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-e properties of anchored surrounding rock may vary considerably under complex geological and stress conditions, especially
dynamic loading in deep mining. -erefore, comprehensive study of the reinforced mechanism is required to prevent failures
associated with deep mining. In this paper, with sandstone as matrix and steel bar as bolt, the dynamic compression test of
reinforced rock was carried out by using a 50mm rod diameter split Hopkinson pressure bar (SHPB) test device. -e mechanical
and energy characteristics of reinforced rock under dynamic loading were analyzed.-e results show that the dynamic strength of
reinforced sample is greater than that of unreinforced sample and increases with the increase of the strain rate. -e reflected
energy and absorbed energy increase with the increase of incident energy, while the transmitted energy increases slightly. -e
higher the strain rate, the larger the energy dissipation rate and the higher the degree of fragmentation. It shows that the energy
dissipation characteristic reflects the internal damage process to some extent. Compared with the results of unreinforced samples,
the reflected energy of reinforced samples significantly increases and the absorbed energy will significantly decrease. It can be seen
that the bolt can reduce absorbed energy of surrounding rock, thereby improving the stability of roadway surrounding rock. -e
results may provide reference for the stability of deep roadway and support design.

1. Introduction

Rockbolts are considered as a simple, safe, and economical
rock mass reinforcement technology, which are widely used
in mines, slopes, tunnels, and other geotechnical engi-
neering, and have achieved good economic and social
benefits [1]. Rockbolt performance and reinforcement are
influenced by geological and stress conditions [2, 3], espe-
cially affected by impact loading, which are suspected as the
great challenges to the reinforcement mechanism and
support design [4, 5].

In recent decades, many scholars carried out lots of
laboratory and numerical tests, complemented by theoretical
analysis, to study the mechanism of anchored rock. In
roadway support, the anchor housing is often installed in
sections over a short section with one resin charge or using
an expansion head [6, 7]. Carranza-Torres [8] proposed a
closed-form solution of rockbolt reinforcement around

tunnels, and numerical analysis confirmed that the bolt plays
an important role in increasing the tunnel confining pres-
sure and controlling the surrounding rock deformation.
Zhao and Yang [9] designed the pull test of bolt with crack
based on the separation defect in the anchorage area and
analyzed the influence of crack on axial stress and shear
stress distribution of bolt. Zhang et al. [10] analyzed the
mechanical properties of reinforced rock mass with cross-
flaws and obtained that the compressive strength of cross-
flaws rock is higher than that of single-flaw rock. A new
analytical model that represents the behavior of reinforced
ground near a circular underground opening in a homo-
geneous, uniform stress field has been developed by con-
sidering the interaction behaviors between the grouted
rockbolt and ground [11]. Moosavi and Grayeli [12] sim-
ulated rockbolt support problems by using the DDAmethod
and mainly focused on the basic performance of the support
system. Freeman [13] first proposed the concept of “neutral
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point” by analyzing the full-length bonded anchor in the test
tunnel, which is widely recognized and applied, but the
position of “neutral point” is difficult to determine.

In practical rock engineering, rock mass is subjected to
static load and will also be affected by dynamic loads [14],
such as impact, seismic, explosion, earthquake, and blasting.
At present, some research studies have been carried out on
the dynamic mechanical response of rock [15–19]. Li et al.
[16] analyzed the cracking of single-crack marble specimen
under impact loading based on experimental study. For the
difficulty of studying the failure process of underground
rock, an experimental method is proposed to explore dy-
namic failure process of prestressed rock specimen with a
circular hole [17]. Zhang et al. [18] andHao et al. [19] studied
the effects of bedding on the dynamic and static properties of
coal and rock, respectively. However, few research studies
have been carried out on the dynamic response of the
rockbolt and reinforced surrounding rock [20–23]. And due
to complicated geological and mining conditions, a more
complete understanding of the mechanical property of
reinforced rock is required.-erefore, in this study, dynamic
compression tests of sandstones reinforced by using a steel
bar were conducted. -e mechanical and energy charac-
teristics of the reinforced rock under dynamic loading were
investigated, and the results may provide reference for the
stability of deep roadway and support design.

2. Specimen Preparation and
Experimental Methods

2.1. Specimen Preparation. -e sandstone used in the ex-
periment was taken from Linyi, Shandong Province, China.
According to the standard GB/T50266-2013 [24], standard
cylindrical samples were made (A-1 and A-2). Mechanical
parameters of the standard cylindrical specimen were ob-
tained by using the RMT-150C rock mechanics test system
(see Figure 1). -e compression test was carried out by
displacement control with a loading rate of 0.002mm/s. Two
displacement sensors with a range of 2mmwere used during
the test to determine transverse deformation of sandstone
samples. -e average compressive strength and elastic
modulus of the standard cylindrical specimen are 53.2MPa
and 4.3GPa, respectively. Meanwhile, the sandstone spec-
imen was observed by using a scanning electron microscope
with SU3500, as shown in Figure 2. From the figure, it is
observed that the internal microstructure of the rock is tight
and mainly consists of quartz and feldspar.

-e test samples, shown in Figure 3(a), were used for
unreinforced and reinforced tests and labeled as US and RS,
respectively. For example, “US-1” represents the #1 un-
reinforced specimen and “RS-1” represents the #1 reinforced
specimen. -e sample size is 50mm in thickness and 50mm
in diameter. For the reinforced specimen, the bolt arrange-
ment is shown in Figure 3(b). A hole with a diameter of 3mm
was drilled through the center side of the specimen. In this
experiment, a steel bar was used to simulate the rockbolt. -e
steel bar was inserted into the hole and anchored on the rock
with resin (the resin used is the same as in mine conditions).
-e steel bar is 60mm long, 2mm wide, and 2mm thick with

the tensile strength of 600MPa, shear strength of 400MPa,
and elastic modulus of 210GPa. Since the SHPB test can only
directly control the impact pressure and cannot directly set
different strain rates, the impact compression test was con-
ducted under the impact pressure range of 0.35∼0.6MPa.

2.2. Test System. -e dynamic compression test of rock was
carried out by using a 50mm rod diameter split Hopkinson
pressure bar (SHPB) test device. Figure 4 illustrates the
schematic of the SHPB system, which mainly consists of two
parts, i.e., three bars (an incident bar with a length of 2m, a
transmitted bar with a length of 1.5m, and an absorbing bar
with a length of 0.5m) and a data acquisition subsystem. A
semisine wave was generated by a special shape striker and
used as the loading stress wave to ensure that the stress was
even before failure of the specimens [25, 26]. -e incident,
transmitted, and absorbing bars were made of 40Cr alloy
steel with a density of 7810 kg/m3, longitudinal wave velocity
of 5410m/s, and elastic modulus of 250GPa. -e strain
gauge model on the incident and transmitted bars is BE120-
5AA and the resistance value is 120Ω. -e measurement
base has a length of 8.5mm and a width of 4mm. -e KD
6009 strain amplifier is used to collect data signals.
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Figure 1: Mechanical properties of the sandstone.

Figure 2: Electron microscopy of the sandstone.
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According to the stress wave signals collected by strain
gauges on the incident and transmitted bars, the stress,
strain, and strain rate of the specimen during impact loading
were calculated based on the one-dimensional stress wave
theory and stress uniformity hypothesis. -e calculation
formula is as follows [25]:

σ(t) �
AeEe

2As
εI(t) + εR(t) + εT(t)􏼂 􏼃, (1)

ε(t) �
Ce

Ls
􏽚

t

0
εI(t) − εR(t) − εT(t)􏼂 􏼃dt, (2)

_ε(t) �
Ce

Ls
εI(t) − εR(t) − εT(t)􏼂 􏼃, (3)

where σ(t), ε(t), and _ε(t) are the stress, strain, and strain
rate, respectively. As and Ae are the area of the specimen and

the bar, respectively. Ee is the elastic modulus of bars. εΙ(t),
εR(t), and εT(t) are the incident wave, reflected wave, and
transmitted wave, respectively. Ls is the length of specimen.
Ce is the wave velocity of bars.

3. Experimental Results

3.1. Stress Equilibrium. For dynamic compression tests, it is
necessary to eliminate wave dispersion and inertia effect to
ensure the accuracy of test results. -erefore, the stress
equilibrium at the two ends of the specimen before failure
was reached. In this paper, the typical stress wave signals of
samples US-4 and RS-4 from the dynamic loading experi-
ment are shown in Figure 5. With increase of loading time,
the curve of the sum of the incident and reflected waves
(In. + Re.) almost overlaps with that of the stress (Tr.), in-
dicating that the specimen is basically in a stress equilibrium
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Figure 3: Specimen preparation. (a) -e unreinforced and reinforced samples. (b) -e bolt arrangement.
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state during this dynamic loading process, and the test data
are reliable.

3.2. Stress-StrainCurve Characteristics. -e strain signals on
the incident and transmitted bars were recorded by using the
ultradynamic strain gauge. Based on equations (1) and (2),
the strain signals on the incident and transmitted bars can be
converted into the stress and strain signals of the specimen
during dynamic loading. -e stress-strain curves of samples
under dynamic loading are shown in Figure 6.

It can be seen from Figure 6 that the stress-strain curve of
the specimen can be divided into the phase of linear elas-
ticity, plasticity, and failure under dynamic loading. Due to
the high impact velocity, the phase of macro-microscopic
defect closure compaction is extremely short, and there is
basically no sunken section in the stress-strain curve, which
directly enters the phase of linear elasticity, and the stress
increases linearly with the strain. -en, the phase of plas-
ticity begins, and the slope of the curve decreases. Finally, the
ultimate strength of the specimen is reached, accompanied
by the failure of the specimen.

3.3. Dynamic Compressive Strength. -e mechanical pa-
rameters of the specimens under impact loading are shown
in Table 1. In order to analyze the effect of the loading rate
and bolt on rock strength, the test results are plotted as
scatter plot, as shown in Figure 7.

Figure 7 shows that the dynamic compressive strength of
US and RS samples increases with the increase of strain rate.
Moreover, the dynamic elastic modulus of the specimen is
different under different strain rates (Figure 7), and the
dynamic elastic modulus increases with the increase of strain
rate. It shows that the rock specimen has a strong correlation
with the strain rate.-e dynamic compressive strength of RS
samples is slightly higher than that of US samples. -e
results show that the strength and deformation ability of
rock are improved by applying rockbolt and reflecting the
obvious correlation of strain rate.

4. Energy Characteristics

4.1. Energy Calculation. According to the energy balance
[27], the absorbed energy of rock during impact loading can
be calculated using the following equation [28]:

Wa � WI − WR + WT( 􏼁, (4)

where Wa, WI, WR, andWT are the absorbed energy, in-
cident energy, reflected energy, and transmitted energy,
respectively. WI, WR, andWT can be calculated using the
following equations [28]:

WI � EeAeCe 􏽚
t

0
ε2I(t)dt, (5)

WR � EeAeCe 􏽚
t

0
ε2R(t)dt, (6)

WT � EeAeCe 􏽚
t

0
ε2T(t)dt. (7)

-e results show that the absorbed energy of rock is
mainly converted into the energy dissipation, kinetic energy,
and other energy, among which the energy dissipation of
specimen fragmentation is more than 90% of the absorbed
energy [29].-erefore, the absorbed energy is approximately
substituted for the energy dissipation of specimen frag-
mentation in this study. In order to measure the strength of
energy dissipation of the US and RS specimens under dif-
ferent loading rates, it is generally characterized by the
energy dissipation rate, which can be calculated as

N �
Wa

WI
, (8)

where N is the energy dissipation rate.

4.2. Analysis of Energy-Time Curves. Certainly, the de-
formation and destruction of rock is the whole process of the
energy dissipation and energy release [30–32]. -erefore, the
energy dissipation characteristics of samples during impact
loading are analyzed from the viewpoint of energy. According
to equations (4)–(7), the strain-time curves of specimen are
obtained by the experiment. -e energy-time curves of all
samples are plotted in Figures 8 and 9 by calculating.

It can be seen from Figures 8 and 9 that the same phe-
nomenon occurs for US and RS samples under impact
loading. -e incident energy, reflected energy, and absorbed
energy increase rapidly compared with the transmitted energy
with the propagation of the stress wave, and their values
maintain stable after reaching a certain value, while the
transmitted energy-time curve is approximately a horizontal
line. Based on the stress-time curve and energy-time curve, we
can find that the appearance of maximum absorption energy
indicates the failure of the US and RS samples [33].

4.3. Energy ChangeCharacteristics. Test results of the energy
distribution of samples under impact loading are shown in
Table 2. In order to analyze the effect of loading rate and bolt
on energy characteristics, the test results are plotted as
scatter plot, as shown in Figures 10 and 11.

Because the generation of incident energy is caused by
the impact between the striker bar and incident bar, the
value of incident energy is determined only by the velocity of
the impact bar. In this study, loading rates are the single
factor, and the sample type (US and RS samples) has no
effect on the incident energy. Figure 10(a) shows that the
reflected energy of all samples increases linearly with the
increase of incident energy, and the transmitted energy
increases slightly. -e absorbed energy of specimen in-
creases as a power function with the incident energy
(Figure 10(b)). As can be seen from Table 2, most of the
energy is dissipated in the form of reflected wave with in-
crease in the incident energy, which is consistent with the
results of Li et al. [34].
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Figure 11 shows that there is an exponential relation
between the energy dissipation rate of samples and strain
rate. -e failure of sample becomes more severe with the

strain rate, and the failure mode of sample develops from
cleavage to fragmentation. -at is to say, more energy was
used to generate new cracks in the samples with the
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Figure 5: Typical dynamic stress equilibrium results at unreinforced and reinforced conditions. (a) US-4. (b) RS-4.
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Figure 6: Stress-strain curves of samples under dynamic loading. (a) Unreinforced samples. (b) Reinforced samples.

Table 1: -e mechanical parameters of samples under dynamic loading.

Specimen
no.

Strain rate
(s− 1)

Compressive strength
(MPa)

Elastic modulus
(GPa)

Specimen
no.

Strain rate
(s− 1)

Compressive strength
(MPa)

Elastic modulus
(GPa)

US-1 51 56.1 5.9 RS-1 49 59.0 6.3
US-2 61 60.7 6.2 RS-2 69 69.2 6.7
US-3 73 70.4 6.9 RS-3 80 77.9 7.4
US-4 77 71.4 7.2 RS-4 87 80.5 7.6
US-5 85 73.3 7.3 RS-5 93 88.0 8.8
US-6 98 85.5 8.4 RS-6 105 99.4 9.4
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Figure 8: Continued.
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Figure 8: Energy-time curves of samples under impact loading. (a) US-1. (b) US-2. (c) US-3. (d) US-4. (e) US-5. (f ) US-6.
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Figure 9: Energy-time curves of samples under impact loading. (a) RS-1. (b) RS-2. (c) RS-3. (d) RS-4. (e) RS-5. (f ) RS-6.

Table 2: Test results of the energy distribution of samples.

Specimen
no.

Strain rate
(s− 1)

Incident energy
(J)

Reflected energy
(J)

Transmitted energy
(J)

Absorbed energy
(J)

Energy dissipation
rate

US-1 51 112.20 76.76 9.63 25.81 0.23
US-2 61 137.13 91.78 11.07 34.28 0.25
US-3 73 156.24 99.55 11.38 45.31 0.29
US-4 77 150.36 97.54 10.72 42.10 0.28
US-5 85 184.51 110.32 11.46 62.73 0.34
US-6 98 200.72 108.07 11.72 80.93 0.40
RS-1 49 106.18 78.16 7.67 20.35 0.19
RS-2 69 141.35 103.72 7.95 29.68 0.21
RS-3 80 168.27 121.25 8.32 38.70 0.23
RS-4 87 178.62 125.31 8.65 44.66 0.25
RS-5 93 190.56 131.00 8.11 51.45 0.27
RS-6 105 213.15 141.06 8.15 63.94 0.30
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Figure 10: Relation between energy and incident energy. (a)-e reflected and transmitted energy of specimens. (b)-e absorbed energy of
specimens.
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increase of strain rate, reflecting the obvious correlation of
strain rate. Comparing the energy characteristics of US and
RS samples, it is known that the absorbed energy and
transmitted energy of the unreinforced specimen are
higher than that of the reinforced specimen, while the
reflected energy of the unreinforced specimen is lower than
that of the reinforced specimen (Figure 10). As shown in
Figure 11, the energy dissipation rate increases with the
increase of strain rate, and the increased rate of the un-
reinforced specimen is slightly higher than that of the
reinforced specimen. Under the same strain rate, compared
with the unreinforced specimen, the less the energy dis-
sipation of the reinforced specimen, the more difficult the
crack propagation, and the smaller the destruction degree,
the greater the fragment (Figure 11).

5. Discussion

With increasing coal mining depth and growing coal
output, the geological and mining conditions have changed
complicated considerably [35], and roadway instability has
been a major concern for researchers. Floor heave, roof
falling off, and splitting failure of roadway are often oc-
curred. Roadway stability is analyzed from the viewpoint of
energy. -e energy is dissipated in the form of wave
propagation in the rock. A graph of wave propagation in
the interior of the reinforced specimen is shown in Fig-
ure 12. When the incident energy comes from the rock,
three components of the energy are divided, namely, the
absorbed energy, reflected energy, and transmitted energy.
From the performance of reinforced specimen, as discussed
in Sections.3 and 4, it is indicated that the dynamic strength
and deformation ability of rock were enhanced by applying
rockbolt, and the absorbed energy of the reinforced
specimen was reduced. -is is because the lateral confining
pressure σ3 is equivalently applied by inserting the bolt in

rock mass (Figure 12(b)); the material strength parameters
of rock mass were improved [36], which improves the
strength of the rock mass and restricts the crack propa-
gation. -erefore, at the same incident energy, the more
difficult the crack propagation of reinforced sample, the
less the absorbed energy [37]. When the roadway rein-
forced by the rockbolt is subjected to dynamic loading, the
rockbolt can share load, increasing the strength of roadway
surrounding rock, so the deformation of roadway sur-
rounding rock will be restricted. Furthermore, most of
energy is transmitted in the form of reflected energy, and
little absorbed energy is used to break the reinforced
surrounding rock, so the roadway will retain stability.

6. Conclusions

-e experimental investigation of steel bar-reinforced
sandstones under impact loading is presented in this paper.
-e strengths, energy characteristics, and failure patterns of
unreinforced and reinforced samples were studied. -e
following conclusions can be drawn based on this study:

(1) -e bolt can share the compressive stress of rock.-e
compressive strength of reinforced samples is greater
than that of unreinforced samples under dynamic
loading. And, the dynamic strength increases with
the increase of strain rate, reflecting a strong cor-
relation with the strain rate.

(2) -e reflected energy and absorbed energy increase
with the increase of incident energy, while the
transmitted energy increases slightly. -e higher the
strain rate, the larger the energy dissipation rate and
the higher the degree of fragmentation. It shows that
the energy dissipation characteristic reflects the in-
ternal damage process to some extent.
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Figure 11: Relation between energy dissipation ratio and strain rate. (a) US samples. (b) RS samples.

Shock and Vibration 9



(3) -e bolt has an important influence on the absorbed
energy and failure characteristics of rock. Compared
with unreinforced rock, the lesser the absorbed
energy of reinforced rock, the smaller the damage
degree. Consequently, the bolt can minimize failure
of surrounding rock.
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