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In this paper, we generalize the concept of strong and reciprocal convexity. Some basic properties and results will be presented for
the new class of strongly reciprocally p-convex functions. Furthermore, we will discuss the Hermite—-Hadamard-type, Jensen-type,

and Fejér-type inequalities for the strongly reciprocally p-convex functions.

1. Introduction

The importance of convex functions and convex sets cannot
be ignored, especially in nonlinear programing [1-5] and
optimization theory [6], see, for instance, [7-14]. General-
ization in the convexity is always appreciable. Also, many
generalizations and extensions have been made in the theory
of inequalities as well as in convexity. Several inequalities
have been studied and established for the convexity of
functions, and many generalizations, applications, and re-
finements take place, see [7, 9, 13, 15-18], for further study.
In the theory of inequalities, the famous inequality,
Hermite-Hadamard inequality was established by Jaques
Hadamard [19]. If 0: L — R is a convex function, then

o(25) () [ otnes (T 10()

(1)

holds for all ¢;,c, € L with ¢; <c,

In [10], Lipot Fejér established the weighted version of
the Hermite—-Hadamard inequality.

If o: L — R is a convex function, then the inequality

a(%) sz w(x)dx < (Cz 1 C1> J:? o(x)w(x)dx

< (M) J w(x)dx

2 [

(2)

holds for all ¢;,c, € L with ¢; <¢, and w: L — R is inte-
grable, nonnegative, and symmetric about ((¢; + ¢,)/2).
For more details on the Fejér inequality, see
[8,9, 11, 20-22]. The main motivation of this article is based
on [18].
Mathematically, Jensen-type inequality is stated as if o is
a convex function defined on L C R, then

n

U(i/f‘i%)ﬁ Zn:.”iza(xi) (3)

i=1 i=1

holds for all n € R, x,,x,,..
with p +py + - +u, = 1.

This inequality has applications in probability and
statistics.

The article is organized as follows: Section 2 is devoted to
preliminaries and basic results, whereas in the last section,
we will develop the main results for strongly reciprocally
p-convex functions.

X, € Land pp,py, ..., 4,20

2. Preliminaries

This section concerns preliminaries and basic results for the
strongly reciprocally p-convex functions.

Definition 1 (p-convex set; see [23]). An interval L is called
the p-convex set if [(rcf +(1- r)cf)(”")] € L for all
c,¢, €L and r € [0,1], where p=2u+1 or p= (d/c),
d=(vr+1),c=2w+1, and u,v,w € N.
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Definition 2 (p-convex function; see [24]). A function
0: L — R is called p-convex function if

a[(rcf +(1- r)c‘g)(l/P)] <ro(c))+(1-1ra(c,), (4)
for all ¢;,¢, € L and r € [0, 1], where L is the p-convex set.

Definition 3 (strongly convex function; see [14]). Let y be a
positive number. A function g: L — R is called a strongly
convex function if

o(re; +(1=1)cy)<ro(cy) + (1 =r)o(cy) —ur (1 =) (c, - cl)z,

(5)
for all ¢;,¢, € L and r € [0,1].
Definition 4 (strongly p-convex function; see [25]). Let y be

a positive number. A function 0: L — R is called strongly
p-convex function if

a[(rcf +(1- r)cg)(l/p)] <ro(c;)+(1-r)o(cy) —pr

(1= - ),
(6)
for all ¢;,¢, € L and r € [0,1].
Definition 5 (harmonic convex function; see [22]). Let L =

[c;,¢,] € R be an interval. A function o: L — R is har-
monic convex if

U(%)STU(CI) +(1 —T)U(Cz), (7)
for all ¢;,¢, € L and r € [0,1].

Definition 6 (harmonic p-convex function; see [26]). A
function 0: L — Riis called a harmonic p-convex function

if
pp (17p)
[(%) lgra(cl)m—r)a(%)’ (®)
1 2

for all ¢;,¢, € L and r € [0,1].

Definition 7 (strongly reciprocally convex function; see
[18]). Let LcRand u € (0, 00). A function o: L — R is said
to be strongly reciprocally convex with modulus g on L if the
inequality

)Sra(cl) +(1=r)o(cy)—wur(l-r)

()6

holds for all ¢;,c, € L and r € [0, 1].
Now, we are ready to introduce a new class of convexity
named as strongly reciprocally p-convex function.

fare
o 19
re; +(1—-71)c,

(9)
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Definition 8 (strongly reciprocally p-convex function). A
function 0: L — R s called strongly reciprocally p-convex
with modulus y on L if the inequality

pop (1/p)

)6

(10)
holds, for all x,y € L = [¢;,¢,] and r € [0, 1].

Remark 1

(1) If we insert p = 1 in inequality (10), then we retrace
the strong and reciprocal convexity [18]

(2) If we insert y = 0 in inequality (10), then we retrace
the harmonic p-convexity [26]

(3) If we insert p = 1 and g = 0 in inequality (10), then
we retrace the harmonic convexity [22]

The following proposition expresses the algebraic
property of strongly reciprocally p-convex functions.

Proposition 1. Let 0, ¢: L — R be two strongly reciprocally
p-convex functions; then, the following statements hold:

(i) o+ ¢: L — R is strongly reciprocally p-convex

(ii) For any A>0, Ao: L — R is strongly reciprocally
p-convex corresponding to Ay = y*

Proof

(i) Choose v = [(xPyP/(rxP + (1 - r)yP))(”P)]; then, by
the definition of o and ¢, we obtain

(xpyp) (1/p)
o+ ¢>[(m>
_ (xry?) \"7 (ryr)  \""
2
<ro(x)+(1-r)o(y)—pr(1- ”((%) _($)>

1 1y
+re(x)+(1-r)e(y)—ur(l —r)((;) _(E)> ’

=r(c+@)(x)+ (1 -r)(c+¢)(y)—2ur(1-r)

(7))

<r(o+@)(x)+(1-r)(c+@)(y) —ur(1—r)
1 1\\
(7)-6):

where y>0.

(11)
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(ii) Let A >0; then, by definition, we obtain

(- )< [mx) ;

=rdo(x) +(

XPyP
raf + (1 -r)y?

where py* = Ay and p>0.
The next lemma establishes the connection between the

strong and reciprocal p-convexity and harmonic
p-convexity. O
(xF y*) (xFy?)

flsi2) 1 Ati) ™

rxf +(1- r)yP rxP +(1—r)yP

<ro(y)+(1-r)o(x) - yr(l—r)( —(

=ro(y)+(1-r)o(x)—pur(l

=ro(y)+ (1 -r)o(x) —y((T
y

2r? N
xPyP

d

=ro(y)+(1-r)o(x) -

o)

xPy

=rp(y) +(1-r)p(x).

1
(1-1)o(y) —pr(l- r)((y ) —(
1-ro(y)—pu'r(1- r)((y—lp) —(

Lemma 1. Let 0: L — R be a function; o is strongly re-
ciprocally p-convex iff the function ¢: L — R, defined by
¢(x) = 0 (x) — (u/x*P), is harmonically p-convex.

xP
(12)

xP

Proof. Let o be strongly reciprocally p-convex; then, we have

-+ )2

raP +(1-r)yf
(xPy?)

1 rxP +(1- r)yP
yP ()
1 1 (-7} 2r(1-7)
_r)<ﬁﬁ_ y)) " YR (xPy?)

2 2 2

)

2p

r

R

2P

))
o)) () () (5

)

(13)
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This shows that ¢ is a harmonic p-convex function. Conversely, if ¢ is harmonically p-convex, then
Sy we xPy? Y L[ A=nyP ’
rxP +(1 - r)yP -¢ rxP +(1 - r)yp H (xPyP)
raP +(1-r)yP
<re(y)+(1-r)p(x) +u < )
(xPy?)

_ _ 2
oo () (257 052)

<ro(3) + (1- () +#< 1 +r) 2r(;);)r)> +#( (1- ;)Z(Pl —r))

r(l—r) 21’(1—1’) (1-7r) r(1-r)
=r¢(y)+(1—r)¢(x)+u<y )W( XPyP )

1 1 1 2 1
:r(“’(””‘(ﬁ»+(1_”<“’(")+”(F))_’”“_”((F)_<xf’_y")+(ﬁ))
=ro(y)+(1-r)o(x) - yr(l—r)(( >_<x_lp))

(14)

This implies that ¢ is a strongly reciprocally p-convex  generalization of the Hermite-Hadamard inequality for

function for all x, y € L and r € [0, 1]. O  strongly reciprocally p-convex functions.
3. Main Results Theorem 1 (Hermite-Hadamard-type inequality). Let
L c R/{0} be an interval on the real line. If o: L — R is a
In this section, Hermite-Hadamard-, Fejér-, and Jensen-  strongly reciprocally p-convex function with modulus yu>0
type inequalities are investigated. The next theorem givesthe  and x € L = [¢;,¢,], then
2\ w (el peld (2ot _ole)rale) my(h-dY
o += < dx< ( ) , (15)
'+ b 12\ &L h =l ) xPHD 2 6 cpcg
for all ¢;,c, € L with ¢, <c,. Let x = [(cfcf/(rcf + (1 —r)cf))(l/P)] and y = [(cfcf/

(rcg +(1- r)cf))”P], and by integrating w.r.t r over [0, 1],
Proof. We start by the definition; set r = (1/2) in inequality
(10), and we have

o[(225) )=+ (G- ()((5)-(5):

(16)

the above inequality yields

1 P (1/p)
J 0[( p61C2p> dr
0 c +¢
1 pp (1/p) 1 pp (1/p) P P\2 o1
J o % dr+J o —p ‘1% 5 ar =Y c2p ;1 J (1-2r)*dr (17)
0 rep +(1-=1)c 0 re; +(1 - 1)c) 4\ cc 0
1 p_p (1/p) p_p e 1 PP (1/p)
[lo (%) ar=( 2990 | “((’ff>dx=J . <%) ar.
0 rcy + (11— r)ch (CZ)—(CI) o x'P 0 re; +(1 - r)c)

1
2
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and then inequality (17) is reduced to

2<:fc123 wp
o\ 5— <
cf + c‘g (c

5
2
pelch © o(x) [ () =(c)
A ) s ()(
(18)
peics

ZCfcf wp 13 cé’ - cf 2
o\ 7. P + pp ) S
L+ 12/\ ¢ (c2

which is the left side of the inequality.

For the right side of inequality (15), set x = ¢, and y = ¢,

in (10); we have

CPCP (1/p)
0[(;7172;7) :|gr0(c1)+(1—1’)0(52)_!”
r)cy

aof(z)-(2)

(19)

2 g(x)
) _(Cf)> Ll x P o

Integrating w.r.t v over [0, 1], the above inequality yields

! 'l e 1 1 b —cf e
jo U[(ircf . r)cf) dr< (E)U(Cl) +(§>0(CZ) - M<—cfc§ ) jo r(1-r)dr

Since

1 2cbeh e pcbet < g(x)
J 9N P 3 dr =y (7 oy 4%
o |\re; +(1- 1) (cz)—(cl) ax'f

(21)

then we obtain

2
peicy (o) _(ole)+o(e)) (#y(cs-cf
55 s dx < == 55 | -
¢ —¢ Jax 2 6/\ cc

(22)

From (18) and (22), we get (15). O

dx +

(20)

! cheh e () +a(e)) (uyfch -\
Jo”[(rcfm—r)cé’) d“( >‘<€)( )

Remark 2

(1) For p = 1in (15), Hermite-Hadamard inequality for
strongly reciprocally convex functions is obtained
[18].

(2) If we allow yg — 0" in inequalities (15), we obtain
the Hermite-Hadamard-type inequalities for har-
monically convex functions [22].

For further details on Hermite-Hadamard inequities, see
[27-30].

Theorem 2 (Fejér-type inequality). Assume 0: L — R is a
strongly reciprocally p-convex function with modulus y on L;
then,

0[( 2chch )‘”’”} J u I (2efef ~(cf + )"V wi) |

Cf+C§ a (Zcfcg)z 61 Pan
g (x)w(x)
SJ de
Cy X
p c p_,pr
cl 2 (c2 x )w(x) p
< +0(c ~= L dx-——
g glole @] | 1

< w(x) 7 & (2cfcf —(cf + cg)xp)zw(x)
[ x P " (Zcfcg)z J-

X

dx

3p+l
(= X‘D

(23)



holds for ¢,,c, € L with ¢, <c, and x € L = [c,,¢,], where
w: L — R is a nonnegative integrable function that satisfies

p py\ (1/p) PP (1/p)
w GG —w I L . (24)
xP vl - xp

Proof. Since 6: L — R is a strongly reciprocally p-convex
function, then by definition for r = (1/2) in (10), we have

Journal of Mathematics

1E2) (25 () -G

(25)

for all x, y € L; suppose x = [(cfcg/(rcf + (1- r)cg))(llp)]
and y = [(Pcf/(rcd + (1-)cP)) P in the above inequality;
then, we obtain

’ 2cPct \ P (N, cfed P o cleh (e N\ [(rE =\ (el + (=) 2
c+cd “\2 ref + (1= r)cd ref + (1= r)cf 4 ek ek '
1 2 1 2 2 1 1%2 1%2

Since w is nonnegative and symmetric, we have

2c11’c12J wp cfcg wp
SN\, P Wi\~ P
¢l +¢ re; +(1-1)c;

(26)

1 cfcg wp cfclz7 p) cfcg /p) (27)
SE 7 rel +(1 - 1) i red +(1- 1) v rced +(1 = r)c?
1 2 2 1 1 2

U rc§+(1 —r)cf rcf+(1 —r)cé)
4 pp - PP

6 GG

The above inequality is integrated with respect to r over
[0, 1], and then putting x = [(cfcg/(rcf +(1- r)cg))(”p)],
we obtain

1
pcbcf 2cPck WP e, w(x)d
p Po p p p+l X
¢ — ¢ )+ o X

2 c‘lpcg (1/p)
)) w[(rcf+(l - r)cf) ]

(28)
pp_ (P L), P)
_CP _ CP P+l 4( p _ P\(.P P) 3p+l ’
276 Ja X G-a)jas)’a x
After simplification, the above inequality becomes
2
2chef \ P (2 w(x) d (o (2eled —(cf + )x") 2 o(xw(x)
ol 5 o dx + 3 it w(x)dx < de. (29)
ct6 g X (chcg) ¢ X ¢ X
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For the right-hand side of (23), set x = ¢; and y = ¢, in
(10); we have

pp (1/p) PP (1/p)
o ) w 1%
rcf +(1- r)cg rcf +(1 - r)cg ’

(30)

cfcg p) 1 1\\ cfcf p)
stte) -t -notalel (G B ) -wa-o((3)-(3)) o (et Sm)

Integrating with respect to r over [0, 1] and then putting
x = [(Pd/(ref + (1 - 1)ck)) VP, we obtain

p.p.p

p p

) —cf o P _(cg—cf)

After simplification, we have

¢ P
J U(x);fl(x) dx< (cl”c1 cp) [o(c1) + 0 ()] J

[ X ) 1 [

From (32) and (27), we get (23). O

Remark 3. 1f we set p =1 in (23), the Fejér-type inequality
for strongly reciprocally convex functions is obtained.

Jensen-type inequality for the aforementioned inequality
is described in the next theorem.

Theorem 3. (Jensen-type inequality). If o: L — R is a re-
ciprocally strongly p-convex function with modulus p, then

nop \YP s 1 " 1 1\’
— < . — ] - . ) = —
(35 ) Sel)-+3((3)-&)

(33)

holds for all (1/xF), (1/x2), ..., (1/xE) € L, riyryy...y1, 20
with ri+r,+...+r,=1 and (1/xP)= (rl(l/xf)+
ry(Uxh) +. o+ 7, (1/xD)).

Proof. Fix (1/x}), (1/x0),...,(1/xE) e L and r,r,,...,
r,>0such thatri +r,+...+r, =1L

Put (1/xP) = r, (1/x) + 7, (1/xf) + -+ +7,(1/xf), and
suppose a function w: L — R of the form

o()=1(65)-)) + o)) o

(34)

—xp)w(x) _wup

p_p C ”
peich J o (x)w(x) dx < PaaG 5 [o(e)) +a(cy)] JC (C

J'Cz (clzJ - xp)(xp - cf)w(x) .

2p+1 3p+l
xp xp

(31)

o (cf = xP o (cd - xf P—cf
%d o | (- @,y

3p+1
(= XP

supporting at X, satisfying w(l/x)=0(1/x) and
w(x)<o(x), xe€L. Then, for every i ={1,2,...,n}, we
have

o(i)+(5) () @) (&) @)
o)

Multiplying both sides by r; and summing up to n, we
have

n 2 n
1 1 1 1 1 1
Z<;>”2<x—ﬁﬁ> +azr"<F_§_f’>+a<§>'

i=1 i=1 i
(36)

(35)

Since Y, r; (1/xF) — (1/xP)) = 0, we have

IR L1111y
= ) -wYrl -5, 67
) =2rl)relew) @

1

which completes the proof. O

Remark 4. In inequality (34), fixing p = 1 and y = 0 yields
the Jensen-type inequality for the harmonic convex function



[22]. See
inequalities.

[31-34] for more details on Jensen-type
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