 28.01 10 0.4
NSCB-10-3 49.00 24.95 27.60 10 0.4
NSCB-10-4 49.02 24.77 27.80 10 0.4

D- diameter of the specimen, t- thickness of the specimen, m- mass of the specimen, a- depth of the notch, a/R- dimensionless notch depth.

Cylindrical
specimen was 
obtainded by

drilling

Sectioning of 
cylindrical
specimen

�e Brazilian
disc sample

50mm × 25mm

(N) SCB specimens
made by grinding
and prefabricated
different notches

Completed specimens

SCB a = 4 mm a = 7 mm a = 10 mm

NSCB

Figure 1: Detailed fabrication steps for SCB and NSCB coal specimens. a is the length of the preformed notch.
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Figure 2: )e loading diagram of the specimen and the position of the strain gauge. (a) Brazilian disc splitting test. (b) Loading diagram of
the (N) SCB sample. (c) FASTCAM SA1.1 model 675K-C1 high-speed camera. (d) ACTIS5.0–225 X-ray Industrial CT equipment. (e), (f ),
and (g) )e layout diagrams of strain gauges for Brazilian disc, SCB, and NSCB samples, respectively.
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shows the real image and CT scanning image of each
specimen after failure. It is found that the main crack of BD
specimens is along the loading direction, but the main crack
is not straight due to the influence of specimen heteroge-
neity.)e secondary cracks are propagating in the specimen,
and most of them are distributed laterally near the middle
region of the specimen.

Figure 5 shows the variation curve of transverse strain at
four monitoring points on the surface of BD specimens with
time.)e strain near the center of the BD-1 specimen is firstly
in tension and then suddenly changes to compression after
about 30 s of loading. )is is mainly due to the transverse
fracture of the BD-1-1# strain gauge and the change of pe-
ripheral strain field. Both BD-2 and BD-3 specimens begin to
be compressed in the corresponding 1# strain gauge region
and then gradually turn to be in tension. In general, the closer
to the bottom of the disc specimen, the greater the tensile
strain and strain growth rate. )e strain and strain increment
of the BD-4 specimen at 4# strain gauge are smaller than those
of other measuring points.)is is mainly due to the abnormal
evolution of strain caused by the fracture zone near the 4#
strain gauge at the beginning of loading.

3.2. SCBTest Results. At present, there are many methods to
calculate the tensile strength of specimens by the SCB test

[25–28]. In this paper, equation (2) is used to calculate the
tensile strength [25]:

σ �
4.976P

Dt
, (2)

where σ is the tensile strength of the specimen, MPa; P is the
ultimate load, N; and D and t are the diameter and thickness
of the specimen, mm.

Table 3 also shows the peak load, peak displacement,
peak time, and tensile strength of four SCB specimens. )e
average tensile strength measured by the SCB test is
2.102MPa, and the dispersion coefficient is 0.28. )rough
the comparison of data in Table 3, it is seen that the tensile
strength of the specimen measured by BD tests is 0.83 times
of that measured by the SCB method. Previous studies have
found that the tensile strength of rock specimens measured
by BD tests is about 0.63 times of that measured by the direct
tensile method [29]. )erefore, the tensile strength of
specimens measured by SCB tests in this paper is about 0.76
times of that measured by the direct tensile method. In other
words, the tensile strength of specimens measured by SCB
tests is closer to that measured by the direct tensile test.

Figure 6(a) and 6(b) show loading-displacement curves
and bottom transverse strain-time curves of specimens in
SCB tests, respectively. Except for the abnormal loading-
displacement and bottom strain data of the SCB-0-3 spec-
imen, the loading-displacement curves of other specimens
are basically the same in terms of development trend. )e
deformation corresponding to the peak load of the specimen
is about 0.2–0.3mm, which is obviously smaller than the
radial peak displacement of BD specimens. )e loading-
displacement curve and strain-time curve show two stages
with different growth rates before the peak value. In other
words, the initial stress and strain increment are small, but
when the deformation is greater than 0.08mm, the load and
strain increase rapidly.

Figure 7 shows the crack distribution on the front of
typical specimens after failure in the SCB test. )e difference
between the loading-displacement curve and bottom strain-
time curve of SCB-0-3 and the other three specimens is
mainly caused by the crack initiation position, which is not
near the center of the bottom of the specimen.)erefore, the
heterogeneity of coal has a certain influence on the SCB test
results.

From the failure load of specimens in the two tests, it is
found that, under the same loading rate and specimen
thickness, the peak load of specimens in SCB tests is less than

Table 3: Statistics of tensile strength test results.

Specimen number Peak load (N) Peak displacement (mm) Failure time (s) Tensile strength (MPa)
BD-1 3692 0.704 87.5 1.87
BD-2 2717 0.498 62.5 1.478
BD-3 2939 0.562 70.5 1.509
BD-4 4081 0.781 95.5 2.138
SCB-0-1 648 0.261 35.9 2.612
SCB-0-2 465.2 0.202 28.1 1.967
SCB-0-3 329.7 0.318 42 1.331
SCB-0-4 590.8 0.266 35.3 2.497
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Figure 3: Load-displacement curves of BD coal specimens.
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that of specimens in BD tests (about 15.14%). )erefore, the
SCB test can effectively simulate the tensile state of the
specimen, and the crack propagation mode in the specimen
is simpler; the SCB test is more suitable for measuring the
tensile strength of coal.

4. Fracture Toughness Test of NSCB Specimens

)ere were 12 NSCB specimens in 3 groups for the fracture
toughness test, namely, 4 specimens with notch depths of
4mm, 7mm, and 10mm. Table 2 shows the specific pa-
rameters.)e test results of 11 specimens were obtained (the

results of the NSCB-10-4 specimen were not obtained).
Figure 8 shows the loading-displacement curve of NSCB
specimens with different notch depths in three groups
during the fracture toughness test. With the increase in the
notch depth, the average peak load of the specimen de-
creases. )e average peak load of the specimen with the
notch depth of 4mm, 7mm, and 10mm are 554N, 363N,
and 255N, and the corresponding dispersion coefficients are
0.32, 0.26, and 0.35, respectively, as shown in Table 4. )e
variation trend of these curves is similar, that is, they all
increase rapidly before the peak load, then slow down, and
then, increase rapidly when the displacement of the loading
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point reaches about 0.1mm. Affected by the heterogeneity of
coal and the difference of notch depth, the loading-dis-
placement curve and surface strain change of specimens
with different notch depths are also different. Figure 9 shows
the change of strain at two monitoring points on the surface
of three groups of NSCB specimens with different notch
depths. It can be found that, with the increase in the notch
depth, the strain near the loading point changes from
compressive strain to tensile strain, while most of strain is
still in the tensile state above the crack end.

At present, the commonly used equation for calculating
plane strain fracture toughness KΙC of NSCB specimens is as
follows [16]:

KΙC �
Y′Pmax

���
πa

√

2Rt
,

Y′ � −1.297 + 9.516
s

2R
􏼒 􏼓

− 0.47 + 16.457
s

2R
􏼒 􏼓􏼒 􏼓β + 1.071 + 34.401

s

2R
􏼒 􏼓􏼒 􏼓β2,

(3)

where the dimensionless notch depth is β � (a/R) and R is
the specimen radius, mm. Pmax is the peak load of specimen
failure, N; Y′ is the dimensionless stress intensity factor. In
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Figure 8: Load-displacement curves of the NSCB test. (a) a� 4mm. (b) a� 7mm. (c) a� 10mm.
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general, the plane strain fracture toughness of coal measured
by the NSCB test decreases with the increase of notch depth.
If β� 0.16, the standard deviation of KIC is 2.11, which is
significantly higher than that of 1.45 and 1.71 if β� 0.28 and
β� 0.40. )is also confirms the conclusion of previous
studies that the fracture toughness test of NSCB specimens
will produce relatively large error if β< 0.2 [12].

)e crack growth is affected by the notch depth and the
bedding angle. When the notch depth is 4mm, the crack
propagation is easily affected by the bedding; when the notch
depth is 7mm and 10mm, the crack propagation is ap-
proximately linear and is less affected by the bedding.
Figure 10 shows the relationship between KIC measured by
the fracture toughness test of NSCB specimens and notch
depth. It is seen that the depth of notch depth also has a
certain influence on the dispersion of plane strain fracture
toughness of specimens. By fitting the upper boundary,
lower boundary, and median value of KIC data with the
change of notch depth a, the following equation can be
obtained.

)e upper boundary fitting curve is

KΙC′ � 14.9028 − 1.6929a + 0.1056a
2
. (4)

)e lower boundary fitting curve is

KΙC″ � 2.4046 + 0.814a − 0.0605a
2
. (5)

)e fitting curve of average value is

K
‴
ΙC � 8.55333 − 0.23667a. (6)

)e results show that the KIC variation of NSCB spec-
imens with the notch depth shows a V-shaped feature, that
is, when the notch depth is 7mm, the dispersion of the plane
strain fracture toughness test value is small.

In the 1960s, Rice put forward J-integral theory as the
basic index to describe the elastic-plastic fracture parameters
of materials. Subsequently, Liu et al. established relevant
criteria to replace the stress intensity factor. )e main ad-
vantages of J-integral theory are as follows: (1) due to the
conservation property of J-integral [30], the specific calcu-
lation of stress and displacement near the crack tip is not
involved, thus avoiding the tedious process of solving the
stress field; (2) the influence of the high-stress gradient

region near the crack tip is much smaller than that of the
stress intensity factor method on the calculation accuracy of
J-integral [16, 31]. )erefore, it is more reasonable to use the
theory of elastic-plastic fracture mechanics to evaluate the
fracture properties of specimens with cracks.

For mode I fracture of brittle materials, the J-integral
fracture toughness is [30]

JΙC �
U1

t1
−

U2

t2
􏼠 􏼡

1
a2 − a1

, (7)

where U is the fracture energy of the specimen, 10−3 J.
Generally, the J-integral fracture toughness can be

measured by only two specimens with different notch
depths. In this paper, the J-integral fracture toughness is
determined by the mean value of the test results of three
specimens with different notch depths. Firstly, the fracture
energy can be obtained by integrating the loading-dis-
placement curves, and then, the J-integral fracture toughness
of the specimen can be calculated according to equation (7).

Figure 11 shows the energy absorbed by NSCB speci-
mens with different notch depths during failure. )e energy
absorbed by the specimen with the small notch depth is
greater than that of the specimen with small notch depth.
)e fracture energy per unit thickness decreases by
0.65×10−3 J/mm with the increase of 3mm of notch depth.
)e dispersion coefficients of fracture energy per unit
thickness of NSCB specimens with notch depths of 4, 7, and
10mm are 0.36, 0.28, and 0.41, respectively. When the notch
depth is 7mm, the dispersion of plane strain fracture
toughness and fracture energy per unit thickness is the
smallest. Due to the limited number of specimens, further
research is needed to determine the relationship between β
and the discreteness of plane strain fracture toughness.

By fitting the upper limit, lower limit and average value
of fracture energy per unit thickness in Figure 11, the re-
lationship between fracture energy per unit thickness and
notch depth of specimen can be obtained.

)e upper boundary fitting curve is
U

t
� 4.95986 − 0.62501a + 0.02641a

2
. (8)

)e lower boundary fitting curve is

Table 4: Results of mode I fracture toughness of the NSCB specimens.

Specimen
number

Peak load
(N)

Peak displacement
(mm)

Dimensionless stress intensity
factor Y′

Fracture energy
(10−3J)

Fracture energy per thickness
(10−3J·mm−1)

NSCB-4-1 681.85 0.271 4.87 73.9244 2.9115
NSCB-4-2 712.95 0.262 4.87 71.8900 2.8403
NSCB-4-3 488.75 0.254 4.87 49.4639 1.9359
NSCB-4-4 330.75 0.237 4.87 30.7079 1.2377
NSCB-7-1 277.75 0.331 4.74 45.7862 1.8974
NSCB-7-2 419.5 0.244 4.74 43.1627 1.7835
NSCB-7-3 289.45 0.184 4.74 23.6756 0.9376
NSCB-7-4 463.65 0.227 4.74 40.1110 1.5835
NSCB-10-1 180.95 0.176 5.44 15.2379 0.6146
NSCB-10-2 353.55 0.290 5.44 34.7799 1.3639
NSCB-10-3 230.75 0.226 5.44 21.1605 0.8481
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Figure 9: Strain-time curves of monitoring sites on NSCB specimens. (a), (c), and (e))e results of monitoring point 1. (b), (d), and (f))e
results of monitoring point 2.
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U

t
� 1.65697 − 0.10383a. (9)

)e fitting curve of average value is
U

t
� 3.0787 − 0.2148a. (10)

)e absolute value of the slope of the average fitting
curve is the J-integral fracture toughness of the specimen in
the test. )e J-integral fracture toughness value of the

specimen is 0.215 KJ/m2, while that of the asphalt mixture
material is 1.5–3.0 KJ/m [31, 32]. )e large difference of the
two values indicates that the specimen is brittle and the
cohesive force between particles is small [33]. At the same
time, the two J-integral fracture toughness values obtained
from specimens with three kinds of notch depth have little
difference. )erefore, J-integral fracture toughness can be
used to evaluate the fracture properties of coal more
effectively.

5. Conclusions

(1) Compared with BD tests, the tensile strength mea-
sured by SCB tests is about 0.76 times of that
measured by the direct tensile test, and it is closer to
the result of the direct tensile test. Besides, the
corresponding deformation of SCB specimens under
peak load is about 0.2–0.3mm, which is significantly
less than the corresponding radial displacement
(0.5–0.8mm) of BD specimens under peak load.
Before the peak load, the stress and strain of SCB
specimens show two stages of different growth rates.
In other words, the initial stress and strain increment
are small, but when the deformation is greater than
0.08mm, the load and strain increase rapidly.

(2) Under the same loading rate and specimen thickness,
the peak load of the SCB test is less than that of the
BD test by 15.14%. )erefore, the SCB test can ef-
fectively simulate the tensile state of specimen, and
the crack propagation mode in the specimen is
simpler; the SCB test is more suitable for measuring
the tensile strength of coal.

(3) With the increase in notch depth, the average peak
load and plane strain fracture toughness of the NSCB
specimen decrease continuously, and the strain near
the loading point of specimen gradually changes
from compressive strain to tension strain, while most
of them are in tension above the crack end. If β< 0.2,
the dispersion of KIC value of plane strain fracture
toughness is larger; while if β� 0.28, the dispersion of
KIC value of specimens is the smallest.

(4) )e plane strain fracture toughness KIC values of the
tested specimens are 6.30–7.72MPa

��
m

√
, and the

average J-integral fracture toughness is 0.215KJ/m2.
)e plane strain fracture toughness KIC of coal is
obviously affected by the notch depth and the di-
mensionless stress intensity factor Y′, while the J-
integral fracture toughness calculation method is
simple. )e J-integral fracture toughness calculated
by different notch depths has little change.)erefore,
the J-integral fracture toughness can be used to ef-
fectively evaluate the fracture properties of coal rock
and other brittle materials.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.
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