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Previous neuroimaging studies demonstrated that visual deprivation triggers significant crossmodal plasticity in the functional and
structural architecture of the brain. However, prior neuroimaging studies focused on the static brain activity in blindness. It remains
unknown whether alterations of dynamic intrinsic brain activity occur in late blindness (LB). This study investigated dynamic
intrinsic brain activity changes in individuals with late blindness by assessing the dynamic amplitude of low-frequency
fluctuations (dALFFs) using sliding-window analyses. Forty-one cases of late blindness (LB) (29 males and 12 females, mean
age: 39:70 ± 12:66 years) and 48 sighted controls (SCs) (17 males and 31 females, mean age: 43:23 ± 13:40 years) closely matched
in age, sex, and education level were enrolled in this study. The dALFF with sliding-window analyses was used to compare the
difference in dynamic intrinsic brain activity between the two groups. Compared with SCs, individuals with LB exhibited
significantly lower dALFF values in the bilateral lingual gyrus (LING)/calcarine (CAL) and left thalamus (THA). LB cases also
showed considerably decreased dFC values between the bilateral LING/CAL and the left middle frontal gyrus (MFG) and
between the left THA and the right LING/cerebelum_6 (CER) (two-tailed, voxel-level P < 0:01, Gaussian random field (GRF)
correction, cluster-level P < 0:05). Our study demonstrated that LB individuals showed lower-temporal variability of dALFF in
the visual cortices and thalamus, suggesting lower flexibility of visual thalamocortical activity, which might reflect impaired
visual processing in LB individuals. These findings indicate that abnormal dynamic intrinsic brain activity might be involved in
the neurophysiological mechanisms of LB.

1. Introduction

Visual deprivation leads to significant crossmodal plasticity
in the brain’s functional and structural architecture. Previous
studies have demonstrated that visual deprivation triggers
the visual cortex to other sensory processing, such as tactile
[1], auditory [2], and olfactory functions [3], as well as higher
cognitive functions (e.g., verbal memory [4] and episodic
retrieval [5]). Furthermore, several neuroimaging studies
have shown that blindness is associated with progressive
atrophy of the visual pathway [6, 7] and visual cortices [8],
as well as with abnormalities in non-visual areas [9, 10].

Recently, resting-state functional magnetic resonance
imaging methods have been applied extensively to assess

the effects of visual deprivation on the brain’s functional
architecture. Notably, visual deprivation has led to the reor-
ganization of brain function. Liu et al. demonstrated that
early blindness increases regional homogeneity (ReHo) in
the visual cortex [11]. On their part, Jiang et al. reported that
blindness increases regional spontaneous brain activity in
visual areas and reduces it in sensorimotor and salience net-
works [12]. Visual deprivation has also been shown to induce
significant abnormal interactions between the visual cortex
and other sensory cortices. According to previous neuroim-
aging studies, blindness harbors abnormal interconnections
between the visual cortex and other cortices: motor cortex
[13, 14], Broca’s area [15], and auditory cortex [16]. Striem-
Amit et al. found that central V1 is more strongly connected
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to language areas, whereas peripheral V1 is more powerfully
associated with spatial attention and control networks in blind-
ness [17]. Per Wang et al., congenital blindness has increased
network connectivity within the salience network and occipital
cortex, as well as abnormal internetwork connectivity between
the salience network and the frontoparietal networks and senso-
rimotor networks [18]. However, these resting-state fMRI stud-
ies focused on static intrinsic brain activity and connectivity and
did not assess the temporal dynamic intrinsic brain activity in
late blindness. Recently, neuroimaging studies have begun
focussing on investigating dynamic brain activity or networks
that can reflect information on the variability in the strength
or spatial dynamic organization of the brain [19, 20]. Thus,
we regard temporal dynamic brain activity analyses as a way
to potentially deepen our understanding of brain activity
changes in patients with blindness.

The human brain is a complex dynamic system capa-
ble of nonstationary neural activity and rapidly changing
neural interaction. The human brain activity is inherently
dynamic [21]. A map of the brain’s dynamism reflects its
temporal variability, which relates to the functional ability
of neural networks [22]. Low-frequency oscillations
(<0.08Hz) of blood-oxygenation-level-dependent (BOLD)
signaling in the human brain are physiologically meaning-
ful. Notably, there is growing evidence that the temporal
variability of BOLD signaling exists during the typical
duration (a few minutes) of a resting-state scan of the
human brain [23, 24]. The temporal variability of BOLD
signaling plays a critical role in the implementation of var-
ious physiological functions, such as consciousness [25]
and cognition [26]. Sliding-window analysis and clustering
methods have been used to investigate temporal variability
in BOLD signaling [27, 28].

To study changes in BOLD signaling over time, sliding-
window correlation analysis, where the correlation is esti-
mated for brain activity during multiple, possibly overlap-
ping temporal segments (typically 30-60 s), has been widely
deployed [29, 30]. The amplitude of low-frequency fluctua-
tions (ALFF) method is a reliable and sensitive functional
magnetic resonance imaging technology for the quantifica-
tion of local intrinsic brain activity [31]. Recently, the
dynamic ALFF (dALFF) with a sliding-window analysis was
successfully used to investigate the temporal variability of
brain activity in patients with generalized tonic-clonic sei-
zures [32], poststroke aphasia [33], and schizophrenia [34].
However, it is largely unknown whether dynamic spontane-

ous brain activity changes occur in patients with blindness.
Patients with retinitis pigmentosa (RP) offer a unique oppor-
tunity to study this issue. RP is an inherited retinal disease
that primarily affects rod photoreceptor cells, followed by
the degeneration of cone photoreceptor cells, eventually lead-
ing to blindness. Here, we selected RP patients who had expe-
rienced vision loss in adulthood. The goal of this study was to
determine whether an altered dynamic spontaneous neural
activity is present in blind patients. We hypothesized that
blindness might be associated with abnormal dynamic
spontaneous neural activity in vision and vision-related brain
regions. Our findings may shed new light on the underlying
pathological and compensatory mechanisms in blind
patients.

2. Materials and Methods

2.1. Participants. Forty-one cases of late blindness (LB) (29
males and 12 females, mean age: 39:70 ± 12:66 years) and
48 sighted controls (SCs) (17 males and 31 females, mean
age: 43:23 ± 13:40 years) participated in this study. All partic-
ipants met the following criteria: (1) could be scanned with
an MRI (e.g., no cardiac pacemaker or implanted metal
devices); (2) did not have heart disease and claustrophobia;
(3) did not have cerebral diseases (T1 images were checked
by an experienced radiologist).

All LB subjects met the following criteria: (1) onset age of
blindness >12 years; (2) had no ocular surgical history.

All SC subjects met the following criteria: (1) had no oph-
thalmic diseases (glaucoma, optic neuritis, retinal degenera-
tion, etc.); (2) had visual acuity ≥1.0; (3) had no mental
disorders.

Ethical statement: the study was approved by the medical
research ethics committee and the institutional review board
of the Renmin Hospital of Wuhan University Hospital. The
protocol of the research followed the Declaration of Helsinki.
All subjects provided written informed consent.

2.2. MRI Parameters. MRI scanning was performed on a 3-T
magnetic resonance scanner (Discovery MR 750W system;
GE Healthcare, Milwaukee, WI, USA) with eight-channel
head coil. All subjects underwent MRI scanning (eight
minutes) with eyes closed without falling asleep and 240
functional images were obtained. The more details on scan-
ning parameters were showed in Table 1.

Table 1: Details of scanned parameters.

Three-dimensional brain volume imaging (3D-BRAVO) Gradient-echo-planar imaging sequence
Repetition time/echo time 8.5/3.3 Repetition time/echo time 2,000ms/25ms

Slice thickness 1.0mm Slice thickness 3.0mm

Acquisition matrix 256 × 256 Gap 1.2mm

Field of view 240 × 240mm2 Acquisition matrix 64 × 64
Flip angle 12° Flip angle 90°

Field of view 240 × 240mm2
Voxel size 3:6 × 3:6 × 3:6mm3
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2.3. fMRI Data Processing. The fMRI data preprocessing was
performed using Data Processing & Analysis of Brain Imag-
ing toolbox (DPABI, http://www.rfmri.org/dpabi) [35],
which is based on Statistical Parametric Mapping (SPM8)
(http://www.fil.ion.ucl.ac.uk) implemented in MATLAB
2013a (MathWorks, Natick, MA, USA) and briefly the fol-
lowing steps [36]: (1) eliminate first ten time points for signal
reaching equilibrium, and then slice timing and motion cor-
rection. For head motion parameters, more than 2mm or for
whom rotation exceeded 1.5°during scanning were excluded.
(2) Individual 3D-BRAVO images were registered to the
mean fMRI data [37]. (3) Covariates (six head motion
parameters, mean framewise displacement (FD), global brain
signal, and the average signal from white matter signal and
cerebrospinal fluid) were used to regress out. (4) Linear
trends were removed and filtered (0.01–0.08Hz). Scrubbing
regression was not performed because contiguous time
points were necessary for dynamic analysis [38].

2.4. dALFF Variance Computing. A sliding-window
approach was used to compute the dALFF using the
Dynamic Brain Connectome (DynamicBC) toolbox (v2.0,
http://www.restfmri.net/forum/DynamicBC) [39]. For the
sliding-window approach, to avoid the introduction of spuri-
ous fluctuations, the minimum window length should be
larger than 1/f min, where f min is the minimum frequency
of the time series [40]. Here, a window length of 50 TR was
considered as the optimal parameter to maintain the balance
between capturing a rapidly shifting dynamic relationship
and obtaining reliable estimates of the correlations between
regions [41]. A window size of 50 TRs (100 s) and a window
shifted by 10 TRs were selected [42]. Consequently, whole-
length time courses were separated into 19 windows for each
subject. An ALFF map was obtained for each sliding-win-
dow, and the ALFF of each voxel was standardized using z
-transformation.

2.5. dFC Variance Computing. The altered dALFF brain
regions were identified as regions of interest (ROIs). 6-mm
radii around the B-LING/CAL [0, -72, 6] and L-THA [-6,
-9, 6] coordinates were mapped as ROIs. A sliding-window
approach via the DynamicBC toolbox (http://www.restfmri
.net/forum/DynamicBC) was also used to obtain the whole-
brain dFC maps of each seeded region. The variance of the
time series of the correlation coefficient was estimated by cal-
culating the standard deviation of z values at each voxel to
assess dFC flexibility.

2.6. Clinical Evaluation. Clinical data, including age, sex, and
disease duration were recorded.

2.7. Statistical Analysis. The chi-square (χ2) test and
independent-sample t test were performed to assess the
behavioral data between two groups using SPSS version
20.0 (SPSS Inc, Chicago, IL, USA) (P < 0:05 significant
differences).

A one-sample t test was conducted to assess intragroup
patterns of zdALFF maps using the DPABI software. A
two-sample t test was used to assess zdALFF and the zdFC
map difference between two groups’ regressed covariates of
age and sex and FD using the DPABI software. The Gaussian
random field (GRF) method was used to correct for multiple
comparisons (two-tailed, voxel-level P < 0:01, GRF correc-
tion, cluster-level P < 0:05).

Pearson correlation coefficient was used to assess the
relationships between the dALFF and dFC values of different
brain regions and clinical variables in the LB group using the
SPSS version 20.0 software (SPSS Inc., Chicago, IL, USA).

2.8. Verification Analyses. To validate our dALFF findings,
two different window lengths (30 TRs (60 s) and 100 TRs
(200 s)) were calculated in the validation analysis. An ALFF
map was obtained for each sliding window, and the dALFF
of each voxel was standardized using z-transformation.

3. Results

3.1. Demographic Measurements. There are no significant
differences in age between two groups There are significant
differences in gender (P < 0:001) between two groups. The
age of onset blindness is 22:56 ± 7:13 years in the LB group.
Details are shown in Table 2.

3.2. Dynamic ALFF Variance Differences. The spatial distri-
bution of dALFF maps between the two groups is shown in
Figure 1. Compared with SCs, individuals with LB exhibited
significantly lower dALFF values in the bilateral LING/CAL
and left THA (Figure 2(a) (blue) and Table 3). The mean
values of altered dALFF between the two groups are shown
in Figure 2(b).

3.3. Dynamic FC Variance Differences. Compared with SCs,
LB cases exhibited markedly decreased dFC values between
the bilateral LING/CAL and the left MFG and between the
left THA and the right LING/CER (Figures 3(a) and 3(b)
(blue) and Table 4). The mean values of altered dFC readings
between the two groups are shown in Figures 3(c) and 3(d).

Table 2: Demographic measurements between the two groups.

LB group SC group T values P values

Gender (male/female) 29/12 17/31 11.044 0.001

Age (years) 39:70 ± 12:66 43:23 ± 13:40 -1.267 0.208

Handedness 41 R 48 R N/A N/A

Age of onset blindness (years) 22:56 ± 7:13 N/A N/A N/A

χ2 test for sex (n). Independent t test for the other normally distributed continuous data (means ± SD). LB: late blindness; SC: sighted controls; N/A: not
applicable.

3BioMed Research International

http://www.rfmri.org/dpabi
http://www.fil.ion.ucl.ac.uk
http://www.restfmri.net/forum/DynamicBC
http://www.restfmri.net/forum/DynamicBC
http://www.restfmri.net/forum/DynamicBC


3.4. Receiver Operating Characteristic Curve. To test the sen-
sitivity and specificity of dALFF and dFC value differences
between the two groups, the areas under the ROC curve for
dALFF were LB<HC, for bilateral LING/CAL, 0.770
(P < 0:001; 95% CI: 0.671–0.920); for left THA, 0.843
(P < 0:001; 95% CI: 0.762–0.925); (Figure 4(a)). The areas
under the ROC curve for dFC were LB<HC, for left MFG,
0.836 (P < 0:001; 95% CI: 0.752–0.920); for right LING/CER,
0.806 (P < 0:001; 95% CI: 0.714–0.898); (Figure 4(b)).

3.5. Verification Analyses. In the verification analyses, we
found that the group differences in dALFF variability with
different window lengths (30 TRs (60 s) and 100 TRs
(200 s)) were similar to those of the main findings. Detailed
information is presented in the Supplementary Materials.
In the 30 TRs window length step analyses, the LB group
had significantly decreased dALFF values in the bilateral

LING/CAL and left THA, compared with the SC group
(Figure S1 and Table S1). Meanwhile, in the 100 TRs
window length step analyses, the LB group had
substantially decreased dALFF values in the bilateral CAL,
compared with the SC group (Figure S2 and Table S1).

4. Discussion

Our study is the first of its kind to investigate dynamic spon-
taneous neural activity changes in LB using dALFF with
sliding-window analyses. We showed that individuals with
LB displayed significantly lower dALFF values in the bilateral
LING/CAL and left THA relative to the SC group. Also, the
LB group showed remarkably lower dFC values between the
bilateral LING/CAL and the left MFG, as well as between
the left THA and the right LING/CER relative to the SC
group.
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Figure 2: Comparison of different dALFF values between LB group and SC group. Significant dALFF values differences were observed in the
B-LING/CAL, L-THA. The blue areas indicate lower dALFF values (voxel-level P < 0:01, GRF correction, cluster-level P < 0:05) (a). The
mean values of altered dALFF values between the LB and SC groups (b). dALFF: dynamic amplitude of low-frequency fluctuation; LB: late
blindness; SC: sighted controls; GRF: Gaussian random field; LING: lingual gyrus; CAL: calcarine; THA: thalamus; L: left; B: bilateral;.
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Figure 1: Spatial patterns of dALFF variance were observed at the group level in LB and SC groups in the typical frequency band (0.01–
0.08Hz). Within group mean dALFF variance maps within the LB (a) and SC (b). dALFF: dynamic amplitude of low-frequency
fluctuation; LB: late blindness; SC: sighted controls; L: left; R: right.
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Table 3: Significant differences in the dALFF between the two groups.

Condition/brain regions BA Peak T scores
MNI coordinates

Cluster size (voxels)
x y z

ROI in B-LING/CAL

LB<SC L-MFG 8 -4.2625 -39 12 48 83

ROI in L-THA

LB<SC R-LING/CER — -4.1493 9 -66 -15 45

The statistical threshold was set at the voxel level with P < 0:01 for multiple comparisons using the Gaussian random field theory (voxel-level P < 0:01, GRF
correction, cluster-level P < 0:05). dALFF: dynamic amplitude of low-frequency fluctuation; LB: late blindness; SC: sighted control; LING: lingual gyrus;
CAL: calcarine; THA: thalamus; B: bilateral; L: left; GRF: Gaussian random field.
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Figure 3: Comparison of different dFC values between LB group and SC group. Significant dFC values differences were observed in the L-
MFG (a) and R-LING/CER (b). The blue areas indicate lower dFC values.(voxel-level P < 0:01, GRF correction, cluster-level P < 0:05) The
mean values of altered dFC values between the LB and SC groups. (c, d). dFC: dynamic functional connectivity; LB: late blindness; SC:
sighted controls; GRF: Gaussian random field; MFG: middle frontal gyrus; LING: lingual gyrus; CER: cerebelum_6; L: left; R: right.
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The bilateral LING/CAL is the location of the primary
visual cortex in the human brain, which receives visual sig-
nals from the visual pathway and transfers them to higher
visual cortices. In our previous study, we demonstrated that
RP patients had significantly lower ALFF values in the bilat-
eral lingual gyrus/cerebellum posterior lobe relative to the
HC group [43]. RP patients also had considerably lower
regional homogeneity values in the bilateral lingual gyrus/-
cerebellum posterior lobe [44]. Hou et al. found that blind
patients showed reduced voxel-mirrored homotopic connec-
tivity in the primary visual cortex and visual association cor-
tex, compared with SCs [45]. Qin et al., meanwhile,
demonstrated that patients with congenital blindness (CB)
and late blindness (LB) had reduced short- and long-range
functional connectivity density in the primary visual cortex
relative to the SC group [46]. Consistent with these findings,
our study revealed that individuals in the LB group had sig-
nificantly lower dALFF values in the bilateral LING/CAL rel-
ative to the SC group. Flexibility in spontaneous neural

activity has been associated with behaviorally advantageous
changes in brain network dynamics [47]. Thus, our results
suggest that reduced flexibility of the brain’s activity in the
LING/CAL might reflect impaired visual processing in peo-
ple with LB.

Additionally, we found that LB persons displayed signif-
icantly lower dFC values between the bilateral LING/CAL
and the left MFG; the frontal lobe was closely linked to higher
cognitive function. The MFG is involved in executive atten-
tion [48], language [49], and emotion [50]. Previous neuro-
imaging studies reported robust correlations between the
visual cortex and frontal lobe, involving vision-for-action
[51] and visuomotor functions [52]. Our results here suggest
that lower flexibility of FC between the bilateral LING/CAL
and the left MFG might reflect impaired vision-for-action
in people with LB.

Remarkably, this study established that individuals with
LB had lower dALFF values in the left THA and lower dFC
between the left THA and right LING/CER relative to the

Table 4: Significant differences in dFC values between the two groups.

Condition/brain regions BA Peak T scores
MNI coordinates

Cluster size (voxels)
x y z

LB<SC B-LING/CAL 18 -4.5301 0 -72 6 177

LB<SC L-THA 18 -3.7118 -6 -9 6 105

The statistical threshold was set at the voxel level with P < 0:01 for multiple comparisons using the Gaussian random field theory (voxel-level P < 0:01, GRF
correction, cluster-level P < 0:05). dFC: dynamic functional connectivity; BA: Brodmann area; LB: late blindness; SC: sighted control; MNI: Montreal
Neurological Institute; GRF: Gaussian random field; LING: lingual gyrus; CAL: calcarine; THA: thalamus; MFG: middle frontal gyrus; CER: cerebelum_6.
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Figure 4: ROC curve analysis of the mean dALFF and dFC of altered brain regions. ROC curve in dALFF values: LB<HC, for B-LING/CAL,
0.770 (P < 0:001; 95% CI: 0.671–0.920); for L-THA, 0.843 (P < 0:001; 95% CI: 0.762–0.925) (a); ROC curve in dFC values: LB<HC, for L-
MFG, 0.836 (P < 0:001; 95% CI: 0.752–0.920); for R-LING/CER, 0.806 (P < 0:001; 95% CI: 0.714–0.898) (b). ROC: receiver operating
characteristic; dALFF: amplitude of low-frequency fluctuation; AUC: area under the curve; LING: lingual gyrus; CAL: calcarine; THA:
thalamus; MFG: middle frontal gyrus; CER: cerebelum_6; L: left; R: right; B: bilateral;.
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SC group. The THA is an important subcortical nucleus that
transfers various afferents from multiple sensory organs to
the primary sensory cortex [53]. Karlen et al. demonstrated
that early blindness induces abnormal patterns in thalamo-
cortical and corticocortical connections [54], and Ptito et al.
observed abnormalities in the structures of the retinothala-
mocortical pathway in patients with congenital blindness
[55]. Another study revealed that patients with blindness dis-
played significant alterations in the thalamic microstructure
[56]. Consistent with these findings, we speculated that a
reduced visual signal input due to blindness might cause
the dysfunction of the thalamus. Our results revealed that
reduced flexibility of the brain’s activity in the left THA
might reflect an impaired retinothalamocortical pathway in
LB persons.

There are some limitations to this study. First, the
selection of the sliding-window length remains a subject
of debate. We selected 50 TR as the window length based
on the criterion that the minimum length should be more
than 1/f min. The results of different sliding-window
lengths were similar to those of the main results with 50
TR, suggesting that our findings on dALFF were relatively
stable. Second, our study used relatively small sample
sizes. We intend to use larger sample sizes in the future.
Third, the LB group exhibited different ages of blindness
onset, which might be associated with heterogeneity in
the presentation of LB. Some covariates, including age
and gender, meanwhile, were regressed in the statistical
analysis to reduce their impact on the accuracy of results.
In terms of statistical methods, FDR correction may be
used to reduce the bias of results in future studies. Besides,
dynamic functional network connectivity method would be
used to further reveal the changes in neural mechanisms
of blindness in the future study.

5. Conclusion

We have shown that individuals with LB exhibited lower
temporal variability of dALFF in the visual cortices and thal-
amus, suggesting lower flexibility in visual thalamocortical
activity, which might reflect impaired visual processing in
these patients. These findings indicate that abnormal
dynamic spontaneous brain activity might be involved in
the pathophysiological mechanisms of LB.
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