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)e Industry 4.0 revolution is insisting strongly for use of machine learning-based processes and condition monitoring. In this
paper, emphasis is given on machine learning-based approach for condition monitoring of shaft misalignment. )is work
highlights combined approach of artificial neural network and support vector machine for identification and measure of shaft
misalignment. )e measure of misalignment requires more features to be extracted under variable load conditions. Hence,
primary objective is to measure misalignment with a minimum number of extracted features. )is is achieved through nor-
malization of vibration signal. An experimental setup is prepared to collect the required vibration signals. )e normalized time
domain nonstationary signals are given to discrete wavelet transform for features extraction. )e extracted features such as
detailed coefficient is considered for feature selection viz. Skewness, Kurtosis, Max, Min, Root mean square, and Entropy. )e
ReliefF algorithm is used to decide best feature on rank basis. )e ratio of maximum energy to Shannon entropy is used in wavelet
selection. )e best feature is used to train machine learning algorithm. )e rank-based feature selection has improved classi-
fication accuracy of support vector machine. )e result obtained with the combined approach are discussed for different
misalignment conditions.

1. Introduction

All production and processing industries have been using
rotary machines on a major scale. In order to ensure hassle-
free operating conditions and fewer maintenance costs, it is
essential to monitor machine health condition effectively.
Eventually, machines get to adhere to the faulty conditions
in due course of time due to various inherent causes. It is
seen that out of many listed causes, misalignment is one of
the prominent causes of fault set up. Hence, to avoid such
faults, continuous monitoring is essential. Vishwakarma
et al. [1] have discussed different modes of condition
monitoring techniques. It emphasizes the importance of
both time and frequency domain analysis for nonstationary
signals. Tang et al. [2] have proposed an adaptive waveform
decomposition method of the waveform to extract time-
frequency features of nonstationary signals. )e feature

extraction for vibration signal of rolling bearing is carried
out with the Adaptive Waveform Decomposition (AWD)
algorithm and local frequency concept. )e Adaptive Neuro
Fuzzy Inference System (ANFIS) architecture has been
implemented effectively for simulation of nonlinear com-
ponents in online control systems. )e effective imple-
mentation of ANFIS has reduced nondimensional error-
index and minimized adjustable parameters very less than
other methods such as cascade correlation neural network
and backpropagation neural network [3]. Li et al. have
explained [4] the importance of online condition moni-
toring and diagnosis of power equipment. A brief review of a
transformer, gas-insulated switchgear, cable, generator, and
capacitor are described with the help of big data, Internet of
things, and cloud computing techniques. )e wavelet gray
moment vector approach is claimed as an effective tool in
fault diagnosis of rotating machinery [5]. )e detailed fault

Hindawi
Shock and Vibration
Volume 2020, Article ID 1650270, 12 pages
https://doi.org/10.1155/2020/1650270

mailto:amit.umbrajkar@dypiemr.ac.in
https://orcid.org/0000-0002-9740-6677
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1650270


classification method [6] is based on the wavelet packet
energy ratio of resampled vibration signals. In comparison of
wavelet transform with other methods such as variational
mode decomposition and empirical mode decomposition,
the evaluation of the upper as well as lower envelops is one of
the main steps in calculations. For that reason, the error
developed in envelop estimation will spread in the recursive
decomposition results [7]. )e analysis is carried out at a
multilevel energy ratio to extract fault features of the vi-
bration signal. Sohn and Farrar [8] have presented time
series analysis for fault source in mechanical systems. A two-
stage model combined with autoregression and exogenous
input technique is used for damage location. Dhumale and
Lokhande [9] have presented fault diagnosis of voltage
source inverter. )e author has used extracted features from
normalized current signals effectively to train Artificial
Neural Network (ANN).

)e fault diagnosis system under variable load condition
is developed for diagnosis of the voltage source inverter.
Wilson Wang has proposed an extended Neuro Fuzzy
system for real-time machinery condition monitoring. )e
developed monitoring system has been validated with ex-
perimental results and confirmed adaptability for different
fault conditions [10]. Liu and Wang have explained fault
diagnosis analysis for low-speed and heavy load slewing
bearing. Different options viz. vibration, temperature, oil,
stress, etc. are discussed and compared with innovative
current analysis [11]. Shao et al. [12] have adopted deep
wavelet autoencoder to handle unsupervised feature learn-
ing and developed an intelligent fault diagnosis system for
rolling bearing. A multiple wavelet autoencoder is used to
improve unsupervised feature learning ability. Tonks and
Wang [13] have presented a combined approach of Artificial
Neural Network (ANN) and Support Vector Machine
(SVM) for fault identification in radial distribution systems.
)e principal component analysis technique is used for data
analysis and faults are classified in combination with support
vector classifiers. )e change in thermometric condition in
combination with SCADA system have been effectively used
by Tonks and Wang [13] for detection of angular and offset
misalignment in wind turbine shaft. )e change in a con-
dition of misalignment has been mapped with the changing
temperature of the system. In this case, fault isolation is very
essential to correlate misalignment with a change in tem-
perature. )e effect of torsional longitudinal vibration on
aligned condition [14] has been studied through the simple
lumped mass model and results are verified experimentally.
A required coupling stiffness coefficient for reducing tor-
sional vibration has been discussed. Acoustic emission
technique [15] is used over conventional vibration analysis
to detect angular misalignment of the shaft. )e change in
sound condition at support bearing is considered as a source
of input. Especially at remote locations, the misalignment
present is detected accurately with a combined approach of
thermograph, i.e., thermal imaging and vibration analysis.
)is is claimed as an effective technique in which elevated
positions are considered for measurement such as windmill
gearbox [16]. A theoretical analysis of the combined effect of
shaft misalignment and unbalance is presented in the first

part of the paper. Experimental validation is carried out to
support the claims in conclusion [17].

)e fuzzy-based controlling of current to avoid non-
linear load drawbacks has been explained.)e compensating
currents are injected with the help of static current distri-
bution compensator [18]. Singh et al. have explained helical
gearbox fault diagnosis using wavelet theory and J48 algo-
rithm. )e maximum accuracy in feature extraction is
claimed by using SYM8 wavelet [19]. Patra and Bruzzone
[20] have explored combined advantage of self-organizing
map neural network and support vector machine to select
uncertain and diverse samples in image classification. )e
effective combination of feature selection and feature ex-
traction technique with SVM [21] is used for the prediction
of defective software modules. )e correlation-based feature
selection technique with SVM has been compared with other
available techniques to prove accuracy claimed in results.
)e vibration signal obtained is normalized [22] for effective
feature selection. )e discrete wavelet transform is applied
for suitable feature extraction. )e discrete wavelet trans-
form and fuzzy logic have been used in combination to
predict shaft misalignment. In the review paper, Hsu and Lin
[23] presented compared several methods of SVM and
showed sample cases which are one-against-one (OAO) as a
best suitable for practical use.)emathematical analysis part
of binary and multiclass SVM with an example of disease
classification is explained [24].

An integrated approach of data mining and machine
learning method is proposed for classification of type of
damage condition in wood poles [25]. )e advantage of
nonlinear mapping of SVM along with enhanced cat swarn
optimization is used to predict compressive strength of high
performance concrete [26]. )e nonlinear behavior of
magnetorheological elastomer base isolator is optimized
based on artificial neural network and ant colony algorithm
[27]. )e artificial neural network is proposed for accurate
estimation of modulus of elasticity by considering effect of
Alkali-Silica reaction in concrete [28].

)e statistical methods such as the fuzzy system are
much better by formulating rules for handling ambiguity
and defining the relationship between input and output. If
there is no ambiguity in the information collected and since
the data is labeled, there is no need to use fuzzy systems or
unsupervised machine learning algorithm such as K-NN
[29]. ANN is a nonlinear model that is easy to use and
understand as a simple statistical method [30]. Most of the
statistical methods are parametric models that require a high
background of statistics; ANN is a nonparametric model. It
cannot define the relationship between input and output and
cannot deal with uncertainty. To overcome this, a number of
approaches have been combined with ANN to select fea-
tures, and so on [31]. Deep learning requires a large amount
of data and needs to be trained in complex data models,
which can be very expensive. It requires huge datasets to
train.

In an overview of the literature study, the feature ex-
traction-based condition monitoring technique is discussed
for various faults other thanmisalignment [1–8].)e various
fault analysis technique based on vibration, temperature,
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stress analysis, and some of these in combination with ANN
are considered for fault identification. In many cases of
mechanical fault analysis, measurement of fault is essential
to understand severity of fault generated.)emajor of faulty
severity is not focused cases such as unbalance, misalign-
ment, and crack analysis [9–16]. )e SVM-based fault
classification is used in various fields viz. static current
distribution compensator, image processing, software de-
fects, and decease classification. )e SVM-based fault
classification has been exercised in the domain of me-
chanical engineering [17–23, 32]. )e on-field application
and use of ANN-SVM approach for various engineering
domain has been explained [24–27]. )ere are different
artificial intelligence algorithms for fault classification. )e
selection depends on the type of problem and size of data
available [28–31, 33].

)e fault prediction and measure of fault severity, both
are essential parts of run time condition monitoring. )e
present work focuses on the classification and measure of
shaft misalignment under variable load conditions using
combined approach of ANN and SVM. )e normalized
vibration signals are used for feature extraction. )e suitable
mother wavelet is selected on the basis of maximum Energy
to Shannon Entropy (ESE) ratio. )e ReliefF algorithm is
used for best feature selection. )e selected best features are
used to train SVM for classification of misalignment as well
as an input for ANN for measure of misalignment. )e
suitable structure for ANN is selected out of several trained
structures based on the accuracy of prediction. )e novelty
of proposed Classification and Prediction of Shaft Mis-
alignment (CPSM) is to classify the type of misalignment
and to measure misalignment under variable speed condi-
tions with minimum number of features and least data size
for training. )is is achieved by normalization of vibration
signals before feature extraction. )e results obtained show
that accuracy of SVM and ANN classifier has been improved
due to rank-based feature selection.

2. Methodology

)e proposed CPSM is implemented to output signals ob-
tained for healthy and faulty condition, and observations are
recorded for all conditions. )e outline of test rig used is
shown in Figure 1. An accelerometer is placed at the casing
of second bearing to sense vibration in all three directions
viz. Longitudinal (Vg), Lateral (Vt), and Vertical (Vr). )e
misalignment is generated artificially in set up to visualize a
proportional change in Overall Vibration Level (OVL). )e
wide range of vibration levels is observed for a different
range of misalignment and speed conditions. )ese output
signals obtained are normalized in the range of 0 to 1. )e
normalization of the signal maintains distinctive values of
extracted features under varying load conditions without
loss of information. )e normalized signals viz. VgNn, VtNn,
and VrNn are obtained from [22]

VjNn �
Vjn

max Vj􏼐 􏼑
, (1)

where j is a direction vector which represents g, randt three
direction. )e output vibration signals are recorded in these
directions.

)e vibration signals are normalized and features such as
Detailed coefficient (DC) and Average coefficient (AC) are
extracted. Normalization reduces data size in the training of
classifier and helps to improve accuracy. )e selection of
appropriate mother wavelet is carried out on the basis of DC.
)e DC and AC are obtained from

DC(BN) � 􏽘

q

p�0
VBN[u] × h(p − u). (2)

AC(BN) � 􏽘

q

p�0
VBN[u] × g(p − u). (3)

From equations (2) and (3), h and g are filtered coef-
ficients, p is the number of samples, and u is shifting pa-
rameter. )e extracted features are used for feature selection
viz. Maximum (Max), Minimum (Min), Skewness, Kurtosis,
Rms, and Entropy.)e selected DC feature is revealed better
with change in OVL for different conditions of misalign-
ment. Hence, in CPSM, selection of correct mother wavelet
is carried out on the basis of DC.

3. Experiment Facilities and Instrumentation

In the training of ANN and SVM, a large amount of real-
time data with the actual misaligned condition is the
foremost important part. It is obtained from the experi-
mental setup. Figure 2 shows a pictorial view of the ex-
perimental setup. It comprises a motor, coupling, base plate,
and two bearings. )e vibration isolation pads at the base of
a heavy foundation plate are used to isolate vibration from
other sources. In the setup preparation, a major focus is
projected on the actual induction of parallel and angular
misalignment. )e proper directional slot at the base of
motor and base plate interface facilitates an easy induction of
offset and parallel misalignment for experimental purpose
on the artificial mode. It is very important to ensure zero
misaligned states of an experimental setup in static condi-
tions before carrying out the experiments. A fixture with
special consideration has been prepared to verify zero
misalignments. )is fixture facilitates the use of the Face and
Rim method to serve the purpose of checking alignment
conditions. In this, the fixture is clamped on motor side
coupling and the dial is simultaneously mounted on the face
and rim part of rotor side coupling. )e face dial calibrates
angular alignment deviation and rim dial calibrates
offset alignment deviation simultaneously in reference to
motor side coupling. A variable frequency drive (VFD) is
used to run setup at different operating speeds. )e range of
motor speed is closely considered with a standard rated
speed of industrial motor selection.

In the implementation of CPSM, two sets of observations
are recorded. One with varying speeds and constant mis-
alignment and others with varying misalignment and
constant speed. )e few samples collected at 1200 rpm for
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different misalignment conditions are presented in
Figures 3–5. )e variation of OVL with respect to change in
misalignment and speed is shown in Figure 6. In order to
prevent any unbalance or runout problem, a shaft along with
a rotor was tested on a dynamic balancing machine before its
assembly. )e vibration signals are collected at bearing. An
accelerometer (PCB make, Model: 352B70, measurement
range: ±49000m/s2, frequency: 0.4 to 20 kHz) is used for
sensing vibration signals in three directions. )e directional
slots are provided at the base plate, which enables to in-
troduce offset and angular misalignment in the setup on
artificial mode. )e misalignment is introduced with a step
of 0.02mm, i.e., 7.88 mils for the entire range of experi-
ments. )e digital storage oscilloscope (DSO) (Tektronix

make TBS 1064, 60MHz, 4 channels, measurement accu-
racy: vertical ±3%, from 10mV/div to 5V/div) is used to
record and store vibration signals obtained from an accel-
erometer. )ese signals are analyzed with Discrete Wavelet
Transform (DWT) and further considered as input for
processing data with SVM-ANN. )e input referred for
experimentation is shown in Table 1.

4. Implementation

In the experimental setup, misalignment is introduced ex-
ternally to obtain the vibration signal required for analysis.
)e output vibration signals are recorded in all three di-
rections viz. Longitudinal (Vg), Lateral (Vt), and Vertical

Measure of misalignment

Artificial neural network

Triaxial
accelerometer to 
sense vibration

Normalization

Feature selection

Motor Bearing 2
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vector 
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Figure 1: SVM- and ANN-based misalignment prediction.
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Figure 2: Experimental setup.
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(Vr). For detailed discussion and comparison, a sample
vibration signal at 1200 rpm and variation of misalignment
in the range 0 to 0.2mm is considered, as shown in Figure 7.

It is observed that the overall vibration level (OVL) is in-
creased with an increase in the value of misalignment, as
compared in Figure 6.

)e fault which may occur in the rotary machine is
confirmed with the particular fault frequency. It clear that
the misalignment of the shaft is observed at 1X and 2X
frequency harmonics [16, 22]. For detailed discussion and
comparison, a sample vibration signal at 1200 rpm and
variation of misalignment in range 0 to 0.2mm is consid-
ered, as shown in Figure 7. It is essential to understand fault
information associated with nonstationary signals. )is is
possible with multilevel analysis using DWT. DWT is a
widely used technique to obtain information in time and
frequency domain.

)e DC feature extracted is compared for various sample
condition mentioned in Figure 7. )e change in OVL for
different misaligned condition has been reflected with
corresponding change in DC values. It is compared and
depicted in Figure 8. It is observed that few faults are
registered at same common frequency as shown in the
mechanical fault diagnostic chart [32]. In such cases, DWT
assists to identify and isolate uncommon feature of fault.

)e vibration signals measured with an accelerometer are
shown in Figures 3–5, which are nonlinear in nature. In view of
extracting useful information from nonlinear signals, it is es-
sential to select proper signal processing technique and select
proper features.)eMean, Max, Kurtosis, Skewness, RMS, and
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Figure 3: 0.06mm offset, 1200 rpm.
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Table 1: Input parameters for pilot experimentation.

Parameters Conditions
Speed (rpm) 900, 1200, 1500, 1800
Parallel misalignment
(mm)

0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14,
0.16, 0.18, 0.2

Angular misalignment
(mm/inch) 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.
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Shannon entropy are commonly selected features that can be
obtained from extracted feature of vibration signals. )e re-
quired feature extraction of vibration signal is carried out using
wavelet transform. Dwt is useful in time and frequency domain,
which shows fault existing impulse effectively. Different mother
wavelets are examined at different levels to select most suitable
wavelet and suitable level based on maximum Energy to
Shannon Entropy ratio (ESE), as shown in Table 2.

All mother wavelet considered are compared at different
levels of decomposition based on ESE ratio, as shown in
Figure 9. It is clearly observed for all considered mother
wavelet that energy contained in signal is reduced as the level
of signal decomposition increased. )erefore, level one is
considered, as it contains maximum information for wavelet
and feature selection. Different types of mother wavelet viz.
Daubechies (DB), Coiflet, Symlet, HARR, DMEY, Bio-
rthogonal, and Reverse Biorthogonal are considered during
the analysis while using DWT. )e correct level of mother
wavelet is decided on the basis of maximum Energy to
Shannon Entropy (ESE) ratio.)is ratio is maximum at level
1 for all considered wavelet.)e average of ESE for each class
of fault and for eachmother wavelet is plotted and compared
in Figure 10. It is clear from Figure 10 that DB2 and SYM2
has higher ESE ratio. As mathematical function of these two
wavelets are the same, so any one can be selected. Hence,
DB2 mother wavelet at level 1 is selected for analysis.

5. Multiclass SVM Theory

)e SVM is used as a classifier in the present work.)e SVM
refers to category of supervised learning algorithm in which

set of output values are given to learning machine. Let us
consider two classes of misalignment to be identified as Q1
and Q2. M is an unknown feature vector to be classified into
classes.

)e classification rule is applied, as shown in equation
(4). In this equation, ‘i’ is the unknown input to be
classified:

P M1( 􏼁 � WTMi + a> 0≫MiϵQ1

P M2( 􏼁 � WTMi + a< 0≫MiϵQ2

⎫⎬

⎭, (4)

whereWT is the orientation of hyperplane and ‘a’ is position
of hyperplane.

)e classifier is implemented to train the data by finding
out the values of WTand a. During training, ensure that the
value of WTand a is modified in such a way that P(M1) will
come to the positive side of hyperplane. Similarly, modify
the value ofWTand “a” in such way that P(M2) will come to
the negative side of hyperplane. Support Vector Machine
(SVM) finds the best position of line. SVM tries to keep the
maximum distance between these classes and separating
boundaries so that a small noise cannot misclassify the given
feature of unknown input.

For every Mi, assign class belonging to it. Mi, belonging
to class Yi, where Yi �±1, can be written as

MiϵQ1, Yi � +1,

MiϵQ2 Yi � −1
􏼩. (5)

)e generalized equation can be written as equation (6),
irrespective of class:
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Yi Wi · Mi + a( 􏼁> 0. (6)

Once W and “a” are determined, the unknown vector P
can be classified into two classes using equation (4). In SVM,
representing maximum margin can be written as

P M1( 􏼁 � W
TM + a> β, (7)

where β is margin. )e distance ofM from the hyperplane is
given by

W · M + a

‖W‖
􏼠 􏼡 ≥ β. (8)

By proper scaling, the β parameter can be set to unity.
Hence, equation (8) can be written as

Yi Wi · Mi + a( 􏼁 � 1, if Mi is Support Vector,

Yi Wi · Mi + a( 􏼁> 1, if Mi is not Support Vector.
(9)

Table 2: Comparison of mother wavelet at different levels on the basis of ESE.

Level DB1 DB2 BIOR 1.1 BIOR 1.3 COIF1 COIF2 COIF3 SYM2 RBIO1.3 DMEY
1 0.0389 0.0473 0.0389 0.0389 0.0287 0.0302 0.0366 0.0473 0.0394 0.0370
2 0.0200 0.0128 0.0200 0.0200 0.0296 0.0279 0.0276 0.0128 0.0196 0.0248
3 0.0107 0.0090 0.0107 0.0121 0.0124 0.0108 0.0105 0.0090 0.0111 0.0151
4 0.0065 0.0072 0.0065 0.0067 0.0065 0.0059 0.0066 0.0072 0.0059 0.0160
5 0.0051 0.0064 0.0051 0.0063 0.0068 0.0074 0.0079 0.0064 0.0059 0.0103
6 0.0025 0.0029 0.0025 0.0025 0.0023 0.0019 0.0016 0.0029 0.0029 0.0076
7 0.0024 0.0020 0.0024 0.0033 0.0021 0.0022 0.0023 0.0020 0.0026 0.0011
8 0.0028 0.0032 0.0028 0.0035 0.0041 0.0028 0.0020 0.0032 0.0031 0.0009

DB1 DB2 BIOR 1.1 BIOR 1.3 COIF1 COIF2 COIF3 SYM2 RBIO1.3 DMEY
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Figure 9: Comparison of mother wavelet at different levels.
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From equation (8), it can be observed that the margin β can
be maximized by minimizing ||W|| and maximizing the bias ‘a’.
)erefore, a function to minimize the weight can be written as

∅(W) � W
t
W �

1
2

W · W. (10)

Similarly, for support vector, the constraint is obtained
by the following equation to minimize the term
(1/2Wt · nW).

)e above constraint optimization problem can be
converted into unconstraint optimization using the “La-
grangian Multiplier”:

L(W, a) �
1
2

(W · W) − Σαi Yi W · Mi + a( 􏼁􏼂 􏼃 − 1, (11)

where αi is the Lagrangian Multiplier Optimization of equation
(11), which can be carried out by taking derivative with respect
to ‘a’ and equating it to zero and equation (12) is obtained:

􏽘

n

i�1
αiYi � 0. (12)

Similarly, Lagrangian Multiplier Optimization can be
carried out by differentiating equation (11) w.r.t W, and
equation (13) is obtained:

W � Σ αiyiMi. (13)

)e above binary classification is applicable if class labels
have only two values (k-class, k< 2). In some cases, it is
required to deal withmore than two classes in the actual fault
diagnosis of the machine. In such a case (k-class, k> 2),
Multiclass SVM classifier is used. It can be obtained by
combining several binary classifiers. )e various methods of
obtaining Multiclass SVM are viz. One-against-all (OAA),
One-against-one (OAO), and Direct acyclic graph (DAG).
)e OAO is observed most commonly as the considered
method [24]. )is method constructs k∗ (k− 1)/2 classifier,
where each one is trained on data from two classes. Let, ith
and jth be two classes for training, which can be explained as
follows:

Minimize:
1
2

w
ij

����
����
2

+ c 􏽘
t

ξij
t w

ij
􏼐 􏼑

T
,

for the condition w
ij

􏼐 􏼑
T
ϕ xt( 􏼁 + b

ij ≥ 1 − ξij
t , if yt � i,

w
ij

􏼐 􏼑
T
ϕ xt( 􏼁 + b

ij ≤ −1 + ξij
t , if yt � j.

(14)

)e decision is based on the following rule.
If ((wij)Tϕ(xt) + bij) says that x is in ith class, then one

vote will be added to ith class. If this is not true, then a vote
will be added to the jth class. Accordingly largest vote count
will decide class for x.

6. Training of ANN

)e normalized Kurtosis features are used as an input to
train ANN. )e Kurtosis feature values are obtained for

different misalignment conditions for three directions. )e
various combinations of ANN structures considered are as
shown in Table 3. For training, the Levenberg–Marquardt
algorithm method is used with tan sigmoid activation
function. )e selection of the best structure depends on the
size training data, neurons in input, hidden, and output
layer, and the initial weight is assigned to the input signals.
In the range of 0 to 0.2mm, 10 conditions of misalignment
are considered for different operating speeds up to 2100 rpm,
respectively. In the proposed work, for ANN training, 6000
samples are considered, which includes 4500 samples of the
misaligned condition and 1500 samples of aligned (healthy)
conditions. )e samples are considered as 50% of the total
for the training of ANN, 25% of the total sample for testing
of ANN, and the remaining 25% for crossvalidation of ANN.
)e Machine Learning Models (MLMs) can guarantee the
optimal performance, as it test several models, first with the
fundamental ones. Crossvalidation is a method for assessing
MLMs by training numerous MLMs on subsets of the ac-
cessible input data and assessing them on the comple-
mentary subset of the data. Use crossvalidation to detect
overfitting, failing to generalize a MLM.

An input layer, hidden layer, and output layer are con-
sidered as themain part of the ANN structure. For the proposed
ANN structure, it has three inputs. )e attainment of accuracy
controls the number of hidden layers. Hence, the number of
hidden layers is considered a trial and error basis such as 5, 10,
15, 20, and 25. )e learning rate during the training of ANN is
varied in the range of 0.01 to 0.04. )e number of epochs
considered is 1800. )e different structures considered for
training and testing are shown in Table 3.

)e ANN structure 3-20-11 with learning rate 0.03 is
good for MoM in offset misalignment and angular mis-
alignment. )e performance of ANN during training is
shown in Figure 11. )e MSE, is 0.05 which is obtained at
1300 epochs. )e MATLAB software is used for training,
testing, and validation of ANN.)e output error observed in
the testing of trained ANN is calculated as below:

Error �
Eo − Ao( 􏼁 × 100

Ao
, (15)

where Eo is expected output and Ao is actual output.

7. Results and Discussion

In the present study of shaft misalignment, the output vi-
bration signals are obtained from the experimental setup.
)e output signals are normalized to achieve reduction in
data size required for training as explained earlier.

)e average ESE is more for DB2 and SYM2. )e DB2
wavelet is selected as the suitable mother wavelet as
explained earlier. )e eighteen statistical features are ob-
tained to analyze information in output signal. )e ReliefF
algorithm is used to optimize feature selection on rank basis.
)e sample vibration signal at 1200 rpm for misalignment is
considered for presenting key points of analysis. It is clearly
seen that all mother wavelet reflect good ESE ratio at level 1.
)e explanation in support with fact that disorder, i.e.,
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entropy is minimum and information is maximum at the
first level of signal decomposition. )is is the basis for se-
lection of level 1 for comparison.

)e rank basis feature optimization is carried out by
using ReliefF algorithm. )e kurtosis feature is observed
as rank 1 feature. )erefore, kurtosis features of all

Table 3: Comparison of ANN structure.

Structure Learning rate Accuracy
3-5-11 0.03 87.70
3-10-11 0.03 89.25
3-15-11 0.03 93.00
3-20-11 0.03 94.17
3-25-11 0.03 91.00
3-5-11 0.02 88.29
3-10-11 0.02 90.00
3-15-11 0.02 91.57
3-20-11 0.02 92.00
3-25-11 0.02 92.25

0 1000 2000
Ephocs

MSE = 0.05 at 1300 epoch

0

0.5

1

1.5

2

2.5

M
SE

Figure 11: Variation of MSE in training of ANN.

Table 4: Ranking-based feature selection using ReliefF algorithm.

Accuracy in percentage

Position Order/
rank Features Complex

tree
Medium
tree

Simple
tree

Linear
SVM

Quadratic
SVM

Cubic
SVM

Fine
Gaussian
SVM

Medium
Gaussian
SVM

Coarse
Gaussian
SVM

1 6 Skew_1Z 33.1 23 16.4 12.0 20.5 23.4 19.8 15.2 8.4
1_2 5 Skew_1Y 58.5 28.7 20.3 25.9 39.3 53.7 40.1 24.7 10.7
1_3 4 Skew_1X 64.8 34.0 20.1 39.1 59.1 69.1 54.7 33.4 14.4
1_4 11 Min_1Y 76.2 49.9 20.0 54.8 70.3 76.8 74.0 53.1 28.2
1_5 15 Max_1Z 81.1 51.8 18.2 63.8 78.9 80.1 82.5 63.9 40.7
1_6 12 Min_1Z 83.0 53.7 18.2 70.7 80.3 80.2 85.2 67.1 44.7
1_7 14 Max_1Y 85.7 56.7 18.2 72.8 82.5 84.4 89.5 75.6 53.2
1_8 10 Min_1X 85.2 58.9 18.4 78.0 83.8 85.9 89.7 80.1 60.1
1_9 3 Kurtosis_1Z 87.3 55.0 18.4 78.9 84.9 86.4 89.3 80.1 63.4
1_10 2 Kurtosis_1Y 87.3 55.0 18.4 78.7 85.5 86.5 89.4 81.7 63.2
1_11 1 Kurtosis_1X 88.7 55.5 18.4 78.1 86.1 86.5 88.7 83.4 63.4
1_12 13 Max_1X 88.7 56.0 18.4 80.4 86.4 86.7 88.8 82.7 66.4
1_13 9 Rms_1Z 88.7 65.0 22.4 79.4 85.7 87.5 88.5 87.9 67.2
1_14 8 Rms_1Y 89.2 65.0 22.4 79.9 86.1 87 88.4 83.3 67.4
1_15 7 Rms_1X 88.4 65.0 22.4 79.7 85.9 86.5 88.1 83.2 67.2
1_16 18 EN_1Z 89.3 64.9 22.4 79.7 85.7 86.4 87.8 83.4 67.3
1_17 17 EN_1Y 89.2 64.7 22.4 79.3 85.7 86.2 87.6 83.1 67.2
1_18 16 EN_1X 89.1 64.7 22.4 79.2 85.9 86.5 87.4 83.7 66.9
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signals are obtained using DB2 at level 1. )e kurtosis
feature of normalized vibration signals is considered as
an input to train ANN and SVM. In the rank-based
feature selection, the Kurtosis as a single feature shows
efficiency 19.8 %. )is efficiency has been improved upto
89.7 % by adopting combination of top eight ranked
features, as depicted in Table 4. It is clear that eight top-
ranked features are sufficient to obtain highest efficiency
for fine Gaussian SVM classifier referred in this
implementation.

In the CPSM approach, SVM and ANN are used for
misalignment analysis. SVM classifier is applied to identify
the class of misalignment. )e misalignment condition
which is to be classified has assigned a number as 0, 1, and −1
for healthy condition, offset misalignment, and angular
misalignment, respectively. )e few samples of output vi-
bration signals are tested with SVM to confirm the output of
fault classification, as shown in Table 5. It contains

classification results obtained for three conditions related to
healthy and misalignment. )e sample cases of parallel and
angular misalignment for varying load conditions are
considered, as shown in Table 6.

)e output of Multiclass SVM has obtained with good
accuracy, as shown in Table 6. )e selected kurtosis feature
of DC of all normalized vibration signals is taken as input to
SVM.

)e points which has significant effect on improving
the accuracy of CPSM are explained. )e best part of the
CPSM is the normalization of the vibration signal. )e
correct selection of mother wavelet is on the basis of the
ESE ratio. )e selection of the correct ANN structure has
also contributed to minimizing MSE. )e application of
ReliefF algorithm for deciding rank of features and
selecting top-ranked feature combination in training has
also influenced in improving classification accuracy of
misalignment.

Table 6: Results obtained using classification and prediction of the shaft misalignment method.

Rotational
speed (rpm)

Type of
misalignment

Misalignment
(mm)

SVM results ANN result
SVM:

distance to H
Classed by

SVM
Expected

outcome (Eo)
Actual

outcome (Ao)
% error

500

Parallel

0 0.002 0 0.00 0.0030 0.30
0.02 1.239 1 0.02 0.0204 2.00
0.04 2.920 1 0.04 0.0414 3.50
0.06 3.572 1 0.06 0.0622 2.75

Angular

0 0.022 0 0.00 0.0019 0.19
0.01 −1.925 −1 0.01 0.0102 2.00
0.03 −1.110 −1 0.03 0.0312 4.02
0.04 −1.592 −1 0.04 0.0410 2.69

1200

Parallel

0 0.014 0 0.00 0.0025 0.25
0.02 1.239 1 0.02 0.0205 2.79
0.04 2.920 1 0.04 0.0406 1.57
0.06 3.572 1 0.06 0.0617 2.89

Angular

0 0.022 0 0.00 0.0040 0.40
0.01 −1.925 −1 0.01 0.0103 3.89
0.03 −1.110 −1 0.03 0.0308 2.79
0.04 −1.592 −1 0.04 0.0418 4.68

2100

Parallel

0 0.012 0 0.00 0.0010 0.10
0.02 1.239 1 0.02 0.0251 2.57
0.04 2.920 1 0.04 0.0408 2.15
0.06 3.572 1 0.06 0.0616 2.67

Angular

0 0.022 0 0.00 0.0030 0.30
0.01 −1.925 −1 0.01 0.0104 4.21
0.03 −1.110 −1 0.03 0.0311 3.92
0.04 –1.592 –1 0.04 0.0408 2.21

Average % error: 2.28

Table 5: SVM multifault classifier output for selected samples at 1200 rpm.

Rotational speed (rpm) Fault type Number of samples
Classed by SVM

SVM: distance to H
Healthy Offset Angular

1200

Healthy 10 0 — — 0.0139
Misaligned 10 — — −1 −1.925
Misaligned 10 — 1 — 1.239
Misaligned 10 — 1 — 2.920
Misaligned 10 — — −1 −1.110
Misaligned 10 — 1 — 3.572
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8. Conclusion

A combined approach of Support Vector Machine and
Artificial Neural Network is implemented successfully to
obtain classification and prediction of shaft misalignment.
)e main contribution of study lies in implementing
normalization of signals and ranking of features which is
uncommon in problem of misalignment analysis. )e
selection of proper mother wavelet on the basis of max-
imum ESE has contributed well in feature selection. )e
implementation of the classification and prediction of the
shaft misalignment method is seen with the least error in
output results in misalignment fault classification and
MoM. )e accuracy of Support Vector Machine is seen to
a good level for all conditions viz. healthy, parallel, and
angular misalignment. In tested results of trained artificial
neural network, a 3-20-11 structure is observed as the best
artificial neural network structure for offset and angular
measure of misalignment. )e use of first eight ranked
features has improved classification accuracy. It is ob-
served that the selection of epochs and learning rate has
also an effect on minimizing the error. )e different
samples tested for parallel and angular misalignment have
classified successfully with the implementation of support
vector machine. )e average error observed in the output
of the trained artificial neural network is 2.28%. It is
concluded that the error in output of classification and
prediction of shaft misalignment is within limit due to
normalization, correct wavelet selection on the basis of
maximum energy to Shannon entropy ratio, and rank-
based feature selection using ReliefF algorithm. )is
approach is helpful in effective real-time condition
monitoring of machines. )e future scope of this work can
be extended for fault prognosis of other faults related with
bearing, gears, insufficient lubrication, and unbalance
combined with misalignment to ensure effective condi-
tion-based maintenance.
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