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Actual tourism mining models are often used to discover potential information in documents, but tourism models without
human knowledge often produce unexplainable topics. *is paper combines big data technology to build a personalized
recommendation system for smart tourism, model the contextual information usage ontology under the tourism in-
formation system, and give the association between various ontologies. *en, this paper uses a matrix to describe each
discrete attribute and interval attribute and uses a vector to model the user’s preferences. In addition, this paper constructs
an intelligent recommendation system based on the actual needs of travel recommendation and verifies the system in
combination with experimental research. *rough experimental analysis, it can be known that the intelligent tourism
personalized recommendation system based on big data technology proposed in this paper has a high practical effect.

1. Introduction

With the popularity and popularization of smart mobile
devices, more and more people will use social networking
sites to post photos, post videos, post comments, check in,
etc., when traveling, to record their journeys, to facilitate
memories, or to share with others. *ese uploaded and
shared contents all provide a wealth of resources for people
to study the recommendation of tourist attractions. *e
user’s personal preferences are hidden in these resources
uploaded by the user. *rough analysis and statistics, it is
possible to dig out the user’s preferences and the charac-
teristics of the scenic spot itself, enrich the data source for
user similarity calculation, and thereby provide the possi-
bility to improve the recommendation effect of the collab-
orative filtering recommendation algorithm. At present,
crawling and analyzing travel data uploaded by users from
travel websites and researching personalized recommen-
dations for tourist attractions has become a new research
hotspot [1].

In the development of computing technology, com-
puting models play an extremely critical role. *erefore,
computing models have gradually made computers more

generalized, not just for use in laboratories but for popular
life. Moreover, any computing model is proposed, which
will inevitably promote the development of corresponding
computing technology. Just as host computing promotes
the upgrading of various computer equipment, desktop
computing provides technical support for the develop-
ment of visualization and other technologies [2]. How-
ever, these computing modes make people perform
complex operations and complete various settings to
obtain the required information in the process of using
computers, so computer users need strong operating
capabilities. It was not until the new development of
computing mode and the update of computer hardware
and software equipment that computer operations be-
came relatively simple and began to be popularized and
widely used. However, as the needs of the times change,
the computing model is constantly changing accordingly.
With the accelerating pace of people’s lives nowadays,
people want to free themselves from tedious computer
operations and use computers conveniently and auton-
omously anytime, anywhere, and get the digital services
they want. Pervasive computing is the computing model
produced for people to realize these ideas [3].
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With the increase in the number of travel websites, the
accumulation of content over time, and the increasing
coverage, how to better grasp the needs of users and attract
users’ attention has become the key task of each portal
website. *e topic model that integrates knowledge can
generate topics more in line with user interests based on
prior knowledge.*e development of tourism is not only the
attraction of scenic spots to tourists but also whether it is
convenient for users to travel, eat, live, and play. Before
traveling, tourists will search for relevant information about
the attractions they go to, choose a place to live, and view
comments related to the attractions.*erefore, a good smart
tourism search engine is very important.

*is article combines big data technology to construct a
personalized recommendation system for smart tourism, to
improve the personalized service of tourism, and to improve
the travel experience of tourists.

2. Related Work

In real life, it is necessary to make recommendations for
group users in many cases, for example, a few people go out
to eat, watch a movie, or go shopping in groups. Although
group recommendations appear later than individual rec-
ommendations, with the emergence of more and more
group users’ demand for personalized information, many
scholars have conducted research on how to provide group
recommendations.

*e model studied in the literature [4] first recommends
the individual separately. *en, taking into account the
possible special attributes of individuals in the group, such as
children and the disabled, when the individual recom-
mendation results are integrated, these special individuals
are assigned relatively large weights, so that the final group
results will be more biased towards these people. Literature
[5] proposed a new collaborative filtering recommendation
system, which aims to recommend items for user groups, not
for individuals. *e system first uses a collaborative filtering
algorithm to make recommendations for each member of
the group and then finds the same items from the recom-
mendation list to build a group recommendation list. *is
method can use individual recommendation methods to
achieve group recommendation. However, only the simple
addition of individual recommendation results cannot meet
the actual needs of real life. For example, for travel route
recommendation, it is recommended that a route contains
scenic spots and edges between scenic spots, which cannot
be obtained through comprehensive recommendation re-
sults. *erefore, this type of method is not suitable for travel
route recommendation.

Literature [6] developed a group recommendation sys-
tem, which plays music to the group by learning the content
that users do not want to hear and avoids those songs. *e
system analyzes the aspects that the user is not interested in
and determines which solutions the user is not satisfied with
and assumes that the remaining solutions are satisfactory.
Literature [7] designed a system to recommend restaurants
for group users. It first calculates the personal preference of
each person in the group for each restaurant and then takes

the average of user preferences to represent the group’s
preference for restaurants and based on this recommends
restaurants to groups. Literature [8] studied a system for
recommending hotels for groups using the least painful
method, in which the recommended hotels will not make
members dissatisfied. Literature [9] first predicts the score of
each member through the method of collaborative filtering
and then uses the average method to aggregate the respective
prediction scores of the group members to form the group’s
prediction score for the item, thereby generating recom-
mendations. Literature [9] uses the user’s social relationship
and behavior information to recommend movies for inde-
pendent groups. *is method takes into account the in-
teraction between group members and helps people with
common activities to make decisions in conflict situations.
Literature [10] proposed a group tourism activity recom-
mendation system. *is method is based on manual sta-
tistics, content, and preference filtering; obtains group
recommendations from the personal preferences of each
individual user; and uses application aggregation, crossover,
and incremental communication to calculate group. *e
group list preference has achieved the purpose of group
recommendation. Literature [11] confirmed through ex-
periments that group recommendation should meet the
preferences of all group members as much as possible. In
recommendation, voting mechanism and negotiation
mechanism can be used to extract group preferences and
make recommendations for the group. *e experimental
results show that the voting mechanism can satisfy the
preferences of all members of the group better than the
negotiation mechanism. Literature [12] proposes a technical
framework for recommending routes to groups. *is
method first uses clustering algorithms to mine user groups
and user preferences based on the user’s check-in records.
*en, group preferences and related constraints are inte-
grated to recommend travel routes that meet their needs for
group users. However, this method requires group mining
first and cannot recommend for people who do not belong to
the same group. Literature [13] analyzed the characteristics
and attributes of the members of the group, combined with
the social influence theory when gathering group prefer-
ences, and made recommendations for the group based on
this. Literature [14] proposed a group travel route preference
model, which analyzes the user’s feedback information and
obtains the user’s preference from it and uses the least pain
method to recommend a suitable travel route for the group.
Although these early studies have achieved good recom-
mendations, the travel routes recommended by these
methods cannot guarantee the maximum satisfaction of the
group and the minimum difference in satisfaction between
individuals.

3. Analysis and Design of Intelligent Tourism
Recommendation Subsystem Based on Big
Data Technology

After analyzing the context under the application of the
tourism information system, in order to clearly describe it in
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a formal way, we use ontology as a tool to model the
contextual information of the tourism environment.

Based on the above analysis of tourism context infor-
mation, the tourism context ontology model should contain
four top-level ontologies, namely, time ontology (owl:
Time), location ontology (owl: Location), user ontology
(owl: User), and other contextual ontology (owl: Other).
Under these ontologies, several special ontologies under the
environment of tourist attractions are derived. *e rela-
tionship between them and their respective top-level on-
tologies is the subclass relationship (rdfs: subClassOf). *e
following will introduce in detail some of the ontologies
included in the ontology.

According to the above analysis, five subtype ontologies
can be derived, namely, year ontology (owl: Year), month
ontology (owl: Month), week ontology (owl: Week), date
ontology (owl: Date), and time ontology (owl: Time Period).
Based on the above analysis of time context information, the
date ontology is divided into weekday (owl: WeekDay),
holiday ontology (owl: Holiday), rest weekend (owl:
Weekend), and duty day (owl: Duty Day). *e time period
ontology is divided into daytime ontology (owl: Day Time)
and nighttime ontology (owl: Night Time). Among them, the
four ontologies weekday, rest weekend, day, and night can
also be divided. In order to clearly show the inclusion re-
lationship among the five subtype ontologies derived from
the time ontology, we created the object attribute inclusion
relationship (rdfs: time_include). In order to clearly show
the relationship between the various attributes in the time
period, we created two data attributes and two object at-
tributes, namely, the start time (rdfs: start_time), the end
time (rdfs: end_time) and the last time (rdfs: last_time), the
next time (rdfs: next_time). *e time ontology model is
shown in Figure 1 [15].

According to the above analysis, the location ontology
can derive two subtype ontologies, namely, the inside on-
tology of tourist attractions and the outside ontology of
tourist attractions. *e recommendation system is based on
the situation and characteristics of each user to provide
recommendations that meet their individual needs, so that
users can use it easily and will not spend a lot of query time
in massive amounts of information. *erefore, obtaining
and accurately analyzing the user’s preferences and con-
structing an appropriate preference model have become an
important part of the recommendation system.

According to the integrated characteristics of mobile
application and context-aware recommendation, the rec-
ommendation system of this paper divides user preferences
into two categories based on the integration of contextual
information, namely, short-term preference and long-term
preference. Among them, short-term preference has the
characteristics of short update cycle and relatively sensitive
to contextual information. Long-term preferences have the
characteristics of a long update cycle and relatively stable
user habitual preferences.

*e attribute information of tourist attractions includes
interval attributes such as whether there is parking space,
WiFi, travel expense range, travel age range, and distance
attributes from the user’s location. *e situational

information also includes discrete information such as
weather conditions. It is represented by the following matrix
[16]:

a11 · · · a1m

⋮ ⋱ ⋮

an1
· · · anm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (1)

Among them, the value range of the an1
interval attribute

is

min a∗l( 􏼁, max a∗l( 􏼁, 1≤ l≤ r􏼂 􏼃. (2)

*e value range of discrete attribute an1
[14] is

∪ a∗l(r + 1≤ l≤ r + s). (3)

After the attribute information and context information
are represented by a matrix, a set of vectors can be used to
represent the user’s preference model, which can be rep-
resented as ≪c1, d1, b1 > , . . . , < cr, dr, br > , g1, . . . , cs > .

In this article, the more mature recommendation al-
gorithms that have been studied in the traditional Internet
are summarized, and their respective advantages and dis-
advantages are compared. Each algorithm has its applica-
tion, so recommendation algorithms are not good or bad. In
the tourism information mobile application, there are many
classifications of tourist attractions, tourist attractions, and
service personnel therein. Each tourist attraction category,
tourist attractions under the category, and service personnel
under the tourist attractions have different attributes. At the
same time, the context information of various users under
system application is relatively discrete and special. In order
to realize personalized recommendation, a recommendation
system based on context information must have both the
ability to deal with discrete attributes and a small amount of
calculation. In a tourism information recommendation
system based on situational awareness, if a content-based
recommendation method is used, it is necessary to analyze
the feature value of the recommended item and calculate its
similarity with the user.*is method will make the efficiency
of recommending information to tourists slow. It cannot be
compromised in the calculation of the accuracy and simi-
larity of the recommended information: the method based
on collaborative filtering also requires the user’s historical
browsing data and cannot effectively deal with new tourists,
new tourist attractions, and new service personnel—cold
start problem. For the above reasons, the recommendation
system studied in this paper uses a rule-based recommen-
dation algorithm to recommend tourist attractions and
service personnel to tourists.

*is system obtains attribute and situational information
of tourist users, tourist attractions, and service personnel.
Moreover, the system performs matching and recommen-
dation calculations and searches in the rule base and finally
outputs the tourist attractions and service personnel sets that
the user is most likely to be interested in. *e framework of
the recommendation system is shown in Figure 2.

*e input part of the system includes two parts: the
information obtained by the system and the information
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resource database. *e information obtained by the system
includes user attribute information and user context in-
formation (time, location, weather, environment). *e in-
formation resource database includes information on tourist
attractions and service personnel, which is the initial can-
didate set of tourist attractions and service personnel.

Since the results recommended to users need to be
balanced among evaluation indicators such as hit rate, di-
versity, and real-time performance, various types of tourist
attractions should be included in the set of results pushed to
users. In addition to tourist attraction information related to
the user’s travel history and service personnel information

pushed by time slices, tourist attraction information that can
be ordered online can also be added to improve the quality of
the results. *is recommendation system integrates user
attributes and various contextual information of users and
matches the categories of tourist attractions, travel agencies,
and service personnel. Moreover, it determines the tourist
attraction information suitable for the user at a certain time
and a certain place and realizes the personalized recom-
mendation for the user. Figure 3 describes the process of this
recommendation system.

Because the process of recommending tourist attractions
and service personnel is relatively cumbersome, this section

Recommended
engine

The system obtains
information

Information
Resource Library

Rule library Recommended
information list

LocationTime Weather Environment

Hospital database

Figure 2: *e overall framework of the recommendation system.
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Figure 1: Time ontology model.
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uses examples to explain the detailed process of each link in
recommending information to tourists.

*e first step is to mandatory screening.
According to the mandatory screening rule set, the algo-

rithm deletes tourist attractions that do not match the current
location and time of the tourist user. First, the algorithm
calculates the distance between the location information of
tourist attractions and the user’s current location information
and deletes tourist attractions with a distance greater than D
(such as 2 km) to forcibly narrow the candidate set of tourist
attractions. *en, the algorithm extracts the current time and
working hours of tourist attractions and deletes tourist at-
tractions that are not open at the current time and H hours
from the candidate set (considering the time required for the
user to go to tourist attractions) to further narrow the candidate
set of tourist attractions. Finally, the algorithm forces the
deletion of tourist attractions that the user has browsed or
favorited to avoid repeated recommendations. Examples of
mandatory screening rules are shown in Table 1.

*e second step is to calculate in parallel to determine
the user’s preference probability for the tourist attraction
category, the user’s preference probability for each travel
agency in the tourist attraction, and the user’s preference
probability for the service staff of the tourist attraction travel
agency. *e following uses a calculation example of the
user’s preference probability for the category of tourist at-
tractions as an example.

*e system calculates the influence of time, weather,
environment, and other contextual information on rec-
ommended tourist attraction categories, determines the
probability of recommending each tourist attraction cate-
gory, and obtains a recommendation probability table for
recommending tourist attraction categories to tourist users.
After that, the algorithm combines the personalized infor-
mation of the tourist to revise the recommendation prob-
ability table obtained. Finally, the algorithm combines the
revised probability table to obtain the probability of rec-
ommending each tourist attraction category for tourist
users. *e user’s preference determination rules for tourist
attraction categories are shown in Table 2:

3.1. External-User. For the sake of simplicity, the system
uses the weighted average method to calculate the preference
probability value Kij of user i for tourist attraction category j,
as shown in the following formula [17]:

Kij �
1
3

Gij
′ + Aij
′ + Tij
′􏼐 􏼑. (4)

In addition, there is some other information that may
cause users to choose different types of tourist attractions.
*e user’s preference probability value for tourist attrac-
tions, travel agencies and service personnel, user attributes
such as age and gender of the tourist, and contextual

Recommended hospitals set
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the hospital

Properties Mapping
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information
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Figure 3: Flow chart of travel information recommendation method.
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information such as time and location may affect the user’s
choice. *rough preference rule 2 and preference rule 3 to
modify the probability value, the probability value of tourist
users’ preference for travel agency and service personnel is
obtained.

*e third step is to calculate the three preference
probability values obtained in parallel in the second step and
combine the user’s preference for weather information,
environmental information, and preference rule 4 to cal-
culate the recommendation probability of each tourist at-
traction. Finally, according to the recommended rule
database, the tourist attractions with higher recommended
probability values are recommended to the tourists, and the
feedback scores of the tourists are recorded to modify the
rules in the rule database.

*rough the above determination of the use of the
recommendation algorithm, the modeling of user prefer-
ences and an overview of the recommendation system
process, this section designs and calculates the rule base.
Rules are the basis for implementing rule-based recom-
mendation methods, so before using rules for recommen-
dation, we must first solve the problem of rule design and
calculation.

In the rule base, the form of the rule is defined as
A⇒B(P), that is, if A, then B. At the same time, it is ac-
companied by a probability. In the rule, A represents the
attribute or contextual information of the tourist user and B
represents the attribute or contextual information of the
tourist attraction and service personnel. Probability repre-
sents the degree of matching and the probability that tourists
prefer a certain type of tourist attraction, a certain tourist
attraction, and a certain service person under the situation.

For example, a rule in the rule base: If age� 60, then d�

[0–2000](0.64) means that if the user’s age is 60, then the
probability of recommending tourist attractions within 2000
meters away is 0.64.

*e following describes in detail how the rule-based
context-aware recommendation system matches the rules in
the rule base and how to calculate it.

3.1.1. Obtain Personalized User Short-Term Preferences.
According to the user’s current time, weather, location, and
environmental attributes, the algorithm determines the
user’s short-term preference matrix, and according to the
user’s preference, after the action of the preference rule set 1,
the matrix is modified to obtain the following matrix:

T1 T2 T3 · · ·

W1 W2 W3 · · ·

L1 L2 L3 · · ·

E1 E2 E3 · · ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Among them, Ti, Wi, Li, and Ei, respectively, represent
the user’s preference probability for i-type tourist attractions
under the current time, current weather, current location of
the user, and current environment.

*e user’s recommendation probability ranking for all
tourist attractions is based on the following formula [18]:

Kij �
1
4

Ti + Wi + Ei( 􏼁. (6)

*e recommended ranking list of tourist attraction
categories is obtained.

Table 1: Examples of mandatory screening rules.

Screening condition *e algorithm calculates the distance between the user and the tourist attractions based on the user’s location
information and deletes tourist attractions with a distance greater than D from the candidate set

Illustrate *e algorithm extracts the current time and working hours of tourist attractions and deletes tourist attractions
that are not open at the current time from the candidate set

Tourist attraction
location

*e algorithm forcibly deletes tourist attractions that the user has browsed or favorited to avoid repeated
recommendations

Current time *e algorithm calculates the distance between the user and the tourist attractions based on the user’s location
information and deletes tourist attractions with a distance greater than D from the candidate set

Table 2: Determination rules for tourist attraction categories.

Integrate and modify user attributes, contextual
information, and personalized information

Gender-
user

*e algorithm assigns the initial recommendation probability Gij to the
tourist attraction category j according to the gender i and combines the

gender of the tourist user and the electronic log to modify the
recommendation probability

Age-user
*e algorithm first subdivides the age into different age groups and then
assigns the initial recommendation probabilityAij to the tourist attraction

category j according to the age group i

Time-user

*e algorithm first subdivides the time into different time periods, then
assigns the initial recommendation probability Tij to the tourist attraction
category j according to the time period i, and revises the recommendation

probability to Tij
′ according to the time of the tourist user

Calculate user’s short-term preference for tourist
attraction categories

External-
user

*e algorithm determines the above two probability values, and
according to the weighted average algorithm, it is concluded that the
probability value of the tourist attraction category j recommended to

tourist i is Kij
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3.1.2. Obtain User Long-Term Preferences. According to the
preference rule set 2, the user attributes are matched with the
rules in the rule base to obtain the preference probability for
a travel agency of a tourist attraction:

Q11 · · · Q1m

⋮ ⋱ ⋮

Qm1
· · · Qmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

Among them, the m row represents the user’s m attri-
butes, the n column represents the travel agency of n tourist
attractions, and Qij represents the preference of the user’s
attribute i to the travel agency j of the tourist attractions.*e
user’s preference weight for tourist attractions and travel
agencies can be calculated by the following formula [19]:

Xj �
􏽐

n
i�1 Qij􏼐 􏼑

n
. (8)

According to the preference rule set 3, the user attributes
are matched with the rules in the rule library to obtain the
user’s preference probability for the service personnel of
tourist attractions and travel agencies, and the following
matrix is obtained:

q11 · · · q1m

⋮ ⋱ ⋮

qm1
· · · qmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)

By multiplying the user’s preference weight for tourist
attraction travel agency calculated by rule set 2 and various
attributes with the user’s preference probability for tourist
attraction travel agency service personnel calculated by rule
set 3 and various attributes, the user’s preference probability
for service personnel attributes is obtained. After that, the
preference probability is sorted, and the service staff cor-
responding to the highest preference probability is the user’s
long-term preference.

3.1.3. Determine the Recommendation Probability of Each
Tourist Attraction. According to rule set 4, each tourist
attraction in the recommended list is matched with the rule.
*e preference probability of each attribute is weighted
average, and the user’s preference probability for tourist
attractions is obtained. *is value is multiplied by the

preference probability for tourist attractions category, and
the result obtained is the probability value of recommending
a tourist attraction to the user.

4. Personalized Recommendation of Smart
Tourism Based on Big Data Technology

In order to analyze the page reasonably and effectively, and
accurately obtain the user’s interest information, it is first
necessary to normalize the web page. Secondly, the infor-
mation content is extracted, and then the word segmentation
tool is used to segment the extracted content, and finally the
keyword set of each page is obtained. Figure 4 is the pre-
processing flow of page information.

When updating, it is necessary to perform operations such
as preprocessing and weight calculation on newly added web
pages in the favorites and historical browsing records not in
the favorites to establish the feature vector of the page. *e
regular update process is shown in Figure 5 [20].

It can be seen from Figure 6 that the realization of
secondary sorting is mainly divided into the following steps.
(1) *e algorithm obtains the user’s relevant information
through different ways and then processes the obtained
information. *e algorithm uses the processed information
to establish an initial interest model for the user and peri-
odically updates the user’s interest model to ensure the
timeliness of the user’s interest model. (2) *e user retrieves
keywords through the search platform, and the search
platform obtains the pages of the result set for the first time
and performs feature vector settlement for each of the top n
related web pages.

*is article uses crawler tools and big data technology to
build a smart tourism retrieval experiment platform. Its
overall structure is shown in Figure 7.

*e flow chart of the working principle of the crawler
tool is shown in Figure 8.

After constructing the above model, the performance of
the model is verified, and the effect of tourism data mining
and the effect of intelligent personalized recommendation
are evaluated, and the results are shown in Table 3 and
Figure 9.

It can be seen from the above research that the intelligent
tourism personalized recommendation system based on big
data technology proposed in this paper has a high practical
effect.

Start

HTML
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Noise
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Content
extraction

Chinese
word

Stop Words
Deletion

End

Add to the
keyword

collection
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No

Figure 4: Flow chart of information preprocessing.
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Figure 5: Scheduled update flow chart.
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Table 3: Experimental data of intelligent tourism personalized recommendation system based on big data technology.

Number Tourism data mining Personalized recommendation
1 86.88 90.15
2 81.99 90.03
3 82.75 87.72
4 81.64 76.53
5 87.51 83.43
6 81.57 83.02
7 87.77 82.23
8 84.06 84.04
9 81.04 76.63
10 86.03 87.09
11 84.56 84.38
12 84.45 79.84
13 86.15 90.27
14 84.40 87.66
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Solr search
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Figure 7: Overall architecture diagram of the platform.

Advances in Multimedia 9



5. Conclusion

*is paper analyzes and designs the recommendation
subsystem in the tourism information recommendation
system based on big data perception in detail. First of all, this
paper models the contextual information usage ontology
under the tourism information system and gives the asso-
ciation between the various ontologies. *en, this paper uses
a matrix to describe each discrete attribute and interval
attribute and uses a vector to model the user’s preferences.
After that, this paper proposes to use a rule-based recom-
mendation algorithm, gives the framework of the recom-
mendation system module, and then uses graphics to
describe the entire process of the recommendation system
and explains its process in detail. Finally, this paper intro-
duces how to use rules to calculate and finally get a list of
tourist attractions recommended to tourist users and
combine experiments to verify the system of this paper.
*rough experimental analysis, it can be known that the
intelligent tourism personalized recommendation system
based on big data technology proposed in this paper has a
high practical effect.
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