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The connectivity of a network contains information about the relationships between nodes, which can denote interactions,
associations, or dependencies. We show that this information can be analyzed by measuring the uncertainty (and certainty)
contained in paths along nodes and links in a network. Specifically, we derive from first principles a measure known as effective
information and describe its behavior in common network models. Networks with higher effective information contain more
information in the relationships between nodes. We show how subgraphs of nodes can be grouped into macronodes, reducing the
size of a network while increasing its effective information (a phenomenon known as causal emergence). We find that informative
higher scales are common in simulated and real networks across biological, social, informational, and technological domains.
These results show that the emergence of higher scales in networks can be directly assessed and that these higher scales offer a way

to create certainty out of uncertainty.

1. Introduction

Networks provide a powerful syntax for representing a wide
range of systems, from the trivially simple to the highly
complex [1-3]. It is common to characterize networks based
on structural properties like their degree distribution or
clustering, and the study of such properties has been crucial
for the growth of Network Science. Yet there remains a gap
in our treatment of the information contained in the rela-
tionships between nodes in a network, particularly in net-
works that have both weighted connections and feedback,
which are hallmarks of complex systems [4, 5]. As we will
show, analyzing this information allows for modeling the
network at the most appropriate, informative scale. This is
especially critical for networks that describe interactions or
dependencies between nodes such as contact networks in
epidemiology [6], neuronal and functional networks in the
brain [7], or interaction networks among cells, genes, or
drugs [8], as these networks can often be analyzed at
multiple different scales.

Here we introduce information-theoretic measures that
capture the information contained in the connectivity of a
network, which can be used to identify when these net-
works possess informative higher scales. To do so, we focus
on the out-weight vector, W9, of each node, v, in a
network. This vector consists of weights w;; between v; and
its neighbors, v;, and w;; = 0 if there is no edge from v; to v;.
For each W' we assume ) w;; = 1, which means w;; can
be interpreted as the probability p;; that a random walker
on v; will transition to v; in the next timestep, where a
random walker might represent the passing of a signal, an
interaction, or a state-transition [9]. The information
contained in a network’s connectivity can be characterized
by the uncertainty among its nodes’ out-weights and in-
weights. The total information in the relationships between
nodes is a function of this uncertainty and can be derived
from two properties.

The first is the uncertainty of a node’s outputs, which is
the Shannon entropy [10] of its out-weights, H (W"). The
average of this entropy, (H (W)}, across all nodes is the
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amount of noise present in the network’s relationships, only
if (H(W?P")) =0 is the network is deterministic.

The second property is how weight is distributed across
the whole network, (W), This vector is composed of
elements that are the sum of the in-weights w ; to each node
v; from each of its incoming neighbors, v; (then normalized
by total weight of the network). Its entropy, H ({(W?"')),
reflects how certainty is distributed across the network. If all
nodes link only to the same node, then H ({(W{")) = 0, and
the network is totally degenerate since all nodes lead to the
same node.

The effective information (EI) of a network is the dif-
ference between these two quantities:

EI = H((W{™)) —CH(W™)). (1)

The entropy of the distribution of out-weights in the
network forms an upper bound of the amount of unique
information in the network’s relationships, from which the
information lost due to the uncertainty of those relationships
is subtracted. Networks with high EI contain more certainty
in the relationships between nodes in the network (since the
links represent less uncertain dependencies, unique asso-
ciations, or deterministic transitions), whereas networks
with low EI contain less certainty. Note that EI can be
interpreted simply as a structural property of random
walkers on a network and their behavior, similar to other
common network measures [9].

Here, we use this measure to develop a general classi-
fication of networks (key terms can be found in Supple-
mentary Materials, SM V A). Furthermore, we show how the
connectivity and different growth rules of a network have a
deep relationship to that network’s EI. This also provides a
principled means of quantifying the amount of information
among the micro-, meso-, and macroscale dependencies in a
network. We introduce a formalism for finding and
assessing the most informative scale of a network: the scale
that minimizes the uncertainty in the relationships between
nodes. For some networks, a macroscale description of the
network can be more informative in this manner, demon-
strating a phenomenon known as causal emergence [11, 12],
which here we generalize to complex networks. This pro-
vides a rigorous means of identifying when networks possess
an informative higher scale.

2. Results

2.1. Effective Information Quantifies a Network’s Dependencies.
This work expands to networks previous research on using
effective information to measure the amount of information
in the causal relationships between the mechanisms or states
of a system. Originally, EI was introduced to capture the
causal influence between two subsets of neurons as a step in
the calculation of integrated information in the brain [13].
Later, a system-wide version of EI was shown to capture
fundamental causal properties in Boolean networks of logic
gates, particularly their determinism and degeneracy [11].
Our current derivation from first principles of an EI for
networks is equivalent to this system-wide definition (SM
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V B), which was based originally on interventions upon
system states. For example, if a system in a particular state, A,
always transitions to state B, the causal relationship between
A and B can be represented by a node-link diagram wherein
the two nodes—A and B—are connected by a directed arrow,
indicating that B depends on A. This might be a node pair in
a “causal diagram” (often represented as a directed acyclic
graph, or a DAG) such as those used in [14, 15] to represent
interventions and causal relationships. In such a case, the
information in the causal relationship between A and B can
be assessed by intervening to randomize A do(A = H™)
and measuring the effects on B. The EI would be the mutual
information between A and B under such randomization:
I(do(A = H™),B) [16].

To expand this framework to networks in general, we
relax this intervention requirement by assuming that the
elements in W{" sum to 1. In this case, an “intervention” can
be interpreted as dropping a random walker on the network.
For example, if the network represents a DAG or Markov
chain, then dropping a random walker on a node v; would be
equivalent to do(v;). The entropy of the transitions of the
random walkers and how those transitions are distributed
defines the EI of a network. In this generalized formulation,
only in networks where the nodes and edges actually rep-
resent dynamics, interactions, or couplings does EI indicate
information about causation. In the case where edges rep-
resent correlations, or where what nodes or edges represent
is undefined, EI is merely a structural property of the in-
formation contained in the behavior of hypothetical random
walkers (however, this situation is no different from other
analysis methods that rely on random walkers).

Here we describe how this generalized structural EI
property behaves in common network models, asking basic
questions about the relationship between a network’s EI and
its size, density, and structure. These inquiries allow for the
exhaustive classification and quantification of the infor-
mation contained in the connectivity of real networks. It is
intuitive that the EI of a network will increase as the network
grows in size. In general, adding more nodes should increase
the entropy, which should in turn increase the amount of
information. However, in cases of randomness rather than
structure, EI should reflect this randomness. We found this
is indeed the case.

Figure 1(a) shows the relationship between a network’s
EI and its size under several parameterizations of Erdés-
Rényi (ER) random graphs [17, 18]. As the size of an ER
network increases (while keeping constant the probability
that any two nodes will be connected, p), its EI converges to
a value of —log, (p). That is, in random networks, EI is
dominated solely by the probability that any two nodes are
connected, a key finding which demonstrates that, after a
certain point, a random network structure does not contain
more information as its size increases. This shift occurs in ER
networks at approximately (k) = log, (N), which is also the
point at which we can expect all nodes to be in a giant
component [1]. This finding illustrates that network con-
nectivity must be nonrandom to increase the amount of
information in the relationships between nodes (see SM V C
1 for derivation). Note that if a network is maximally dense
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Figure 1: Effective information depends on network structure. (a) In Erdés-Rényi (ER) networks, we see the network’s EI level off at
EI = —log, (p) as N, the network’s size, increases (log scale shown). (b) The EI of networks grown under a preferential attachment mechanism,
which depends on the preferential attachment exponent, a. Under this network growth model, new nodes add their m edges (here, m = 1) to
existing nodes in the network with a probability proportional to k*. Only sublinear preferential attachment (« < 1.0) allows for the continuous
growth of EI with the growth of the network. The ribbons around the data represent standard deviations after 100 simulations of each.

(i.e., a fully connected network, with self-loops), EI = 0.0.
However, we expect such dense low-EI structures to be
uncommon, since network structures found in nature and
society tend to be sparse [19].

We report another key relationship between a network’s
connectivity and its EI in Figure 1(b). We again compare the
EI of a network to its size, focusing on networks grown
under different parameterizations of a preferential attach-
ment model [20, 21]. Under a preferential attachment
growth model, a new node is added to the network at each
time step, contributing m new edges to the network; these m
edges connect to nodes already in the network, v;, with a
probability proportional to k7. Here, k; is the degree of node
v; and « tunes the amount of preferential attachment. A
value of « = 0.0 corresponds to each node having an equal
chance of receiving a new node’s link (i.e., no preferential
attachment). The classic Barabdasi-Albert network corre-
sponds to linear preferential attachment, o =1.0 [21].
Superlinear preferential attachment, a> 1.0, creates net-
works that have less and less EI, eventually resembling star-
like structures (see SM V C 2 for derivation). As shown in
Figure 1(b), only in cases of sublinear preferential attach-
ment, « < 1.0, does the network’s EI continue to increase
with its size. When o = 0.0—creating a random tree—the
network’s EI increases logarithmically as its size increases.

The maximum possible EI in a network of N nodes is
log, (N). This can be seen in the case of a directed ring
network where each node has one incoming link and one
outgoing link, each with a weight of 1.0, so each node has one
node uniquely connecting to it. In such a network, each node
contributes zero uncertainty, since (H (W{")) = 0.0, and

H((W?%")) =1log,(N), and therefore, its EI is always
log, (N). In general, the EI of undirected lattices is fixed
entirely by its size and the dimension of the ring lattice (i.e.,
d = 1isan undirected ring, d = 2 is a taurus, etc. [22]), so for
such lattices EI =log, (N) —log, (2d) (see SM VC 2 for
derivation).

The picture that emerges is that EI is inextricably linked
with a network’s connectivity and growth (even network
motifs, as shown in SM V D) and therefore to the funda-
mentals of Network Science. Random networks have a fixed
amount of EI, and scale-freeness (« = 1.0) represents the
critical bound for the growth of EI. In general, dense net-
works and star-like networks have less EI. The next section
explores how EI’s components explain these associations.

2.2. Determinism and Degeneracy. Determinism and de-
generacy are the two fundamental components of EI [11].
They are based on a network’s connectivity (see Figure 2(a)
for a visual explanation), specifically the degree of over-
lapping weight in the networks. Determinism and degen-
eracy are derived from the uncertainty over outputs and
uncertainty in how those outputs are distributed,
respectively:

determinism = log, (N) - (H(W;{")),
(2)
degeneracy = log, (N) — H((W?ut>),

In a maximally deterministic network wherein all nodes
have a single output, w;; = 1.0, the determinism is log, (N)
because (H (W")) = 0.0. Conceptually, this means that a
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Figure 2: Comparing determinism and degeneracy. (a) Left column: three example out-weight vectors, W™, of a given node, v;. A
maximally deterministic vector (top left, where the W4 corresponds to node A in the inset network motif) is when a random walker on v,
transitions to one of its neighbors with probability 1.0, whereas indeterminism occurs when v; has a uniform probability of visiting any node
in the network in the next time step. Right: three example in-weight vectors to a given v;. A maximally degenerate vector, (W?") (top right,
exemplified by the inset network motif), is when every outgoing edge in the network connects to a single node, whereas minimal degeneracy
occurs when each value in (W) is uniformly (1/N). (b) By comparing the determinism and degeneracy of canonical network structures,
we find a great deal of heterogeneity in different network models’ ratios between their determinism and degeneracy. High degeneracy is
characterized by hub-and-spoke topology, as in the case of the star network. Networks with high determinism are characterized by longer
average path lengths, as in the case of a ring lattice.

random walker will move deterministically starting fromany ~ uninformative in terms of cause and effect (see SM V C for
node. Degeneracy is the amount of information in the  derivations concerning these cases). In general, this means
connectivity lost via an overlap in input weights (e.g., if  that canonical networks can be characterized by their ratio of
multiple nodes output to the same node). In a perfectly determinism to degeneracy (see Figure 2(b)).
nondegenerate system where all nodes have equal input

weights, the degeneracy is zero since H ({W{")) = log, (N).

Together, determinism and degeneracy can be used to define  2.3. Effective Information in Real Networks. So far, we have
EI: been agnostic as to the origin of the network under analysis.
As described previously, to measure the EI of a network, one
can create each W{" by normalizing each node’s out-weight

These two quantities provide clear explanations for why ~ vector to sum to 1.0. Regardless of what the relationships
different networks have the EI they do. For example, as the ~ between the nodes represent, the network’s determinism

EI = determinism — degeneracy (3)

size of an Erdds-Rényi random network increases, its de- reflects how targeted the out-weights of the nodes are
generacy approaches zero, which means the EI of a random (networks with more targeted links possess higher EI), while
network is driven only by the determinism of the network, ~ the degeneracy captures the overlap of the targeting of
which is in turn the negative log of the probability of ~ nodes. High EI reflects the greater specificity in the con-
connection, p. Similarly, in d-dimensional ring lattice net- nectivity, whereas low EI indicates a lack of specificity (as in

works, the degeneracy term is always zero, which means the ~ Figure 2(a)). This generalizes our results to multiple types of
EI of a ring lattice structure also reduces to the determinism ~ representations, although the origin of the normalized

of that structure. Ring networks with an average degree (k) ~ network should be kept in mind when interpreting the value
will have a higher EI than ER networks with the same of the measure.

average degree because ring networks will have a higher Since the EI of a network will change depending on the
determinism value. In the case of star networks, the de- network’s size, we use a normalized form of EI known as

generacy term alone governs the decay of the EI such that effectiveness in order to compare the EI of real networks.
hub-and-spoke-like structures quickly become  Effectiveness ranges from 0.0 to 1.0 and is defined as
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EI

effectiveness = ——.
log, (N)

(4)

As the determinism and degeneracy of a network in-
crease to their minimum and maximum possible values,
respectively, the effectiveness of that network will trend to
0.0. Regardless of its size, a network wherein each node has a
deterministic output to a unique target has an effectiveness
of 1.0.

In Figure 3, we examine the effectiveness of 84 different
networks corresponding to data from real systems. These
networks were selected primarily from the Konect Network
Database [23], which was used because its networks are
publicly available, range in size from dozens to tens of
thousands of nodes, often have a reasonable interpretation as
being based on interactions between nodes, and they are
diverse, ranging from social networks, to power networks, to
metabolic networks. We defined four categories of interest:
biological, social, informational, and technological. We se-
lected our networks by using all the available networks
(under 40,000 nodes due to computational constraints) in
the domains corresponding to each category within the
Konect database, and where it was appropriate, the Network
Repository as well [24]. See Materials & Methods section and
SM Table 1II for a full description of this selection process.

Lower effectiveness values correspond to structures that
have either high degeneracy (as in right column, Figure 2(a))
or low determinism (as in left column, Figure 2(a)) or a
combination of both. In the networks we measured, bio-
logical networks on average have lower effectiveness values,
whereas technological networks on average have the highest
effectiveness. This finding aligns intuitively with what we
know about the relationship between EI and network
structure, and it also supports long-standing hypotheses
about the role of redundancy, degeneracy, and noise in
biological systems [25, 26]. On the other hand, technological
networks like power grids, autonomous systems, or airline
networks on average are associated with higher effectiveness
values. One explanation for this difference is that efficiency
in human-made technological networks tends to create
sparser, nondegenerate networks with higher effectiveness
on average, wherein the nodes relationships are more spe-
cific in their targeting.

Perhaps it might be surprising to find that evolved
networks have such low effectiveness. But, as we will show, a
low effectiveness can actually indicate that there is infor-
mative higher-scale (macroscale) connectivity in the system.
That is, a low effectiveness can reflect the fact that biological
systems often contain higher-scale structure, which we
demonstrate in the following section.

2.4. Causal Emergence in Complex Networks. This new global
network measure, EI, offers a principled way to answer an
important question: what is the scale that best captures the
connectivity of a complex system? The resolution to this
question is important because science analyzes the structure
of different systems at different spatiotemporal scales, often
preferring to intervene and observe systems at levels far
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Ficure 3: Effective information of real networks. Effectiveness, a
network’s EI, normalized by log, (N) [11], of 84 real networks from
the Konect network database [23], grouped by domain of origin. To
look further at the names and domains of the networks in question,
see SM V E Networks in different categories have varying effec-
tiveness (t-test, comparison of means).

above that of the microscale [12]. This is likely because
relationships at the microscale can be extremely noisy and
therefore uninformative, and coarse-graining can minimize
this noise [11]. Indeed, this noise minimization is actually
grounded in Claude Shannon’s noisy-channel coding the-
orem [10], wherein dimension reductions can operate like
codes that use more of a channel’s capacity [16]. Higher-level
causal relationships often perform error-correction on the
lower-level relationships, thus generating extra effective
information at those higher scales. Measuring this difference
provides a principled means of deciding when higher scales
are more informative (emergence) or when higher scales are
extraneous, epiphenomenal, or lossy (reduction).

Bringing these issues to network science, we can now
ask, what representation will minimize the uncertainty
present in a network? We do this by examining causal
emergence, which is when a dimensionally reduced network
contains more informative connectivity, in the form of a
higher EI than the original network. Note that, as discussed,
ET can be interpreted solely as a general structural property
of networks. Therefore, while we still call this phenomenon
“causal emergence” because it has the same mathematical
formalization as previous work in Boolean networks and
Markov chains [11, 12, 16], here we focus on how it can be
used to identify the informative higher scales of networks
regardless of what those networks represent.

Notably, the phenomenon can be measured by recasting
networks at higher scales and observing how the EI changes,



a process which identifies whether the network’s higher
scales add information above and beyond lower scales.

2.5. Network Macroscales. First, we must introduce how to
recast a network, G, at a higher scale. This is represented by a
new network, G,,. Within G,;, a micronode is a node that
was present in the original G, whereas a macronode is
defined as a node, p, that represents a subgraph, S;, from the
original G (replacing the subgraph within the network).
Since the original network has been dimensionally reduced
by grouping nodes together, G,, will always have fewer
nodes than G.

A macronode y is defined by some W™, derived from
the edge weights of the various nodes within the subgraph it
represents. One can think of a macronode as being a
summary statistic of the underlying subgraph’s behavior, a
statistic that takes the form of a single node. Ultimately there
are many ways of representing a subgraph, that is, building a
macronode, and some ways are more consistent than others
in capturing the subgraph’s behavior, depending on the
connectivity. We highlight here that macroscales of net-
works should in general be consistent with their underlying
microscales in terms of their dynamics. While this has never
been assessed within networks or systems generally, there
has been previous research that has asked whether the
macroscales of structural equation models are consistent
with the effect of all possible interventions [27].

Here, to decide whether or not a macronode is an
consistent summary of its underlying subgraph, we for-
malize consistency as a measure of whether random walkers
behave identically on G and G,;. We do this because random
walks are often used to represent dynamics on networks [9],
and therefore, many important analyses and algo-
rithms—such as PageRank for determining a node’s cen-
trality [28] or InfoMap for community discovery [29]—are
based on random walks.

Specifically, we define the inconsistency of a macroscale
as the Kullback-Leibler divergence [30] between the ex-
pected distribution of random walkers on G vs. G, given
some identical initial distribution on each. The expected
distribution over G at some future time, ¢, is P, (t), while the
distribution over G,; at some future time t is P, (¢). To
compare the two, the distribution P,, (t) is summed over the
same nodes in the macroscale G, resulting in the distri-
bution Py, (t) (the microscale given the macroscale). We
can then define the macroscale inconsistency over some
series of timesteps T as

T
inconsistency = Z Dg. [PM (1) || Pitim (t)]. (5)
=0

This consistency measure addresses the extent to which a
random dynamical process on the microscale topology will
be recapitulated on a dimensionally reduced topology (for
how this is applied in our analysis, see Materials & Methods).

What constitutes a consistent macroscale depends on the
connectivity of the subgraph that gets grouped into a
macronode, as shown in Figure 4. The Wl‘j“t can be
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constructed based on the collective W°" of the subgraph
(shown in Figure 4(a)). For instance, in some cases, one
could just coarse-grain a subgraph by using its average W°"
as the W of some new macronode p (as in Figure 4(b)).
However, it may be that the subgraph has dependencies not
captured by such a coarse-grain. Indeed, this is similar to the
recent discovery that when constructing networks from data,
it is often necessary to explicitly model higher-order de-
pendencies by using higher-order nodes so that the dy-
namics of random walks to stay true to the original data [31].
We therefore introduce higher-order macronodes (HOMs),
which draw on similar techniques to consistently represent
subgraphs as single nodes [31].

Different subgraph connectivities require different types
of HOMs to consistently represent them. For instance,
HOMs can be based on the input weights to the macronode,
which take the form y| j. In these cases, Wi is a weighted
average of each node’s WO in the subgraph, where the
weight is based on the input weight to each node in the
subgraph (Figure 4(c)). Another type of HOM that generally
leads to consistent macronodes over time is when WO is
based on the stationary output from the subgraph to the rest
of the network, which we represent as y |7 (Figure 4(d)).
These types of HOMs may have minor inconsistencies given
some initial state, but will almost always trend toward
perfect consistency as the network approaches its stationary
dynamics (outlined in Section 4).

Subgraphs with complex internal dynamics can require a
more complex type of HOM in order to preserve the
macronode’s consistency. For instance, in cases where
subgraphs have a delay between their inputs and outputs,
this can be represented by a combination of y| j and u |,
which when combined captures that delay (Figure 4(e)). In
these cases, the macronode y has two components, one of
which acts as a buffer over a timestep. This means that
macronodes can possess memory even when constructed
from networks that are at the microscale memoryless, and in
fact, this type of HOM is sometimes necessary to consistently
capture the microscale dynamics.

We present these types of macronodes not as an ex-
haustive list of all possible HOMs, but rather as examples of
how to construct higher scales in a network by representing
subgraphs as nodes and also sometimes using higher-order
dependencies to ensure those nodes are consistent. This
approach offers a complete generalization of previous work
on coarse-grains [11] and also black boxes [16, 32, 33], while
simultaneously solving the previously unresolved issue of
macroscale consistency by using higher-order dependencies.
The types of macronodes formed by subgraphs also provide
substantive information about the network, such as whether
the macroscale of a network possesses memory or path-
dependency.

2.6. Causal Emergence Reveals the Scale of Networks. A
network has an informative macroscale when a recast
network, G, (a macroscale), has more EI than the original
network, G (the microscale). In general, networks with lower
effectiveness (low EI given their size) have a higher potential
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FIGURE 4: Macronodes. (a) The original network, G along with its adjacency matrix (left). The shaded oval indicates that subgraph S member
nodes vz and v will be grouped together, forming a macronode, p. All macronodes are some transformation of the original adjacency
matrix via recasting it as a new adjacency matrix (right). The manner of this recasting depends on the type of macronode. (b) The simplest
form of a macronode is when W™ is an average of the W{" of each node in the subgraph. (c) A macronode that represents some path-
dependency, such as input from A. Here, in averaging to create the W;j“‘, the out-weights of nodes v and v are weighted by their input from
v4. (d) A macronode that represents the subgraph’s output over the network’s stationary dynamics. Each node has some associated r;, which
is the probability of v; in the stationary distribution of the network. The WZ“‘ of a y| m macronode is created by weighting each W of the
micronodes in the subgraph S by (7;/) cs7). (€) A macronode with a single timestep delay between input | j and its output p | 7, each
constructed using the same techniques as its components. However, | j always deterministically outputs to y | 7. See SM V A for the full
equations governing the creation of the W' of each of the different HOMs shown.

for such emergence, since they can be recast to reduce their
uncertainty. Searching across groupings allows the identi-
fication or approximation of a macroscale that maximizes
the EI.

Checking all possible groupings is computationally in-
tractable for all but the smallest networks. Therefore, in
order to find macronodes which increase the EI, we use a
greedy algorithm that groups nodes together and checks if
the EI increases. By choosing a node and then pairing it
iteratively with its surrounding nodes we can grow mac-
ronodes until pairings no longer increase the EI, and then
move on to a new node (see the Materials & Methods section
for details on this algorithm).

By generating undirected preferential attachment net-
works and varying the degree of preferential attachment, a,
we observe a crucial relationship between preferential

attachment and causal emergence. One of the central results
in network science has been the identification of “scale-free”
networks [21]. Our results show that networks that are not
“scale-free” can be further separated into micro-, meso-, and
macroscales depending on their connectivity. This scale can
be identified based on their degree of causal emergence
(Figure 5(a)). In cases of sublinear preferential attachment
(< 1.0), networks lack higher scales. Linear preferential
attachment («a = 1.0) produces networks that are scale-free,
which is the zone of preferential attachment right before the
network develops higher scales. Such higher scales only exist
in cases of superlinear preferential attachment (a > 1.0).
And past a>3.0 the network begins to converge to a
macroscale where almost all the nodes are grouped into a
single macronode. The greatest amount of causal emergence
is found in mesoscale networks, which is when « is between
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FIGURE 5: The emergence of scale in preferential attachment networks. (a) By repeatedly simulating networks with different degrees of
preferential attachment (& values) with 71 = 1 new edge per each new node, and running them through a greedy algorithm (described in
Materials & Methods), we observe a distinctive peak of causal emergence once the degree of preferential attachment is above o = 1, yielding
networks that are no longer “scale-free.” (b) The log of the ratio of original network size, N, to the size of the macroscale network, N ;.
Networks with higher « values—more star-like networks—show drastic dimension reductions, and in fact, all eventually reach the same N,
of 2. Comparatively, random trees (a = 0.0) show essentially no informative dimension reductions.

1.5 and 3.0, when networks possess a rich array of mac-
ronodes. Note that the increase in EI following macroscale
groupings for «>1.0 shown in Figure 5(a) resembles the
decrease in EI with higher « that we observe in Figure 1(b).
This is because after a>1.0 the decreasing EI of the mi-
croscale leaves room for improvement of the EI at the
macroscale, following a grouping of nodes.

Correspondingly the size of G,; decreases as o increases
and the network develops an informative higher scale, which
can be seen in the ratio of macroscale network size, N, to
the original network size, N (Figure 5(b)). As discussed
previously, networks generated with higher values for « will
be more and more star-like. Star-like networks have higher
degeneracy and thus less EI, and because of this, we expect
that there are more opportunities to increase the network’s
ET through grouping nodes into macronodes. Indeed, the
ideal grouping of a star network is when N,; =2 and EI =1
bit. This result is similar to recent advances in spectral
coarse-graining that also observe that the ideal coarse-
graining of a star network is to collapse it into a two-node
network, grouping all the spokes into a single macronode
[34], which is what happens to star networks that are recast
as macroscales.

Our results offer a principled and general approach to
such community detection by asking whether there is an
informational gain from replacing a subgraph with a single
node. Therefore, we can define causal communities as being
when a cluster of nodes, or some subgraph, forms a viable

macronode (note that this assumes the connections in the
network actually represent possible causal interactions, but it
also merely a topological property). Fundamentally, causal
communities represent noise at the microscale. The closer a
subgraph is to complete noise, the greater the gain in EI by
replacing it with a macronode (see SM V G). Minimizing the
noise in a given network also identifies the optimal scale to
represent that network. However, there must be some
structure that can be revealed by noise minimization in the
first place. In cases of random networks that form a single
large component which lacks any such structure, causal
emergence does not occur (as shown in SM V G).

2.7. Causal Emergence in Real Networks. The presence and
informativeness of macroscales should vary across real
networks, depending on connectivity. Here, we investigate
the disposition toward causal emergence of real networks
across different domains. We draw from the same set of
networks that are analyzed in Figure 3, the selection process
and details of which is outlined in the Materials & Methods
section. The network sizes span up to 40,000 nodes, thus
making it unfeasible to find the best macroscales for each of
them. Therefore, we focus specifically on the two categories
that previously showed the greatest divergence in terms of
the EI: biological and technological. Since we are interested
in the general question of whether biological or techno-
logical networks show a greater disposition or propensity for
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causal emergence, we approximate causal emergence by
calculating the causal emergence of sampled subgraphs of
growing sizes. Each sample is found using a “snowball
sampling” procedure, wherein a node is chosen randomly
and then a weakly connected subgraph of a specified size is
found around it [35]. This subgraph is then analyzed using
the previously described greedy algorithmic approach to find
macronodes that maximized the EI in each network. Each
available network is sampled 20 times for each size taken
from it. In Figure 6, we show how the causal emergence of
these real networks differentiates as we increase the sampled
subgraph size, in a sequence of 50, 100, 150, and finally 200
nodes per sample. Networks of these sizes previously pro-
vided ample evidence of causal emergence in simulated
networks, as in Figure 5(a). Comparing the two categories of
real networks, we observe a significantly greater propensity
for causal emergence in biological networks, and that this is
more articulated the larger the samples are. Note that
constructing a random null model of these networks (e.g., a
configuration model) would tend to create networks with
minimal or negligible causal emergence, as is the case for ER
networks (Figure 13 in SM V G).

That subsets of biological systems show a high dispo-
sition toward causal emergence is consistent, and even
explanatory, of many long-standing hypotheses surrounding
the existence of noise and degeneracy in biological systems
[36]. It also explains the difficulty of understanding how the
causal structure of biological systems functions, since they
are cryptic by containing certainty at one level and uncer-
tainty at another.

3. Discussion

We have shown that the information in the relationships
between nodes in a network is a function of the uncertainty
intrinsic to their connectivity as well as how that uncertainty
is distributed. To capture this information, we adapted a
measure, effective information (EI), for use in networks and
analyzed what it reveals about common network structures
that have been studied by network scientists for decades. For
example, the EI of an ER random network tends to
—log, (p), and whether the EI of a preferential attachment
network grows or shrinks as new nodes are added is a
function of whether its degree of preferential attachment, a,
is greater or less than 1.0. In networks where the mecha-
nisms or transitions are unknown, but the structure is
known, EI captures the degree of unique targeting in the
network. In real networks, we showed that the EI of bio-
logical networks tends to be much lower than technological
networks.

We also illustrated that what has been called “causal
emergence” can occur in networks. This is the gain in EI that
occurs when a network, G, is recast as a new network, G,;.
Finding this sort of informative higher scale means bal-
ancing the minimization of uncertainty while simulta-
neously maximizing the number of nodes in the network.
These methods may be useful in improving scientific ex-
perimental design, the compression and search of big data,
model choice, and even machine learning. Importantly, not
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FIGURE 6: Propensity for causal emergence in real networks.
Growing snowball samples of the two network domains that
previously showed the greatest divergence in effectiveness: tech-
nological and biological networks. At each snowball size, N, each
network is sampled 20 times. Across these samples, the total
amount of causal emergence for a given sample size is significantly
different between the two domains (¢-test, comparison of means).

every recast network, G,;, will have a higher EI than the G
that it represents, that is, these same techniques can identify
cases of reduction. Ultimately, this is because comparing the
EI of different network representations provides a ground
for comparing the effectiveness of any two network repre-
sentations of the same complex system. These techniques
allow for the formal identification of the scale of a network.
Scale-free networks can be thought of as possessing a fractal
pattern of connectivity [37], and our results show that the
scale of a network is the breaking of that fractal in one
direction or the other Note that a future area of research is
how to efficiently identify such informative higher scales, as
well as how network properties beyond the EI change across
scales [38].

The study of higher-order structures in networks is an
increasingly rich area of research [29, 39-42], often focusing
on constructing networks that better capture the data they
represent. Here, we introduce a formal and generalized way
to recast networks at a higher scale while preserving random
walk dynamics. In many cases, a macroscale of a network can
be just as consistent in terms of random walk dynamics and
also possess greater EI. Some macronodes in a macroscale
may be of different types with different higher-order
properties. In other words, we show how to turn a lower-
order network into a higher-order network. One noteworthy
and related aspect of our work is demonstrating how a
system that is memoryless at the microscale can actually
possess memory at the macroscale, indicating that whether a
system has memory is a function of scale.

While some [43] have previously recast subgraphs as
individual nodes as we do here, they have not done so in
ways that are based on noise minimization and maximizing
consistency, focusing instead on gains to algorithmic speed
via compression. Explicitly creating macronodes to
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minimize noise brings the dependencies of the network
into focus. This means that causal emergence in networks
has a direct relationship to community detection, a vast
subdiscipline that treats dense subgraphs within a network
as representing shared properties, membership, or func-
tions [44, 45]. However, the relationship between causal
emergence and traditional community detection is not as
direct as it may seem. For one, causal emergence is high in
networks with high degeneracy (i.e., networks with high-
degree hubs, as we show in Figure 5(a)). Community de-
tection algorithms do not typically select for such structural
properties, instead focusing on dense subgraphs that
connect more highly within the subgraph than outside [44].
In SM Figure 12, we show a landscape of stochastic block
model networks and their associated values for causal
emergence. Indeed in networks that would have high
modularity [46] (e.g., two disconnected cliques), we do
observe causal emergence, but only when the two dis-
connected cliques are of different sizes. This distinction is
key and situates networks that display causal emergence in
a meaningful place in the study of complex networks. In
light of this, macronodes offer a sort of community de-
tection where the micronodes that make up a macronode
are a community and ultimately can be replaced by a
macronode that summarizes their behavior while reducing
the subgraph’s noise. Under this interpretation, commu-
nity structure is characterized by noise rather than shared
memberships.

4. Materials and Methods

4.1. Selection of Real Networks. Networks were chosen to
represent the four categories of interest: social, informa-
tional, biological, and technological (see SM Figure 10,
where we detail the same information as in Figure 3, but
also include the source of the network data in addition to
the effectiveness value of each network). We used all the
available networks under 40,000 nodes (due to computa-
tional constraints) within all the domains in the Konect
database that reflected our categories of interest. For our
social category, we used the domains Human Contact,
Human Social, Social, and Communication. For our in-
formation category, we used the domains Citations, Co-
authorship, Hyperlinks, Lexical, and Software. For our bi-
ological category we used the domains Trophic and Met-
abolic. Due to overlaps between the Konect database and
the Network Repository [24] in these domains, and the
paucity of other biological data in the Konect database, we
also included the Brains domain and the Ecology domain
from the Network Repository to increase our sample size
(again, all networks within these domains under 40,000
nodes were included). For our technological category, we
used the domains Computer and Infrastructure from the
Konect database. Again due to overlap between the Konect
database and the Network Repository, we also included the
Technological and Power Networks domains from the
Network Repository. For a full table of the networks used in
this study, along with their source and categorization, see
Table II.

Complexity

4.2. Creating Consistent Macronodes. Previously we outlined
methods for creating consistent macronodes of different
types. Here, we explore their implementation, which re-
quires deciding which macroscales are consistent. Incon-
sistency is measured as the Kullback-Leibler divergence
between the expected distribution of random walkers on
both the microscale (G) and the macroscale (G,,), given an
initial distribution, as in equation (5).

To measure the inconsistency we use an initial maximum
entropy distribution on the shared nodes between G and
G, that is, only the set of nodes that are left ungrouped in
G)y. Similarly, we only analyze the expected distribution
over that same set of micronodes. Since such distributions
are only over a portion of the network, to normalize each
distribution to 1.0, we include a single probability that
represents all the nonshared nodes between G and G,
(representing when a random walker is on a macronode).

We focus on the shared nodes between G and G, for the
inconsistency measure because (a) it is easy to calculate
which is necessary during an algorithmic search, (b) except
for unusual circumstances, the inconsistency over the shared
nodes still reflects the network as a whole, and (c) even in
cases of the most extreme macroscales (such as when a > 4 in
Figure 5), there are still nodes shared between G and G,,.

Here, we examine our methods of using higher-order
dependencies in order to demonstrate that this creates
consistent macronodes. We use 1000 simulated preferential
attachment networks, which were chosen as a uniform
random sample between parameters « = 1.0 and 2.0, n = 25
to 35, and with either m = 1 or 2. These networks were then
grouped via the algorithm described in the following section.
All macronodes were of the u |7 type, and their inconsis-
tency was checked over 1000 timesteps. These macronodes
generally have consistent dynamics, either because they start
that way or because they trend to that over time, and of the
1000 networks, only 4 had any divergence greater than 0
after 1000 timesteps. In Figure 11 in SM V F, we show 15 of
these simulated networks, along with their parameters,
number of macronodes, and consistencies. Note that even in
the cases with early nonzero inconsistency, this is always
very low in absolute terms of bits, and of the randomly
chosen 15, none do not trend toward consistency over time.
In our observations, most macronodes converge before 500
timesteps, so in analyzing the real-world networks using the
plmr macronode, we check all macronodes for consistency
and only reject those that are inconsistent at 500 timesteps.
More details about the algorithmic approach to finding
causal emergence can be found in the following section.

4.3. Greedy Algorithm for Causal Emergence. The greedy
algorithm used for finding causal emergence in networks is
structured as follows: for each node, v;, in the shuffled node
list of the original network, collect a list of neighboring
nodes, {vj} € B;, where B; is the Markov blanket of v; (in
graphical models, the Markov blanket, B;, of a node, v;,
corresponds to the “parents,” the “children,” and the
“parents of the children” of v; [47]). This means that
{vj} € B; consists of nodes with outgoing edges leading into
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v;, nodes that the outgoing edges from v, lead into, and nodes
that have outgoing edges leading into the out-neighbors of
v;. For each node in {v jt}, the algorithm calculates the EI of a
macroscale network after v; and v; are combined into a
macronode, v, according to one of the macronode types in
Figure 4. If the resulting network has a higher ET value, the
algorithm stores this structural change and, if necessary,
supplements the queue of nodes, {vj}, with any new neigh-
boring nodes from v;’s Markov blanket that were not al-
ready in {vj}. If a node, v has already been combined into
amacronode via a grouping with a previous node, v;, then it
will not be included in new queues, {v]'}, of later nodes to
check. The algorithm iteratively combines such pairs of
nodes until every node, v;, in every node, v;’s Markov
blanket, is tested.

Data Availability

All data used in this work were retrieved from the Konect
Database [23] and also the Network Repository [24], which
are publicly available. Software for calculating EI in net-
works and for finding causal emergence in networks is
available by request or at https://github.com/jkbren/einet.

Disclosure

The opinions expressed in this publication are those of the
author(s) and do not necessarily reflect the views of Tem-
pleton World Charity Foundation, Inc.

Conflicts of Interest

The authors declare no conflicts of interests.

Authors’ Contributions

B.K. and E.H. conceived the project. B.K. and E.H. wrote the
article. B.K. performed the analyses.

Acknowledgments

The authors thank Conor Heins, Harrison Hartle, and
Alessandro Vespignani for their insights about notation and
formalism of effective information. This research was sup-
ported by the Allen Discovery Center program through The
Paul G. Allen Frontiers Group (12171). This publication was
made possible through the support of a grant from Tem-
pleton World Charity Foundation, Inc. (TWCFG0273). This
work was also supported in part by the National Defense
Science & Engineering Graduate Fellowship (NDSEG)
Program.

Supplementary Materials

A: table of key terms. B: effective information calculation. C:
deriving the effective information of common network
structures. D: network motifs as causal relationships. E: table
of network data. F: examples of consistent macronode. G:
emergent subgraphs. (Supplementary Materials)

11

References

[1] A.-L. Barabasi, Network Science, Cambridge University Press,
Cambridge, UK, 2016.

[2] M. E. J. Newman, Networks: An Introduction, Oxford Uni-
versity Press, Oxford, UK, 2010.

[3] L. A. N. Amaral and J. M. Ottino, “Complex networks,” The
European Physical Journal B—Condensed Matter, vol. 38,
no. 2, pp. 147-162, 2004.

[4] A. Koseska and P. I. Bastiaens, “Cell signaling as a cognitive
process,” The EMBO Journal, vol. 36, no. 5, pp. 568-582, 2017.

[5] F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, “The

Kuramoto model in complex networks,” Physics Reports,

vol. 610, pp. 1-98, 2016.

N. Perra, B. Gongalves, R. Pastor-Satorras, and A. Vespignani,

“Activity driven modeling of time varying networks,” Sci-

entific Reports, vol. 2, p. 1, 2012.

[7] D.S. Bassett and O. Sporns, “Network neuroscience,” Nature
Neuroscience, vol. 20, no. 3, pp. 353-364, 2017.

[8] A.-L. Barabasi, N. Gulbahce, and J. Loscalzo, “Network
medicine: a network-based approach to human disease,”
Nature Reviews Genetics, vol. 12, no. 1, pp. 56-68, 2011.

[9] N. Masuda, M. A. Porter, and R. Lambiotte, “Random walks
and diffusion on networks,” Physics Reports, vol. 716-717,
pp. 1-58, 2017.

[10] C. E. Shannon, “A mathematical theory of communication,”
Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.

[11] E. P. Hoel, L. Albantakis, and G. Tononi, “Quantifying causal
emergence shows that macro can beat micro,” Proceedings of
the National Academy of Sciences, vol. 110, no. 49,
pp. 19790-19795, 2013.

[12] E. P. Hoel, “Agent above, atom below: how agents causally
emerge from their underlying microphysics,” in Wandering
towards a Goal: How Can Mindless Mathematical Laws Give
Rise to Aims and Intention?, A. Aguirre, B. Foster, and
Z. Merali, Eds., pp. 63-76, Springer International Publishing,
Berlin, Germany, 2018.

[13] G. Tononi and O. Sporns, “Measuring information integra-
tion,” BMC Neuroscience, vol. 4, no. 1, p. 31, 2003.

[14] J. Pearl, Causality, Cambridge, New York, NY, USA, 2000.

[15] J. Pearl, “Causal diagrams for empirical research,” Biometrika,
vol. 82, no. 4, pp. 669-688, 1995.

[16] E. Hoel, “When the map is better than the territory,” Entropy,
vol. 19, no. 5, p. 188, 2017.

[17] P. Erdés and A. Rényi, “On random graphs,” Publicationes
Mathematicae, vol. 6, p. 290, 1959.

[18] B. Bollobas, “The evolution of random graphs,” Transactions
of the American Mathematical Society, vol. 286, no. 1, p. 257,
1984.

[19] C. I. Del Genio, T. Gross, and K. E. Bassler, “All scale-free
networks are sparse,” Physical Review Letters, vol. 107, p. 1,
2011.

[20] P. L. Krapivsky, S. Redner, and F. Leyvraz, “Connectivity of
growing random networks,” Physical Review Letters, vol. 85,
no. 21, pp. 4629-4632, 2000.

[21] A.-L.Barabasi, R. Albert, and H. Jeong, “Mean-field theory for
scale-free random networks,” Physica A: Statistical Mechanics
and Its Applications, vol. 272, no. 1-2, pp. 173-187, 1999.

[22] D.J. Watts and S. H. Strogatz, “Collective dynamics of “small-
world” networks,” Nature, vol. 393, no. 6684, pp. 440-442,
1998.

[23] J. Kunegis, “KONECT—the Koblenz network collection,” in
Proceedings of the 22nd International Conference on World

[6


https://github.com/jkbren/einet
http://downloads.hindawi.com/journals/complexity/2020/8932526.f1.zip

12

Wide Web Companion, p. 1343, Rio de Janeiro, Brazil, May
2013.

[24] R. A. Rossi and N. K. Ahmed, “NetworkRepository: an in-
teractive data repository with multi-scale visual analytics,” in
Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, p. 4292, Austin, TX, USA, January 2015.

[25] G. M. Edelman and J. A. Gally, “Degeneracy and complexity
in biological systems,” Proceedings of the National Academy of
Sciences, vol. 98, no. 24, pp- 13763-13768, 2001.

[26] G. Tononi, O. Sporns, and G. M. Edelman, “Measures of
degeneracy and redundancy in biological networks,” Pro-
ceedings of the National Academy of Sciences, vol. 96, no. 6,
pp. 3257-3262, 1999.

[27] P. K. Rubenstein, S. Weichwald, S. Bongers et al., “Causal
consistency of structural equation models,” 2017, https://
arxiv.org/abs/1707.00819.

[28] L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pag-
eRank citation ranking: bringing order to the web,” Technical
Report, Stanford Infolab, Stanford, CA, USA, 1998.

[29] M. Rosvall and C. T. Bergstrom, “Maps of random walks on
complex networks reveal community structure,” Proceedings
of the National Academy of Sciences, vol. 105, no. 4,
pp. 1118-1123, 2008.

[30] T. M. Cover and ]. A. Thomas, Elements of Information
Theory, John Wiley & Sons, Hoboken, NJ, USA, 2012.

[31] J.Xu, T. L. Wickramarathne, and N. V. Chawla, “Representing
higher-order dependencies in networks,” Science Advances,
vol. 2, Article ID €1600028, 2016.

[32] W. R. Ashby, An Introduction to Cybernetics, Chapman &
Hall, London, UK, 1957.

[33] W.Marshall, L. Albantakis, and G. Tononi, “Black-boxing and
cause-effect power,” PLoS Computational Biology, vol. 14, p. 1,
2018.

[34] E.Laurence, N. Doyon, L. ]. Dubé, and P. Desrosiers, “Spectral
dimension reduction of complex dynamical networks,”
Physical Review X, vol. 9, Article ID 011042, 2019.

[35] D.D. Heckathorn and C. Cameron, “Network sampling: from
snowball and multiplicity to respondent-driven sampling,”
Annual Review of Sociology, vol. 43, no. 1, pp. 101-119, 2017.

[36] G. Tononi, G. M. Edelman, and O. Sporns, “Complexity and
coherency: integrating information in the brain,” Trends in
Cognitive Sciences, vol. 2, no. 12, pp. 474-484, 1998.

[37] A.-L.Barabasi, E. Ravasz, and T. Vicsek, “Deterministic scale-
free networks,” Physica A: Statistical Mechanics and Its Ap-
plications, vol. 299, no. 3-4, pp. 559-564, 2001.

[38] R. Griebenow, B. Klein, and E. Hoel, “Finding the right scale
of a network: efficient identification of causal emergence
through spectral clustering,” 2019, http://arxiv.org/abs/1908.
07565.

[39] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order

organization of complex networks,” Science, vol. 353,

no. 6295, pp. 163-166, 2016.

1. Scholtes, “When is a network a network? Multi-order

graphical model selection in pathways and temporal net-

works,” in Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,

p- 1037, Halifax, Canada, August 2017.

[41] H. Yin, A. R. Benson, and J. Leskovec, “Higher-order clus-
tering in networks,” Physical Review E, vol. 97, p. 1, 2018.

[42] R. Lambiotte, M. Rosvall, and 1. Scholtes, “From networks to
optimal higher-order models of complex systems,” Nature
Physics, vol. 15, no. 4, pp. 313-320, 2019.

(40

Complexity

[43] D. Gfeller and P. De Los Rios, “Spectral coarse graining of
complex networks. Physical review letters,” vol. 99, no. 3,
p. 38701, 2007.

[44] S.Fortunato and D. Hric, “Community detection in networks:
a user guide,” Physics Reports, vol. 659, pp. 1-44, 2016.

[45] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and
D. Parisi, “Defining and identifying communities in net-
works,” Proceedings of the National Academy of Sciences,
vol. 101, no. 9, pp. 2658-2663, 2004.

[46] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
p. 1, 2004.

[47] K. Friston, “Life as we know it,” Journal of the Royal Society
Interface, vol. 10, Article ID 20130475, 2013.


https://arxiv.org/abs/1707.00819
https://arxiv.org/abs/1707.00819
http://arxiv.org/abs/1908.07565
http://arxiv.org/abs/1908.07565

