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Prediction of bridge component condition is fundamental for well-informed decisions regarding the maintenance, repair, and
rehabilitation (MRR) of highway bridges. The National Bridge Inventory (NBI) condition rating is a major source of bridge
condition data in the United States. In this study, a type of generalized linear model (GLM), the ordinal logistic statistical model, is
presented and compared with the traditional regression model. The proposed model is evaluated in terms of reliability (the ability of
a model to accurately predict bridge component ratings or the agreement between predictions and actual observations) and model
fitness. Five criteria were used for evaluation and comparison: prediction error, bias, accuracy, out-of-range forecasts, Akaike’s
Information Criteria (AIC), and log likelihood (LL). In this study, an external validation procedure was developed to quantitatively
compare the forecasting power of the models for highway bridge component deterioration. The GLM method described in this
study allows modeling ordinal and categorical dependent variable and shows slightly but significantly better model fitness and
prediction performance than traditional regression model.

1. Introduction

The highway bridge system is generally considered an essen-
tial part of the US transportation infrastructure. The efficient
use of public funds for repairing and maintaining bridges
requires an effective bridge asset management framework.
Transportation management agencies worldwide have begun
to adopt bridge management systems (BMS) to determine
the optimum future bridge maintenance, repair, and rehabil-
itation (MRR) strategy at the lowest possible life-cycle cost
based on forecasted bridge conditions [1-4]. Use of various
forecasting models has played a critical role in predicting
future bridge conditions for decision makers.

In the United States, highway bridge ratings typically
consist of three major components: deck, superstructure, and
substructure. The current method for monitoring them relies
heavily on visual inspections which only take into account
the observed physical health of the bridge. During visual
inspections, a condition rating of the three major components
is given on an integer scale of 0 to 9 with 8 equal interim
levels. On this scale, 0 is failure and 9 is near-perfect condition

[5]. Bridge components deteriorate as a result of operating
conditions and external environmental loads [6]. Because of
the importance of these components for normal operation
and safety, prediction models for component conditions are
routinely developed to assess the condition of bridges for a
given future time span.

A review of the literature reveals that many researchers
have used various models to predict the future condition
rating of bridges ([2-4, 7-15]; Lu and Zheng 2017). These
prediction models include straight-line extrapolation, linear
regression, Markovian, nonlinear regression, logistic regres-
sion models, artificial neural networks, Bayesian network,
simulation, and some data mining based algorithms [7].

Applications of deterioration models such as Markov-
chains and simulation are gaining popularity in forecasting
bridge condition ratings; however they are limited by their
inability to provide specific information on the deterioration
of an individual infrastructure element [16]. In addition,
the assumption in the Markovian method that probabilistic
deterioration in a given period is independent of history
can be unrealistic for bridges [9]. Artificial intelligence such
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as neural networks is advantageous because of their ability
to model nonlinearities automatically. Neural networks can
handle binary categorical inputs by using 0/1 inputs, but
it would be difficult to handle multiple categories that are
ordinal in nature. Moreover, neural networks are more of a
“black box” method that produces results that are difficult
to interpret [16]. Multiple linear regression’s simplicity and
explanatory relationship explains its popularity in literature,
but this method may not be appropriate to model bridge
condition because it does not take into consideration the
ordinal discrete dependent variable. Use of multiple linear
regression in that case will result in a violation of the normal-
ity assumption [9, 16]. Logistical methods such as the probit
model allow the capture of the latent nature of infrastructure
performance and incremental discrete dependent variables
but do not adequately account for the multilevel discrete and
ordinal nature of bridge ratings [9].

Multinomial regression is a variant of nonlinear regres-
sion that is capable of handling discrete dependent variables
with multiple levels. However, bridge condition ratings are
commonly represented as variables that are both discrete and
ordinal in nature. In multinomial logistic regression, values of
the dependent variable do not indicate any order or ranking.
Ordinal logistic regression is an extension of multinomial
regression that is believed to be theoretically appropriate and
practically feasible for modeling bridge component rating
changes. Those logistic models have been widely adopted in
modeling discrete choices in motor vehicle crash severity and,
to a lesser degree, in pipeline deterioration and wastewater
utility deterioration [16]. However, use of the method to
model bridge component or element rating changes has rarely
been found in previous studies [17]. Madanat, Mishalani,
and Ibrahim [17] presented an ordered probit method for
the estimation of infrastructure deterioration models and
associated transition probabilities from condition variables.

Moreover, the accuracy of the decision-making relies
heavily on the outcomes of a reliable bridge condition
forecasting model ([2, 15]; Lu and Zheng 2017). Many
recent researches focus on improving model forecasting
accuracy and shed some light on improving forecasting
accuracy [2, 4,12-15]. However, many of the researches ignore
the forecasting reliability and provide incomplete picture
regarding forecasting accuracy. Accuracy reported through
previous research are often the statistical relative closeness
measurement of model estimation to the actual condition
[12, 18]; those measurements are critically important to
demonstrate statistical soundness of the model’s forecasting
power; however, they do not provide the full picture of
the forecasting capability. For example, for discrete values
such as bridge component ratings, estimation closeness along
with exact estimation and estimation within certain rating
difference will provide more complete pictures. Moreover,
many previous researches ignore the forecasting reliability
issue [18]. Their forecasting model can perform really well
with certain data or dependent variables but work really
poor with others. Thomas and Sobanjo [12] proposed a
semi-Markov chain deterioration model, working really well
with pourable joint seal element condition forecasting with
relative closeness of 0.981 as 1 being perfect estimation,
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but working really poor with reinforced concrete abutment
element condition forecasting with relative closeness of 0.154.

In this research, the authors will evaluate the model
forecasting capability based on various measurements includ-
ing relative closeness measurements and exact accurate.
Moreover, this research will validate the model forecasting
power with not only in-sample data but also external data
validation for three bridge component ratings.

2. Objective

In this study, an ordinal logistic regression method was
developed to predict network-level bridge component rat-
ings with North Dakota 2012 NBI data. A multiple linear
regression model was also developed with the same data set
as a reference for comparing model fitness and forecasting
skill. The model is not perfectly suited for handling ordinal
data as stated earlier; however it can be used for comparison
since this type of model is popular within engineers and are
straight forward to develop and use. Five criteria were used
to evaluate and compare the two models: prediction error,
bias, accuracy, out-of-range forecasts, Akaike’s Information
Criteria (AIC), and log likelihood (LL). The developed model
was validated with North Dakota 2013 and 2014 NBT data.
The application of the model for predicting MAP-21 bridge
performance indicator was conducted and discussed.

3. Ordinal Logistic Regression

Ordinal logistic regression is used to model the relationship
between an ordered multilevel dependent variable and inde-
pendent variables. In the modeling, values of the dependent
variable have a natural order or ranking. One example of
ordinal variables is bridge component ratings (ranging from
0 to 9, with 0 being fail and 9 being near-perfect). When the
response categories are ordered, in ordinal logistic regression
model, the event being modeled not only is having an out-
come in a particular category but also preserves information
about response categories which are ordered. Ordinal logistic
regression models, also known as proportional odds models,
utilizing proportional odds, have the following general form
[19] shown in

1( v >_ ( P(Y; < jlxpxy...0x,) )
n 0 =In -
1-y’ l—P(YiS]le,xz,...,xp) )

=71; _(ﬁlxl +Brx; +"'+:BPxP)

where Y is response variable with k ordered categories;

=12, k1

yi(j ' is cumulative probability P(Y; < j) = P(Y; = 1) +
P(Y; = 2)+---+ P(Y; = j) for j=1,2,.. .k-1. Note y* =
P(Y < k) = 1, so it should not be modeled;

Y; are dependent observations which are statistically
independent i=1,2,...,n;

X1> Xy ..., X, are p explanatory variables;
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TaBLE 1: Condition ratings used in the National Bridge Inventory (NBI).

Code Meaning Description
9 Excellent As new
8 Very Good No problems noted.
7 Good Some minor problems.
6 Satisfactory Structural elements show some minor deterioration.
5 Fair All primary structural elements are sound but may have minor section loss, cracking,
spalling or scour.
4 Poor Advanced section loss, deterioration, spalling or scour.
Loss of section, deterioration, spalling or scour has seriously affected primary
3 Serious structural components. Local failures are possible. Fatigue cracks in steel or shear
cracks in concrete may be present.
Advanced deterioration of primary structural elements. Fatigue cracks in steel or shear
2 Critical cracks in concrete may be present or scour may have removed substructure support.
Unless closely monitored it may be necessary to close the bridge until corrective action
is taken.
Major deterioration or section loss present in critical structural components or
1 Imminent Failure obvious vertical or horizontal movement affecting structure stability. Bridge is closed
to traffic but with corrective action may put back in light service.
0 Failed Out of service, beyond corrective action.

Source: United States Department of Transportation. Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges.

Washington, D.C., 1995, page 38.

/31,[32,...,/3? correspond to the regression coeffi-
cients for the respective independent variables;

7; are the cut-off points between categories.

Multinomial logit models do not consider proportional
odds and ignore ordered response categories. For k possible
outcomes, running k-1independent binary logistic regression
models in which one outcome, say k, are chosen as a reference
and then the other k-1 outcomes are separately regressed
against the reference outcome. The general form is followed
by the following equation:

P(Y;=j
ln(ﬁ):ﬁ]xi where j=1,2,....,k=1 (2)

The restriction of ordinal regression originates from the
proportional odds assumption even though ordinal regres-
sion takes care of ordinal relationship between levels of the
dependent variable [16]. The proportional odds assumption
is that f is independent of j. In other words, the effects
of independent variables, f3s, are constant between different
levels of the dependent variable. The proportional odds
assumption can be tested by using a likelihood ratio score
test to determine whether allowing the effects of independent
variables to change will result in significant improvements
in model fitness [16]. If the proportional odds assumption
is not met, there are still several options, such as using the
partial proportional odds model [20]. Our models meet the
proportional odds assumption, possibly because of the large
sample size and continuous latent response. The proportional
odds cumulative-logit model acts well with its connection to
the idea of a continuous latent response. Bridge condition is
actually a categorized version of a latent continuous variable.

The 9-point scale is a coarsened version of a continuous
variable indicating degree of component condition. The
continuous scale is dived into 9 regions by 9 cut-points:
0-9. If we have normal errors rather than logistic errors,
or in other words when an error term is a random error
from a logistic distribution with mean zero and constant
variance, the coarsened version of a continuous variable will
be related to the independent variables by a proportional odds
cumulative-logit model. It worth mentioning that the 9-point
scale of bridge component ratings is subjective and there is a
great need to model the relationship between the inspection
rating and the actual condition of the bridge components.
However, in this research the main focus is to demonstrate the
forecasting improvement of the proposed model with 9-point
scale measuring components due to the data availability.

4. National Bridge Inventory Database

The National Bridge Inventory (NBI) ASCII database is a
unified database compiled by the Federal Highway Admin-
istration (FHWA) for all bridges and tunnels in the United
States that have public roads passing above or below them
[21]. The database provides the most comprehensive bridge
information in the United States. Detailed information
regarding NBI data can be found in the FHWA NBI reference
report [22]. The data in the NBI is collected by state highway
agencies and reported to FHWA annually/biennially.

As stipulated in the National Bridge Inspection Stan-
dards, bridges are inspected at least once every 24 months.
During these inspections, the conditions of the three major
bridge components (deck, superstructure, and substructure)
are rated using a standard scale developed by Federal
Highway Administration (Table 1). One can tell easily that



bridge component ratings are ordinal discrete data from
Table 1. North Dakota 2012 NBI data is selected for model
formulation and North Dakota 2013 and 2014 NBI data are
used for external model validation purpose.

In this study, not only in-sample fitness assessment is
conducted with the data set used to construct the model
for the purpose of ensuring the model’s in-sample fitness.
External data forecasting validation is also conducted with
two separate data sets along with MAP21 indicators to explore
model’s forecasting reliability. ND 2012 data set is selected
for the purpose of constructing models and ND 2013 and
2014 data sets are selected for external forecasting validation
purpose. However, it is easy to demonstrate validation proce-
dures with any data set that makes available.

Bridge distributions by three component ratings for ND
2012 are displayed in Figure 1. As shown in Figure 1, most
bridges are coded as 7 or 8 for all superstructure, substructure,
and deck conditions. Very few bridges conditions are rated as
poor or lower.

In this study, ordinal logistic regression and multiple
linear regression models were constructed to forecast bridge
conditions. Model fitness and forecasting skills are evaluated
and compared between the two types of models. Several
criteria were selected for evaluating and comparing the two
models and are introduced in the following section.

5. Model Evaluation and Comparison Methods

The following measures were considered in this research:
prediction error (PE), bias, accuracy, out-of-range forecasts,
percent of correct estimation, Akaike’s Information Criteria
(AIC), and log likelihood (LL). The models were constructed
with the same dataset and compared in two senses: model
fitness and prediction performance. All seven proposed
measurements can be used to assess model fitness with the
same data set that was used to build the model. The first
five measures can be used to evaluate model forecasting
performance with external evaluation data.

The prediction error, also known as residuals, is a mea-
sure of the discrepancy between the observed data and an
estimated value which can be mathematically expressed as
(3). Two variants of the prediction error were selected for
comparison: sum of absolute residuals (SAR) and sum of
residual sum of squares (RSS). They are expressed as (4) and

(5).

em = Yi~ Yo 3)

SAR =) ey (4)
i=1

RSS = Y'el, ()

i=1

where y; and y; are the observed and predicted values of the
predictions for data point i.

Bias indicates, on average, how much a model overpre-
dicts (where bias >1) or underpredicts (where bias <1) the
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observed data [23], with bias equal to 1 indicating zero bias
and it is shown as

Bias = 10" ) log,, (%) (6)

i=1 1

The accuracy measurement indicates, on average, how
much the prediction differs from observed data [23], with 1
indicating perfect accuracy. This measurement is shown as

7
() o

Fit criteria such as Akaike’s Information Criteria (AIC)
are also selected to compare model fitness between the two
models. AIC is a common measure of model fit that balances
model fit against model simplicity. The model with the
smallest AIC is deemed the “best” model based on apparent
validation. In other words, a smaller AIC value indicates a
better model/predictor. This can be mathematically expressed
as

n

Accuracy = 101/"2

i=1

AIC=n*ln(R—SS>+2k 8)

n

where k is the number of free parameters; and n is the number
of data points.

Out-of-range forecasts were counted when the forecasted
value is greater than 9 and less than 0 for bridge components.
This issue only exists for multiple linear regression. For
ordinal regression, any out-of-range forecast is always zero.
Percent of correct estimation assesses model performance
and fitness by examining the prediction and actual observa-
tion agreement ratio.

6. Development and Evaluation of Ordinal
Logistic Regression Model

Multiple regression models for forecasting bridge component
rating are still used by some transportation agencies such as
North Dakota DOT to assist in bridge inventory management
[8, 16, 23, 24]. In research on this subject, a few key
explanatory variables were found to contribute to network
bridge rating changes. The variables used in the analysis are
summarized in Table 2. The parameters such as weather,
freeze-thaw, deicing applications, etc. are not available for us
and thus are not included in the model.

Forward stepwise regression based on all adjusted r-
square, Akaike information criterion, Bayesian information
criterion was used to select the “best” multiple regression
model. Detailed regression model selection techniques and
theories are out of the scope of this study and readers
are referred to Draper and Smith [25]. An ordinal logistic
regression model is constructed through an explicit enu-
meration of all available explanatory variables available and
the “best” fitted model is selected based on model selection.
The same data and model selection methods are applied for
the selection of a multiple linear regression model for the
purpose of comparison. In this study, both in-sample fitness
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FIGURE 1: Bridge distribution by component ratings for ND 2012.

and external validation will be performed for both regression
models and the indicators described in earlier sections will
be used to evaluate model quality. In-sample fitness test is
conducted with the same data set, ND 2012 data that is
used to develop the model. Apparent validation validates a
model’s goodness of fit on the entire dataset used to construct
the model which may not reveal the true predictive ability
of the model because the exact same dataset is used for
model development and validation test. External validation
is the most accurate and unbiased test for the model and
the entire data collection process as stated by Harrell et al.
[26]. External validation’s main emphasis is that predictions
from the previously developed model are tested on a new
data set that is different from the development population.
ND bridge inventory data in 2013 and 2014 can serve on
this purpose perfectly for three reasons: (1) NBI reports data
annually in separate datasets that will lead to differences
in various aspects of the data; (2) the bridges included in
validation datasets and model construction datasets vary
because bridges may be closed or open to traffic for various

reasons in different years; (3) NBI inspection records in each
single year contain the whole bridge population but not
sample [27].

Two candidate models were constructed for predicting
deck, superstructure, and substructure component perfor-
mance ratings, respectively, with North Dakota NBI 2012
data. To illustrate the model performance, the models were
first evaluated and compared by an in-sample validation
method with previously introduced measurements and then
ND NBI data from 2013 and 2014 were used to further con-
duct external prediction validation. Significant parameters
for the two sets of models were tested at 90% confidence level
as shown in Table 3.

As shown in Table 3, reconstruction, bridge type, and
district are categorical variables and ADT, age, and age
squared are numerical variables. Positive and negative values
in Table 3 indicate the corresponding variables’ relationship
to component condition categories. For example, ADT has
a negative relationship with deck condition. In other words,
deck condition ratings decrease as ADT values increase. Both
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TABLE 2: Description of variables used in analysis.

Name of variable

Description of variable

Reconstruction Reconstruction record: Yes, No (binary variable)
Bridge Material Type Structure materials: Steel, Concrete, Timber (dummy variable)
L Highway districts: Bismarck, Devils Lake, Dickinson, Grand Forks, Minot, Valley
District . 115 .
City, Williston, Fargo (dummy Variable)
Age Bridge age: Inspection year-construction year or inspection year-reconstruction
§ year (continuous variable)
Age2 Bridge age squared (continuous variable)
ADT Annual daily traffic per lane (continuous variable)

TABLE 3: Significant parameters and statistics with 2012 data.

Model Statistics Multiple Linear Regression

Ordinal Regression

Deck Superstructure Substructure Deck Superstructure Substructure
Sample Size 2354 2991 2991 2354 2991 2991
Significant Significant Significant Significant Significant Significant
Reconstruction  (Positive for with ~ (Positive for with  (Positive for with  (Positive for with  (Positive for with  (Positive for with
(DF=1) record comparing record comparing record comparing record comparing record comparing record comparing
without record) without record) without record) without record) without record) without record)
Bridge Material
Type Significant Significant Significant Significant Significant Significant
(DF=2)
g)lsl:tilg; Significant Significant Significant Significant Significant Significant
Significant, Not Significant, Significant, Significant, Significant, Significant,
ADT . . . . . .
Negative Negative Negative Negative Negative Negative
Significant, Significant, Significant, Significant, Significant, Significant,
Age . . . . . .
Negative Negative Negative Negative Negative Negative
Significant, Significant, Significant, Significant, Significant, Significant,
Age2 s s s s s o
Positive Positive Positive Positive Positive Positive

Note: all independent variables are significant at 90% of the confidence.

age and age squared are identified as significant contributors
to condition ratings indicating a nonlinear polynomial effect
of age. With positive age squared sign and negative age sign,
one can tell the effect of age could be positive up to certain
age and ten negative thereafter. For categorical independent
variables the relationship is relative among independent
variable categories as shown for “reconstruction” which only
contains two levels. All models indicate that if a bridge
has reconstruction history, the component ratings tend to
be better. In other words, reconstruction will improve the
bridge component ratings. Note that all models provide
expected significant relationships between dependent and
independent variables except for ADT’s significance for
superstructure rating with the multiple linear regression
model. However, the relationship is identified as significant
with the ordinal logistic regression model.

To assess how well the model fit the 2012 data, Table 4
shows the comparison results among all the models with
indicators introduced earlier in the paper and the percentage
of estimations within one or two condition-rating difference.
Estimations within 1 condition-rating difference are the
estimations that predict component ratings no greater than
one above or below observed ratings. Estimations within 2

condition-rating differences are the estimations that predict
component ratings no greater than two above or below
observed ratings. From Table 4, three ordinal models for
deck, superstructure, and substructure consistently show
slightly but significant better results than the corresponding
multiple linear regression models.

Of the predictions from linear regression models, 0.38%,
0.87%, and 1.07% are out-of-range (0 to 9). The percent of
exact-match predictions by three multiple linear regression
models (each with the same prediction and observation)
are 44.18%, 47.51%, and 41.66%, while the ordinal logistic
predictions are much better: 48.3%, 56.74%, and 44.13%. The
same conclusion is true for percentage of estimations within
one condition-rating difference and within two condition-
rating differences. One can tell that the three ordinal multi-
nomial models have more percentage component rating
predictions that are off by one or two observation ratings. The
bias and accuracy indicators for ordinal logistic regression
model are all slightly closer to 1 than those for multiple
linear regressions. The sum of absolute residual, sum of
residual squares, AIC, and LL, consistently indicate all ordinal
regression models perform better than multiple regression
models. The ordinal models improve the model performance
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TABLE 4: Model comparison statistics with 2012 data.

Model Statistics Multiple Linear Regression Ordinal Regression

Deck Superstructure Substructure Deck Superstructure Substructure
Sample Size 2354 2991 2991 2354 2991 2991
Sum of Absolute 1,656 1,906 2,380 1,433 1,494 2,200
Residuals
Sum of Residual 2,446 2,722 4,090 1,933 1,986 3,580
Squares
Bias 1.087 1.090 1.128 1.026 1.023 1.078
Accuracy 1.117 1.112 1.180 1.103 1.081 1.174
AIC 5,946 6,875 8,571 5,416 5,994 7,541
LL -2,957 -3,421 -4,270 -2,845 -3,131 -3,950
Out-of range 0.38% 0.87% 1.07% 0% 0% 0%
Forecasts
Percent Exact 44% 47% 41% 48 % 56 % 44%
Estimations
Percent Estimation
within 1 Rating 87% 90% 83% 92% 95% 89%
Difference
Percent Estimation
within 2 Rating 96% 96% 93% 99% 100% 98%

Differences

in terms of the sum of residual squares by 20.97%, 27.04%,
and 12.47% compared to the multiple regression models for
deck, superstructure, and substructure, respectively. Detailed
improvement percentage values for all the four indicators are
shown in Table 5.

7. Model Validation with New Datasets

To further illustrate the external validation method result, the
same ordinal logistic and multiple linear regression models
from 2012 data are validated and compared with all ND
NBI 2013 and 2014 deck, superstructure, and substructure
observed data. Model performances were compared for
ordinal logistic and multiple linear regressions by comparing
sum of absolute residuals, sum of residual squares, bias, accu-
racy, out-of-range forecasts, and percentage of estimations
which are within one or two rating differences compared
with observed component ratings and exact forecasts. The
performance results are shown in Tables 6 and 7 for 2013 and
2014, respectively.

One can tell from Tables 6 and 7 that ordinal logistic mod-
els perform consistently better than multiple linear regression
models for all deck, superstructure, and substructure models
and for all indicators with both external validation data sets.
The improvement percentages for 2012, 2013, and 2014 are
shown in Table 8.

Some interesting observations were obtained in the anal-
ysis. Table 8 indicates the superstructure ordinal model has
the highest improvement consistently for all three of the
yearly data sets and for each of the indicators, except for
2014 bias indicator, followed by the deck model and then
the substructure model. The deck model has the highest

improvement for bias in 2014, followed by the superstructure
model and then the substructure model. There is no specific
trend for model performance improvement by year. For
example, deck model improvement for the sum of absolute
residuals decreased from 13.47% in 2012 to 13.27% in 2013
and to 12.9% in 2014. The deck model improvement for the
sum of residual squares increased from 20.97% to 21.39%
then to 22.04% from 2012 to 2014. Finally, the deck model
improvement for bias increased from 5.61% to 6.66% and
then decreased to 5.7% from 2012 to 2014.

8. Analysis of MAP-21 Bridge
Performance Indicator

The MAP-21 rules require all states to report percentage of
national highway system bridges classified in good condition
and poor condition. Bridge condition can be determined
based on an assessment of the deck, superstructure, and
substructure. The method used under the Highway Bridge
Program is selected to determine bridge conditions: compo-
nents with condition ratings of no less than 7 are rated as
“Good” and no greater than 4 are rated as “Poor”. When
all three components are rated as “Good” the overall bridge
condition rating can be coded as “Good” and when all three
components are rated as “Poor” the overall bridge condition
rating can be coded as “Poor”. The observed bridge condition
measures and the forecasted measures are listed in Table 9.
The values displayed in Table 9 are estimated and observed
percentage of bridges in good or poor conditions. By com-
paring estimated percentage of good or poor bridges to the
observed percentages for 2012, 2013, and 2014, respectively,
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TABLE 5: Performance improvements by ordinal model compared with multiple linear model.
Model Statistics Model Performance Improvements Percentage

Deck Superstructure Substructure
Sum of Absolute Residuals 13.47% 21.62% 7.56%
Sum of Residual Squares 20.97% 27.04% 12.47%
AIC 8.91% 12.81% 12.02%
LL 3.79% 8.48% 7.49%

TABLE 6: Model comparison statistics with 2013 data.
Model Statistics Multiple Linear Regression Ordinal Regression
Deck Superstructure Substructure Deck Superstructure Substructure
Sample Size 2309 2943 2943 2309 2943 2943
Sum of Absolute 1568 1832 2316 1360 1480 2207
Residuals
Sum of Residual 2328 2642 4072 1830 1950 3677
Squares
Bias 1.096 1.099 1.147 1.023 1.022 1.097
Accuracy 1.126 1.119 1.202 1.099 1.081 1.2
Out-of-range 0% 0.2% 0.2% 0% 0% 0%
Forecasts
Percent Exact 45% 48% 42% 49% 56% 43 %
Forecasts
Percent Estimation
within 1 Rating 88% 90% 84% 93% 94% 87%
Difference
Percent Estimation
within 2 Rating 98% 97% 94% 100% 100% 97%
Differences
TABLE 7: Model comparison statistics with 2014 data.
Model Statistics Multiple Linear Regression Ordinal Regression
Deck Superstructure Substructure Deck Superstructure Substructure

Sample Size 2281 2906 2906 2281 2906 2906
Sum of Absolute 1550 1793 2247 1350 1441 2129
Residuals
Sum of Residual 2350 2493 3841 1832 1823 3417
Squares
Bias 1.087 1.079 1.105 1.025 1.022 1.053
Accuracy 1.115 1.098 1.156 1.101 1.080 1.151
Out-of range 0% 0% 0.1% 0% 0% 0%
Forecasts
Percent Exact 46% 48% 43% 50% 56% 44.%
Forecasts
Percent Estimation
within 1 Rating 86% 91% 84% 93% 95% 87%
Difference
Percent Estimation
within 2 Rating 96% 98% 94% 100% 99% 97%

Differences
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TABLE 8: Performance improvements by ordinal model compared with multiple linear model.
Model 2012 2013 2014
Statistics Deck Superstruc.  Substruc. Deck Superstruc.  Substruc. Deck Superstruc.  Substruc.
Sum of
Absolute 13.5% 21.6% 756% 13.3% 19.2% 4.71% 12.9% 19.6% 5.25%
Residuals
Sum of
Residual 21.0% 27.0% 12.4% 21.4% 26.2% 9.7% 22.0% 26.8% 11.0 %
Squares
Bias 5.61% 6.15% 4.43% 6.66% 7.01% 4.36% 5.7% 5.28% 4.71%
Accuracy 1.25% 2.79% 0.51% 2.4% 3.4% 0.17% 1.26% 1.64% 0.43%
lljz)(:ecctasts 9.33% 19.4% 5.93% 8.01% 15.6% 1.59% 6.46% 16.0% 1.5%
TABLE 9: Bridge condition measures required by MAP-21 comparison results.
Deck Superstructure Substructure Overall

Good Poor Good Poor Good Poor Good Poor
2012 Observed 48.14% 3.14% 70.38% 3.58% 54.26% 11.84% 44.82% 1.87%
2012 Estimate (Multilinear Regression Model) ~ 60.85% 0.00% 81.71% 0.00% 62.89% 0.90% 54.42% 0.00%
2012 Estimate (Ordinal Model) 51.32% 1.10% 73.65% 0.53% 61.95% 2.67% 48.94% 0.42%
2013 Observed 47.07% 3.11% 69.58% 3.51% 52.56% 12.07% 44.48% 2.04%
2013 Estimate (Multilinear Regression Model) ~ 58.38% 0.00% 80.68% 0.00% 62.39% 2.24% 54.79% 0.00%
2013 Estimate (Ordinal Model) 49.98% 0.13% 73.72% 0.27% 60.22% 5.32% 49.11% 0.13%
2014 Observed 45.14% 3.21% 68.37% 3.18% 51.55% 11.63% 43.05% 1.75%
2014 Estimate (Multilinear Regression Model) ~ 57.14% 0.00% 80.17% 0.00% 61.38% 1.6% 54.49% 0.00%
2014 Estimate (Ordinal Model) 48.85% 0.10% 72.99% 0.50% 59.59% 5.15% 48.27% 0.09%

one can tell that the ordinal models estimates are closer to
the observed values than multilinear regression estimates.

The above analysis shows that the ordinal logistic models
are always better at predicting bridge conditions and mea-
surements with both the in-sample and external validation
data sets.

It is worth noting that all the models are underestimate
for poor conditions due to the nature of the data distribution.
The bridge condition data is imbalanced and biased data set;
in other words, the number of observations belonging to
one category is significantly lower than those belonging to
the other categories. In the situation, the predictive model
developed using any GLMs or even conventional machine
learning algorithms could be biased and inaccurate. To
handle imbalanced classification or improve forecast of rare
events data is an extended research and should be investigated
in future research.

9. Findings and Discussions

Eight model evaluation criteria were used to compare the
goodness of fit and the forecasting power of the models with
both in-sample and external validation data sets for deck,
superstructure, and substructure condition. The following are
the main findings of the study:

(i) The analysis shows agreement among all indicators,
for all three component models, and for all three-year

(ii)

(iii)

(iv)

data sets. All the comparison results indicate the clear
improvement of the ordinal logistic model over the
multiple linear regression model.

Some indicators show significant improvement such
as sum of absolute residuals, sum of residual squares,
AIC, and exact forecasts (about 10% improvement).
However, some indicators show slight improvement
such as bias, accuracy, and LL (less than 10% improve-
ment).

Superstructure models show the greatest improve-
ment for almost all performance criteria, followed
by deck models and substructure models. To further
investigate on this issue, time series data need to be
tested to confirm that the superstructure model con-
sistently performs better than the other two models

There is no clear trend for model performance
improvement by year. According to Table 8, for some
indicators and certain models, such as sum of residual
squares, bias, and accuracy for the deck model, the
improvement sequence is 2014, 2013, and 2012 from
the greatest improvement to the least improvement
by switching from multiple linear regression model
to ordinal logistic model. For bias and accuracy of
the superstructure model, the sequence is 2013, 2012,
and 2014 from the greatest improvement to the least.
For sum of residual squares and exact forecasts, the
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greatest improvement from switching from a multiple
linear regression model to an ordinal logistic model
was achieved at year 2012 and then followed by 2014
and 2013.

(v) Ordinal logistic models will not predict out-of-range
estimations which are not controlled by multiple
linear regression model.

10. Conclusions

This paper proposes and demonstrates an ordinal logistic
regression model for forecasting bridge component rating.
The model is preferred for its ability to handle the ordinal
nature of bridge component ratings, its explanatory power
of the regression analysis, and its accurate prediction power.
In this study, both ordinal logistic regression and multiple
linear regression models have been generated for predicting
three main bridge component ratings. The multinomial
logistic model demonstrated in this research can be easily
applied with element-level data when it becomes available.
In addition to assessing model performance, both in-sample
and external validation analysis were performed for all eight
evaluation criteria. Finally, it is determined that the ordinal
logistic regression method is a better approach than the
multiple linear regression method for forecasting bridge
component ratings. It has the inherent advantage of always
making meaningful predictions and its predictions are closer
to the observations.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

(1] D. M. Frangopol, E. S. Gharaibeh, J. S. Kong, and M. Miyake,
“Optimal network level bridge maintenance planning based on
minimum expected cost,” in Proceedings of the Transportation
Research Record, pp. 26-33, Florida, USA, 2000.

[2] G. Bu, J. Lee, H. Guan, Y.-C. Loo, and M. Blumenstein,
“Long-term performance of bridge elements using integrated
deterioration method incorporating elman neural network,”
Applied Mechanics and Materials, vol. 204-208, pp. 1980-1987,
2012.

[3] O. Thomas and J. Sobanjo, “Comparison of markov chain
and semi-markov models for crack deterioration on flexible
pavements,” Journal of Infrastructure Systems, vol. 19, no. 2, pp.
186-195, 2013.

[4] M. Alsharqawi, T. Zayed, and S. Abu Dabous, “Integrated
condition rating and forecasting method for bridge decks using
Visual Inspection and Ground Penetrating Radar,” Automation
in Construction, vol. 89, pp. 135-145, 2018.

Mathematical Problems in Engineering

[5] M. J. Markow and W. A. Hyman, Bridge Management Systems
for Transportation Agency Decision Making, NCHRP Synthesis
397, National Academies Press, Washington, DC, USA, 2009.

[6] D. Tolliver and P. Lu, “Analysis of bridge deterioration rates:
a case study of the northern plains region,” Journal of the
Transportation Research Forum, vol. 50, no. 2, 2011.

[7] S. T. Ariaratnam, A. El-Assaly, and Y. Yang, “Assessment of
infrastructure inspection needs using logistic models;” Journal
of Infrastructure Systems, vol. 7, no. 4, pp. 160-165, 2001.

[8] D. Tolliver and P. Lu, “Modeling bridge condition levels in the
United States,” Journal of Civil Engineering and Architecture, vol.
6, n0. 4, pp. 415-432, 2012.

[9] S. M. Madanat, M. G. Karlaftis, and P. S. McCarthy, “Probabilis-
tic infrastructure deterioration models with panel data,” Journal
of Infrastructure Systems, vol. 3, no. 1, pp. 4-9, 1997.

[10] Y.-H. Huang, “Artificial neural network model of bridge dete-
rioration,” Journal of Performance of Constructed Facilities, vol.
24, no. 6, pp. 597-602, 2010.

[11] J. Ruwanpura, S. T. Ariaratnam, and A. El-Assaly, “Prediction
models for sewer infrastructure utilizing rule-based simula-
tion,” Civil Engineering and Environmental Systems, vol. 21, no.
3, pp. 169-185, 2004.

[12] O. Thomas and J. Sobanjo, “Semi-Markov models for the dete-
rioration of bridge elements,” Journal of Infrastructure Systems,
vol. 22, no. 3, Article ID 04016010, 2016.

[13] G. Bu, J. H. Lee, H. Guan, Y. C. Loo, and M. Blumenstein,
“Implementation of Elman neural networks for enhancing
reliability of integrated bridge deterioration model,” Australian
Journal of Structural Engineering, vol. 15, no. 1, pp. 51-63, 2014.

[14] G. Nani, I. Mensah, and T. Adjei-Kumi, “Duration estimation
model for bridge construction projects in Ghana,” Journal of
Engineering, Design and Technology, vol. 15, no. 6, pp. 754-777,
2017.

[15] M. Ahmed, O. Moselhi, and A. Bhowmick, “Integration of NDE
measurements and current practice in bridge deterioration
modeling;” in Proceedings of the 33rd International Symposium
on Automation and Robotics in Construction, ISARC 2016, pp.

341-349, USA, July 2016.

[16] B. Salman and O. Salem, “Modeling failure of wastewater
collection lines using various section-level regression model,
Journal of Infrastructure Systems, vol. 18, no. 2, pp. 146-154, 2012.

[17] S. Madanat, R. Mishalani, and W. H. Wan Ibrahim, “Estimation
of infrastructure transition probabilities from condition rating
data,” Journal of Infrastructure Systems, vol. 1, no. 2, pp. 120-125,
1995.

[18] D. Callow, J. Lee, M. Blumenstein, H. Guan, and Y.-C. Loo,
“Development of hybrid optimisation method for Artificial
Intelligence based bridge deterioration model - Feasibility
study,” Automation in Construction, vol. 31, pp. 83-91, 2013.

[19] A. Agresti, Categorical Data Analysis, John Wiley & Sons, New
York, NY, USA, 2nd edition, 2002.

[20] SAS Institute, PROC LOGISITC Proportional Odds Test and
Fitting A Partial Proportional Odds Model, 2015, http://support
.sas.com/kb/22/954.html. 2015.

[21] FHWA, Information Public Disclosure of National Bridge
Inventory (NBI) Data, 2007, http://www.fhwa.dot.gov/bridge/
nbi/20070517.cfm.

[22] FHWA, Recording and Coding Guide for The Structure Inventory
and Appraisal of The Nation’s Bridges, Federal Highway Admin-
istration, U.S. Department of Transportation, 1995.


http://support.sas.com/kb/22/954.html
http://support.sas.com/kb/22/954.html
http://www.fhwa.dot.gov/bridge/nbi/20070517.cfm
http://www.fhwa.dot.gov/bridge/nbi/20070517.cfm

Mathematical Problems in Engineering

[23] L. Zhao, Y. Chen, and D. W. Schaffner, “Comparison of logistic
regression and linear regression in modeling percentage data,”
Applied and Environmental Microbiology, vol. 67,no. 5, pp. 2129-
2135, 2001.

[24] M. Bolukbasi, J. Mohammadi, and D. Arditi, “Estimating the
future condition of highway bridge components using national
bridge inventory data,” Practice Periodical on Structural Design
and Construction, vol. 9, no. 1, pp. 16-25, 2004.

[25] N. R. Draper and H. Smith, Applied Regression Analysis, John
Wiley & Sons, New York, NY, USA, 2nd edition, 1981.

[26] F. E. Harrell Jr., K. L. Lee, and D. B. Mark, “Multivariable
prognostic models: issues in developing models, evaluating
assumptions and adequacy, and measuring and reducing
errors,” Statistics in Medicine, vol. 15, no. 4, pp. 361-387, 1996.

[27] P.Lu, S. L. Pei, and D. Tolliver, “Regression model evaluation for
highway bridge component deterioration using national bridge
inventory data,” Journal of Transportation Research Forum, vol.
55, no. 1, pp. 5-16, 2016.

1



Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

