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A control chart named as the hybrid double exponentially weighted moving average (HDEWMA) to monitor the mean ofWeibull
distribution in the presence of type-I censored data is proposed in this study. In particular, the focus of this study is to use the
conditional median (CM) for the imputation of censored observations. ,e control chart performance is assessed by the average
run length (ARL). A comparison between CM-DEWMA control chart and CM-based HDEWMA control chart is also presented
in this article. Assuming different shift sizes and censoring rates, it is observed that the proposed control chart outperforms the
CM-DEWMA chart. ,e effect of estimation, particularly the scale parameter estimation, on ARL is also a part of this study.
Finally, a practical example is provided to understand the application and to investigate the performance of the proposal in
practical scenarios.

1. Introduction

In practice, we often deal with the detection of assignable
causes in the lifetime data, especially in medical and in-
dustrial experiments. However, the limitations of time and
of cost lead to limited data collection often called censored
data. To monitor such experiments for possible presence of
assignable causes of variation and to improve process
quality, the traditional control charts, e.g., Shewhart charts,
have very poor performance. In fact, these charts, generally,
do not react timely and produce inflated false alarm rates.
Consequently, the traditional charts have low discriminatory
monitoring power for censored data. To overcome these
undesirable properties of the monitoring schemes for cen-
sored data, Steiner and Mackay [1] introduced a one-sided
charting procedure based on the conditional expected value
(CEV). ,e authors showed by an empirical study that the
proposal allows rapid detection of process deterioration for
monitoring highly censored data.

Different types of censoring schemes exist in statistics,
for example, the type-I, type-II, interval, progressive, etc.,
[2], although in the industry, type-I censoring is one of the
most commonly used schemes [3]. In this scheme, the
lifetime of the units within the interval [0, T] is observed for
a fixed Twhile the observations having lifetime greater than
T are declared as the censored observations. In other words,
the exact failure time of the observation greater than T
cannot be observed.

Due to the practical significance of censored data in
different fields, numerous studies have been done to propose
efficient monitoring strategies. ,e first CEV-based She-
whart type control chart was introduced by Steiner and
Mackay [4]. In continuation of the previous study, Steiner
and Mackay [5] noticed that in many applications, highly
censored data are collected under repetitive life testing
environments. ,e authors showed that the CEV-based
charting schemes are very effective in such situations. Later,
Zhang and Chen [6] extended the idea of Steiner and
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Mackay [1, 4, 5] by introducing lower and upper-sided CEV-
based exponentially weighted moving average (EWMA)
control charts. Following the CEV idea, Lu and Tsai [7] and
Tsai and Lin [8] proposed EWMA charts for monitoring
type-I censored data assuming the gamma and Gompertz
models, respectively. For more recent studies based on the
CEV idea, we refer to Raza et al. [9, 10], Zhang et al. [11], and
references cited therein. It is worth mentioning that most of
the lifetime distributions are skewed, and hence CEV ap-
proach may not be appropriate. ,us, contrary to the
existing approaches, Raza and Siddique [12] proposed
conditional median- (CM-) based Shewhart chart. Using
Monte Carlo (MC) simulations, the authors showed that the
chart constructed using the CM approach outperforms the
CEV-based chart. Apart from type-I censoring, the control
charts to monitor type-II censored data are also available in
the literature [13–15]; however, due to the practical appli-
cations, the main focus of this study is to monitor type-I
censored data.

Before proceeding further, it is important to differentiate
among the CEV, the CM, and imputation approaches.
Methodologically, all the three approaches are the same;
however, practically the CEV and CM replace the censored
observations with the conditional mean and conditional
median, respectively. On the contrary, the imputation
methods are used to substitute the missing observations
[16–18]. ,us, all of them are used to replace censored/
missing data that eventually improve the estimation of
unknown parameters.

,e aim of this article is to introduce a hybrid CM-based
double exponentially weighted moving average (DEWMA)
control chart for monitoring the type-I censored Weibull
data. In addition, a performance comparison of the CM-
based DEWMA with the proposal is also presented in this
study. For assessing the effect of estimation method on the
ARL, the maximum likelihood estimation (MLE) is used. To
the best of our knowledge, it is to be noted that the existing
hybrid EWMA control charts [19–21] do not deal with
censored data and this is the first proposal that discusses
hybrid DEWMA control chart for censored data.

,e remainder of the article is organized as follows. CM
for the Weibull distribution is derived in Section 2 while
scale parameter estimation is also discussed in the same
section. ,e CM-based hybrid DEWMA charts are pre-
sented in Section 3, whereas the performance of the chart is
discussed and compared with the CM-DEWMA chart in
Section 4. Furthermore, the parameter estimation impact is
also discussed in the same section. A real-life application is
provided in Section 5 while Section 6 provides the con-
cluding critiques.

2. CM for the Weibull Distribution

Let a lifetime test be conducted where X denotes the lifetime
of a product. Furthermore, assume that X follows a Weibull
distribution, which is selected because of its applications in
reliability and other engineering applications [2]. ,e
probability density function of a Weibull random variable X
can be written as f(x, α, β) � (β/αβ)xβ− 1 exp(− [x/α]β)

where x> 0 and α and β are the scale and the shape pa-
rameter of the distribution. Further, assume type-I censoring
scheme for the lifetimes Xi1, Xi2, . . ..., Xin, i� 1, 2, . . ., m,
where m represents the subgroup number and n is the
sample size. We define the censoring rate as
Pc � exp(− [C/α]β), where C denotes the censoring time.

In this study, as the aim is to monitor the mean level, i.e.,
μ � E(x) � 􏽒

∞
0 xf(x)dx � αΓ(1 + 1/β), of the censored

Weibull lifetimes, the in-control mean lifetime is
μo � α0Γ(1 + 1/β). Using the knowledge of the shape pa-
rameter and of the in-control mean, one can determine the
scale parameter [22]. For example, if the shape parameter
and mean levels are fixed, say β0 � 2 and μ � 10, then the
scale parameter can be computed as
α � μΓ(1 + (1/β0))

− 1 � 10∗ Γ(1 + 0.5)− 1 � 11.285. Now,
suppose the shape parameter is known and only the scale
parameter is the parameter of interest in a process moni-
toring problem. ,us, to monitor the mean level, there can
be two cases, i.e., when α is known and when it is unknown.
,is study presents control charts for both cases. For the case
of unknown α, the maximum likelihood estimation (MLE)
method is used.

As the EWMA control chart [23] is known to be a
memory type control chart, it uses not only the present
information but also the past; therefore, it is more efficient to
detect small and moderate shifts than the memoryless charts
which are generally used to detect large shifts. CM� cm for
the Weibull distribution is derived as

􏽚
cm

c
x
β− 1 exp −

x

α
􏼒 􏼓

β
􏼢 􏼣dx �

αβ exp − Dc( 􏼁

2β
. (1)

By solving the above equation, one can get the following
expression:

cm �
− αβ0 ln 2 − exp − Dc( 􏼁( 􏼁

2
⎡⎣ ⎤⎦

1/β0

, (2)

where Dc � (C/α0)
β0 , Γ(x, a) � 􏽒

x

y�0 ya− 1 exp(− y)dy, and
α0 and β0 are the in-control values of α and β, respectively.

2.1.Estimationofα. Generally, parameters are assumed fixed
and known; however, there is no justification of this as-
sumption in practice. To this end, phase-I dataset is used to
estimate the unknown parameter. In this study, we fix the
shape parameter of theWeibull distribution and estimate the
scale parameter by the maximum likelihood estimation
(MLE) method. ,e likelihood function for the censored
data is given as [2]

L(α | β, x) � 􏽙
n

i�1

β
αβ

x
β− 1 exp − [x/α]

β
􏼐 􏼑􏼢 􏼣

ϕi

exp − [C/α]
β

􏼐 􏼑􏽨 􏽩
1− ϕi( )

.

(3)

,e MLE of α, assuming fixed β, is calculated by
finding the partial derivative of equation (3) with respect
to the unknown parameter and equating it to zero, i.e.,
zL/zα � 0. Further, it is necessary to have z2L/zα2 < 0. ,e
simplified form of the MLE for α is given as:
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α⌢MLE � (1/k)[􏽐
k
i�1 ϕi(Xi)

β0 + (n − k)Cβ0]1/β0 , where k de-
notes the number of censored units per subgroup, n is the
number of sampling units, and Xi (i � 1, 2, 3, . . ., n) denote
the lifetimes from the Weibull distribution which can only
be observed if xi <C. ,us, ϕi � 1 if xi ≤C, and ϕi � 0 if
xi >C with the property 􏽐

n
i�1 ϕi � k.

3. CM-Based Hybrid DEWMA Chart

Here, we introduce the CM-based hybrid DEWMA (CM-
HDEWMA) chart but before discussing its design structure,
let us recall the layout of the EWMA and the DEWMA charts
using CM approach. To this end, transform the lifetimes Xi1,
Xi2 . . ., Xin into Gij as follows:

Gij �
Xij, if Xij ≤C,

CM Xij􏼐 􏼑, if Xij >C,

⎧⎨

⎩ ∀ j � 1, 2, . . . , n and i � 1, 2, . . . , m.

(4)

,en, calculate the CMEWMA statistics as

EWCi(CM) �
max (1 − c)EWCi− 1(CM)􏽮 + cG

CM
i , do􏼛

min (1 − c)EWCi− 1(CM)􏽮 + cG
CM
i , do􏼛

, (5)

with

i≥ 0, Gi �
􏽐

n
j�1 Gij

n
􏼠 􏼡,

EWC0 � d0,

(6)

where do denotes the in-control mean and 0< c< 1 is the
smoothing parameter. Similarly, the CM-DEWMA statistic
is defined as

DECi(CM) �
max (1 − λ)DECi− 1(CM)􏽮 + λEWCi(CM), ko􏽯

min (1 − λ)DECi− 1(CM)􏽮 + λEWCi(CM), ko􏽯
,

(7)

with i≥ 0 andDEC0 � k0, where k0 refers to the in-control
mean andDEC denotes the double EWMA charting statistic.
For signaling, plot EWCi(CM)(DECi(CM)) against the
UCLEWC(CM)(UCLDEC(CM)) and declare the process as in-
control (IC) when the monitoring statistic falls below the
upper control limit (UCL); otherwise, it is declared as out-of-
control (OCC). If the process is out-of-control, the identifi-
cation process should be initiated for the detection of a
possible assignable cause. As discussed by Polunchenko et al.
[24], the most accepted choices of c and λ range from 0.05 to
0.25 for small shift detection while they range from 0.25 to 0.4
for moderate shifts. To compare the performance of the
proposed chart with the CM-based DEWMA control chart,
the procedure is adopted as discussed in Raza et al. [10, 25]. As
the EWCi(CM) statistic increases for both shifts, i.e., upward
and downward shifts in the process mean [10], only the upper
control limit, say, UCLEWC(CM) is required. To calculate the
UCL, it is suggested to compute the EWC and DEC statistics
for the given m and n using in-control data and obtain the
(1 − p) th quantile point, where p is prespecified. ,is will

result in UCL for the CM-EWMAor CM-DEWMA chart. For
monitoring, plot EWCi(CM) against the UCLEWC(CM) as long
as the monitoring statistic falls below the upper control limit;
otherwise, declare the process to be out-of-control. In the case
of an out-of-control signal, an engineer should inspect the
process for the removal of the assignable cause.

Next, the hybrid DEWMA control chart for monitoring
the censored data is discussed. To this end, let the smoothing
constants λ1, λ2, λ3 ∈ [0, 1] and define the following two
sequences E1, E2, . . . and HE1,HE2, . . . as

E
CM
i � λ1G

CM
i + 1 − λ1( 􏼁Ei− 1(CM),

HECM
i � λ2E

CM
i + 1 − λ2( 􏼁HEi− 1(CM).

(8)

,e plotting statistic of CM-HEWMA is then calculated
as

EWCi(CM) �
max HECM

i , intial value􏼈 􏼉

min HECM
i , intial value􏼈 􏼉

. (9)

Finally, the CM hybrid DEWMA monitoring statistic is
defined as

DWCi(CM) �
max DHECM

i , intial value􏼈 􏼉

min DHECM
i , intial value􏼈 􏼉

, (10)

where DHECM
i � λ3HECM

i + (1 − λ3)DHEi− 1(CM).
,e monitoring procedure of HDEWMA and HEWMA

charts is the same as discussed for the CM-EWMA and CM-
DEWMA charts. To calculate the UCL of the CM-
HDEWMA and CM-DEWMA charts, an algorithm is dis-
cussed in the next section. Furthermore, a performance
comparison of CM-HDEWMA and CM-DEWMA charts
assuming known and estimated parameter cases under
different censoring rates is also presented.

4. Performance Evaluation of the Chart

To assess the performance of CM-HDEWMA and CM-
DEWMA charts considering known and estimated parameter
cases under different censoring rate, the average run length
(ARL) performance assessment measure is used in this study.

Assuming fixed β � 2, the censoring time for different
choices of the scale parameter corresponding to different
censoring rates is computed in Table 1. It is noticed from the
table that for a given α, the censoring time decreases as the
censoring rate increases. For instance, consider the case of
PC � 0.2 and PC � 0.7 for α� 0.7. ,e corresponding cen-
soring times are 0.888 and 0.4181, respectively. Further,
assuming a fixed censoring rate, the censoring time increases
with the increase of α, e.g., when PC � 0.2, the censoring
times are 0.2537 and 0.8880 for α� 0.2 and 0.7, respectively.
,e results are quite realistic since for type-I censoring,
censoring rate can only be increased by decreasing censoring
time and vice versa. In addition, for fixed censoring rate,
censoring time increases by increasing the scale parameter of
the Weibull distribution as the events occur more frequently
when the scale parameter increases.

Next, to evaluate the impact of estimation, the
UCLCMHDEWMA for different choices of ARL0,m, n, and Pc, is
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computed and tabulated in Table 2. It is worth mentioning
that in Table 2, α � 0.5 is assumed as the nominal value of the
scale parameter for n= 3 and n= 7, respectively. It can be
seen clearly from the table that the estimation of parameter
significantly affects the UCL of the chart. ,is comment is
not specific for a small censoring rate but equally valid for a
large censoring rate. ,e computed out-of-control ARL, i.e.,
ARL1 values assuming ARL0 = 200 and n= 3 and n= 7, are
given in Tables 3–6. Further, 20% and 30% increase and
decrease in the mean levels have been used as shifts in the
computation. One can obtain similar results for other values
of n, Pc, C, and ARL0 by using Algorithm 1. Similarly, the
algorithm can be used to obtain UCL and ARL1results for
other charts as discussed in this study.

For the out-of-control ARL computation, introduce a
shift in the data and test it against the control limit con-
structed using in-control data. Repeat Steps 4 and 5 and
calculate the average of subgroups falling outside the UCL,
which is ARL1. Note that in some cases, it may happen that
no subgroup monitoring statistic falls outside the UCL. To
fix this issue, one can ignore the iteration of that particular
index.

4.1. Estimation Effect on ARL. To evaluate the effect of es-
timation on ARL, one can notice from Table 3 that the CM-
HDEWMA chart outperforms the CM-DEWMA chart.
Furthermore, comparing the results of Tables 3 and 4, the
ARL values for the known parameter are noticed to be
smaller than the estimated parameter case. Hence, the effect
of estimation on the CM-HDEWMA is noticed as significant
as in the case of other charts. In the case of a decreasing shift,
the ARL value decreased with the increase of censoring rate
and vice versa. To be more specific, consider the case of 20%
censoring rate in Table 3. In this case, one can see that for
30% increasing shift, ARL1 is 10 for the CM-DEWMA chart
while ARL is 7.69 for the CM-HDEWMA chart. Similarly,
for 30% censoring rates, ARL1 � 12.35 for CM-DEWMA
chart and 11.90 for CM-HDEWMA chart, and a similar

pattern is observed for other censoring rates and shifts
(increased/decreased). ,erefore, we can conclude that the
proposed CM-HDEWMA chart outperforms the CM-
DEWMA chart. Furthermore, on comparing the results of
Tables 3 and 4, if the parameter is known, the ARL1 value is
7.69 for the CM-HDEWMA chart for 30% increasing shift in
the mean with 20% censoring rate. On the contrary, if the
parameter is estimated, the ARL1 value for the aforemen-
tioned specifications is 9.03. A very similar pattern is also
observed for other choices of shifts and censoring rates.
,us, for the known parameter case, the ARL1 values are
smaller than the estimated parameter case. It is also observed
that the impact of estimation on the CM-HDEWMA is as
significant as noticed in other charts. ,us, it can be con-
cluded that for a decreasing shift, the ARL value decreased
with the increase of censoring rate, whereas an opposite
behavior is noticed for an increasing shift.

Next, from Table 4, it can be seen that for 30% increasing
shift in the mean, the ARL1 value for CM-HDEWMA chart
using the censoring rate 20% is 7.69, while it is 11.90 and
22.40 for 30% and 40% censoring rates, respectively. Con-
trary to increasing shifts, for 30% decreasing shift, the ARL1
value corresponding to the censoring rate 20% is 3.95, while
it is 4.34 and 2.53 for 30% and 40% censoring rates re-
spectively. It is also noticed that the superiority of the CM-
HDEWMA chart is never compromised. Similarly, the other
results presented in the tables can be interpreted.

For α � 1 and n� 7, the computed ARL is given in
Table 5. ,ese results are also compared with the estimated

Table 1: Censoring times C.

Pc

α
0.1 0.2 0.3 0.5 0.7 0.9

0.1 0.151743 0.303485 0.455228 0.758714 1.062199 1.365684
0.15 0.137736 0.275472 0.413208 0.68868 0.964152 1.239624
0.2 0.126864 0.253727 0.380591 0.634318 0.888045 1.141773
0.25 0.117741 0.235482 0.353223 0.588705 0.824187 1.059669
0.3 0.109726 0.219451 0.329177 0.548628 0.76808 0.987531
0.35 0.102461 0.204922 0.307382 0.512304 0.717226 0.922147
0.4 0.095723 0.191446 0.287169 0.478615 0.670062 0.861508
0.45 0.089359 0.178719 0.268078 0.446796 0.625515 0.804233
0.5 0.083255 0.166511 0.249766 0.416277 0.582788 0.749299
0.55 0.07732 0.15464 0.23196 0.3866 0.541239 0.695879
0.6 0.071472 0.142944 0.214416 0.35736 0.500304 0.643249
0.65 0.065634 0.131268 0.196902 0.32817 0.459438 0.590706
0.7 0.059722 0.119445 0.179167 0.298611 0.418056 0.537505
0.75 0.053636 0.107272 0.160908 0.268181 0.375452 0.482724
0.8 0.047238 0.094476 0.141714 0.236194 0.330667 0.425143
0.85 0.040314 0.080627 0.120941 0.201568 0.282195 0.362823

Table 2: UCLCMHDEWMA values (β � 0.5).

Pc

n� 3,
λ1 � λ2 � 0.2, λ3 � 0.3

n� 7,
λ1 � λ2 � 0.2, λ3 � 0.3

Known parameter MLE Known parameter MLE

0.2 1.58 1.63 1.44 1.51
0.3 1.68 1.82 1.52 1.64
0.5 1.96 2.15 1.88 1.95
0.6 2.11 2.40 1.94 2.24
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parameter case which are tabulated in Table 6. From the
table, observe that for 30% upward shift in the mean as-
suming 20% censoring rate, the ARL1 value for CM-
DEWMA chart is 7.98, while it is 7.13 for CM-HDEWMA
chart. In the case of 30% censoring rate, the value for ARL1 is
11.82 for the CM-DEWMA chart and 9.33 for the CM-
HDEWMA chart. ,us, from the pattern, one can conclude
that the CM-HDEWMA chart is more efficient than the CM-
DEWMA chart.

Moreover, comparing the results of Tables 5 and 6 and
when the parameter is known/specified, the ARL1 value for
CM-HDEWMA chart for 30% increase in the mean level

with 20% censoring rates is 7.13. However, for the estimated
case, it is 7.95 for the aforementioned specification. ,is also
points out the impact of estimation on the CM-HDEWMA
is highly significant as it is noticed in the case of other charts
[22].

From Tables 7 and 8, for the estimated α⌢ � 0.91 and β �

1.5 case, one can see that the ARL for the known parameter is
smaller than that for the estimated case. For a decreasing
shift, the ARL values decrease with the increase of censoring
rate, whereas an opposite behavior is noticed in the case of
increasing shifts. ,us, the superiority of the CM-
HDEWMA chart is clearly visible.

Table 4: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 3 with MLE α⌢ � 0.475, β � 0.5.

n 3

λ1 � λ2 � 0.2
CM-DEWMA chart shifts λ1 � λ2 � 0.2

λ3 � 0.3

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 11.09 6.00 17.02 15.18 0.2 9.03 6.76 11.71 13.47
0.3 12.76 4.72 27.98 15.04 0.3 12.47 4.61 25.71 11.53
0.4 23.96 4.68 49.45 10.20 0.4 23.26 2.25 51.72 7.40

Table 5: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 7 with α � 1, β � 0.75.

n 7

λ1 � λ2 � 0.2
CM-DEWMA chart shifts λ1 � λ2 � 0.2

λ3 � 0.3

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 7.98 5.59 11.83 11.56 0.2 7.13 4.41 11.49 10.94
0.3 11.82 4.13 26.43 10.99 0.3 9.33 3.68 22.59 9.82
0.4 22.92 4.03 47.83 8.26 0.4 22.33 2.11 45.59 6.82

Table 6: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 3 with MLE α⌢ � 0.91, β � 0.75.

n 7

λ1 � λ2 � 0.2
CM-DEWMA chart shifts λ1 � λ2 � 0.2

λ3 � 0.3

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 8.65 5.87 12.83 12.21 0.2 7.95 4.86 11.60 11.80
0.3 12.46 4.41 27.16 11.54 0.3 10.19 4.13 23.55 9.95
0.4 23.89 4.13 48.61 9.11 0.4 22.75 2.74 45.83 7.51

Table 3: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 3 and α � 0.5, β � 0.5.

n 3

λ1 � λ2 � 0.2
CM-DEWMA chart shifts λ1 � λ2 � 0.2

λ3 � 0.3

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 10.44 5.98 13.77 13.37 0.2 7.69 3.95 11.91 11.84
0.3 12.35 5.00 25.54 14.84 0.3 11.90 4.34 24.15 11.87
0.4 23.56 4.84 50.09 9.50 0.4 22.40 2.53 48.09 7.12
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Assuming α � 1.5, β � 2 and n � 7, results are listed in
Table 9 and compared to the ARL in the estimated case
(Table 10). Again, it is observed that CM-HDEWMA out-
performed the CM-DEWMA chart for various shifts.

4.2. Effect of Smoothing Parameters. For the computed ARL
values given in Tables 3–10, it is assumed that
λ1 � λ2 � 0.2, and λ3 � 0.3. However, to evaluate the effect
of the smoothing parameters on the CM-HDEWMA chart,
we further assume the following two cases: (i) λ1 < λ2 < λ3
and (ii) λ1 > λ2 > λ3. ,e resulting ARL is listed in Tables 11
and 12. ,e tables suggest that the efficiency of the proposed
chart increased when smoothed parameters are λ1 > λ2 > λ3.
It is worth mentioning that as the values of λ1, λ2, and λ3
approach 1, the proposed chart converges to the Shewhart
control chart. Further, for small values of λ1, λ2, and λ3, the
performance of the proposed chart is enhanced as compared
to moderate or high values (close to 1) of smoothing pa-
rameters. When the smoothing parameter is in reverse

order, i.e., case (ii), the proposed control chart shows the best
performance (cf. Tables 11 and 12).

4.3. Effect of Estimation onARL0. To minimize the impact of
estimation on the in-control and out-of-control ARL, the
adjusted UCL values for different censoring rates are listed in
Table 2. As the estimated ARL is a function of the sample and
subgroup sizes, to study the effect of estimation and to have
the prefixed in-control ARL with estimated parameter case,
the results of ARL along with standard deviation for different
n and m are tabulated in Table 13. From the table, it is clear
that CM-HDEWMA approaches more quickly to the desired
values of the ARL as compared to the CM-DEWMA chart.
Furthermore, it is noticed that very large sample sizes and
subgroup numbers are required to have the prefixed ARL in
the presence of estimation effect. To be more specific, if
n� 10 andm� 1000, the standard deviation of the run length
(SDRL) is 21.42 for the CM-HDEWMA chart, which is still a
very high value. ,us, in the case of estimation, one should

(1) Initiate the algorithm by fixing n, Pc, and group size. Estimate the parameter using phase-I data if it is unknown.
(2) Replace the censored observations with the CM value, i.e., transform the data into Gij and compute the CM-HDEWMA statistics

for given m and n. Take the (1 − p)th quantile point, where p is prespecified.
(3) Repeat Step 2 w times and compute the average of the upper control limits obtained by taking the (1 − p)th quantile of the

monitoring statistic, which will result in UCL for the CM-HDEWMA chart.
(4) Plot the values of CM-HDEWMAmonitoring statistic with respect to the subgroup numbers. Record the sample number at which

the monitoring statistic falls outside the control limit.
(5) Repeat Step 4 a large number of times and calculate the mean of the subgroup numbers at which the process first time crossed the

UCL. ,is will result in ARL0 if the subgroups are generated from the in-control process.

ALGORITHM 1: ARL0 computation for HDEWMA.

Table 7: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 5 and α � 1, β � 1.5

n 5

λ1 � λ2 � 0.2
CM-DEWMA chart shifts λ1 � λ2 � 0.2

λ3 � 0.3

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 9.66 4.88 15.72 13.49 0.2 7.41 4.38 11.67 11.77
0.3 11.16 4.41 26.88 13.17 0.3 10.00 4.05 26.89 10.53
0.4 23.10 3.00 51.62 9.64 0.4 21.45 1.76 49.14 6.06

Table 8: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 5 with MLE α⌢ � 0.91, β � 1.5.

n 5

λ1 � λ2 � 0.2
λ3 � 0.3 ,

CM-DEWMA chart shifts λ1 � λ2 � 0.2
λ3 � 0.3

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 10.42 5.49 16.83 14.62 0.2 7.80 5.45 11.85 12.98
0.3 12.20 5.13 27.81 13.46 0.3 11.01 4.40 27.24 11.17
0.4 23.90 3.65 52.30 9.98 0.4 21.89 2.27 50.05 6.19
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Table 9: Out-of-control ARL Values for CM-HDEWMA and CM-DEWMA control charts for n� 7 with α � 1.5, β � 2.

n 7

λ1 � λ2 � 0.2
λ3 � 0.3 ,

CM-DEWMA chart shifts λ1 � λ2 � 0.2
λ3 � 0.3

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 7.68 4.08 13.21 11.13 0.20 6.66 3.80 10.72 8.25
0.3 10.92 3.96 25.96 10.30 0.30 8.34 3.31 24.45 8.33
0.4 22.54 3.18 48.73 7.18 0.40 20.47 1.46 44.94 7.07

Table 10: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 7 with MLE α⌢ � 1.43, β � 2.

n 7

λ1 � λ2 � 0.2
λ3 � 0.3 ,

CM-DEWMA chart shifts λ1 � λ2 � 0.2
λ3 � 0.3

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 8.02 4.87 14.26 11.69 0.20 7.63 3.95 10.96 9.33
0.3 12.12 4.98 27.20 11.00 0.30 8.54 4.10 25.35 8.71
0.4 23.27 3.21 49.16 7.87 0.40 20.67 2.18 45.55 7.46

Table 11: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 3 with α � 0.5, β � 0.5 for λ1 < λ2 < λ3.

n 3
λ1 � 0.1
λ2 � 0.15
λ3 � 0.2

CM-DEWMA chart shifts λ1 � 0.1
λ2 � 0.15
λ3 � 0.2

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 8.18 4.07 14.94 12.05 0.2 5.72 3.84 12.96 11.85
0.3 11.93 1.27 26.12 13.12 0.3 10.78 1.81 25.70 8.49
0.4 23.15 1.66 49.65 10.01 0.4 20.51 1.12 47.66 4.36

Table 12: Out-of-control ARL values for CM-HDEWMA and CM-DEWMA control charts for n� 3, α � 0.5, β � 0.5, and λ1 > λ2 > λ3.

n 3
λ1 � 0.25
λ2 � 0.15
λ3 � 0.1

CM-DEWMA chart shifts λ1 � 0.25
λ2 � 0.15
λ3 � 0.1

CM-HDEWMA chart shifts
30%

increase
30%

decrease
20%

increase
20%

decrease
30%

increase
30%

decrease
20%

increase
20%

decrease

Pc

ARL0 � 200

Shifts Pc

ARL0 � 200

Shifts
0.2 7.75 2.37 13.66 10.57 0.2 5.63 3.25 11.76 12.35
0.3 11.27 2.23 24.86 13.81 0.3 10.58 0.84 24.52 7.83
0.4 22.43 0.64 49.10 8.34 0.4 19.82 1.08 46.73 5.13

Table 13: Estimation effect on ARL0 at different values of m and n for CM-DEWMA and CM-HDEWMA control charts assuming
α⌢ � 0.5, β � 0.5,λ� 0.15, and ARL0 � 200.

CM-DEWMA CM-HDEWMA
Pc� 30%, λ� 0.15

m 100 500 700 1000 100 500 700 1000
n ARL0 (SDRL)
3 171.71(39.99) 173.25(38.18) 177.35(37.27) 177.46(35.95) 178.08(37.79) 180.45(37.66) 185.11(35.22) 188.7(33.89)
5 173.99(35.54) 175.55(31.87) 178.35(30.9) 181.61(32.09) 183.59(33.56) 185.26(32.33) 191.93(31.94) 195.25(32.09)
7 180.54(28.78) 181.05(25.38) 182.54(25.24) 185.95(24.36) 187.8(28.53) 190.25(27.03) 194.51(24.62) 198.27(24.74)
10 189.01(23.81) 189.78(22.42) 191.08(20.69) 194.87(20.75) 188.84(22.56) 193.26(20.09) 195.58(20.27) 200.47(21.42)

Complexity 7



be very careful in the interpretation of an out-of-control
signal because of the large dispersion in the run length.

In short, a summary of the important findings is given
below:

(i) For low censoring rate, an increasing shift in the
scale parameter is more efficiently detected by the
CM-HDEWMA chart as compared to a decreasing
shift. Further, the effectiveness of the chart is not
undermined to the CM-DEWMA chart for high
censoring rate and decreasing shifts.

(ii) It is also noticed that the proposed chart is superior
to its counterpart in both cases, increasing and
decreasing shifts, in absolute terms. Moreover, the
ARL follows the unbiasedness property, i.e., out-of-
control ARL never exceeds the ARL0 value.

(iii) As discussed in the literature for other charts, this
study confirmed that the parameter estimation is
strongly correlated to the chart performance. ,us,
to overcome this estimation effect and to have the
desired in-control ARL, a large sample size is rec-
ommended. Moreover, a special attention should be
paid to the SDRL of the ARL.

(iv) ,e performance of the CM-HDEWMA chart can
be improved by having a perfect ordering, i.e.,
λ1 < λ2 < λ3 or λ1 > λ2 > λ3, among the smoothing
parameters.

5. Application

,is section presents an application to show the imple-
mentation of the proposed methodology in practice. For this
purpose, the socket dataset is taken fromWheeler [26] (page
150). ,is dataset is about the effective thickness of sockets
using the injection molding, measured in hundreds of a
millimeter by collecting four pieces at a time. Figure 1 shows
the usage of electric sockets in different applications while
Figure 2 shows the socket injection modeling machine.

For illustration, let the data follow the Weibull distri-
bution with β � 0.5. Since there is no information about the
process parameters, we estimated the scale parameter α⌢ �

1.61 assuming the first 45 observations as the phase-I data
for n � 4 of the Weibull distribution using the MLE. Fur-
thermore, we considered 50% censoring rate to detect 25%
decrease in the mean to implement the hybrid control chart.

From Figure 3, it is observed that the proposed and CM-
DEWMA control charts do not produce any out-of-control
signal for the first 45 observations. To check the efficiency of
the proposal, a dataset consisting of 35 observations is
generated, i.e., after the 45th subgroup. To generate the
shifted data, a 25% decreasing shift in the mean of the
Weibull distribution is introduced with censoring time 60.14
while ARL0 � 45. ,e CM value for the aforementioned
specifications is 16.14. For the shifted samples, the CM-
HDEWMA produced an out-of-control signal at the 3rd
sample while the CM-DEWMA control chart produced at
the 7th sample. ,us, the proposed chart is more efficient to
detect an out-of-control situation than the ordinary CM-
DEWMA chart.

Typical applications

Electric gate

Data storage Computer Remote control

Computers
Fan Television

Notebook

Server

Hobby

Aquarium

Home
LampIrrigation

Router

mobile phone

Figure 1: Application of electric sockets in real life.

Figure 2: Socket injection modeling machine application.
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6. Conclusion

,is article introduces a CM-based hybrid DEWMA chart,
and its performance is evaluated in detail including a
comparison with the CM-based DEWMA for monitoring
the mean of the Weibull process in the presence of type-I
censoring. Also, the performance of the control charts is not
only assessed for the known parameter case but also for the
unknown parameter case using the method of maximum
likelihood estimation. ,e average run length is used to
assess the performance of the charts. From the ARL study, it
is noticed that the CM-HDEWMA chart outperformed the
CM-DEWMA chart. Further, it is noticed that the impact of
estimation is very serious on the ARL and a very large sample
size is required to obtain the desired ARL. Moreover, one
should be very careful about the dispersion in the run length
which could be significantly larger than the nominal case. In
future, the proposed methodology can be extended to other
distributions and Shewhart control charts can be introduced
[27]. Furthermore, a detailed study is required to evaluate
the impact of parameter estimation on the censored hybrid
double exponentially weighted moving average chart.
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