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This note focuses on the stability and stabilization problem of nonlinear networked control system with time delay. To alleviate
the burden of transformation channel and shorten the dynamic process simultaneously, an improved event-triggered scheme is
proposed. This paper employs an improved time delay method to enhance the performance and reduce the delay upper bound
conservatism. Less conservative stability criteria related to the order 𝑁 are derived by establishing an augmented Lyapunov-
Krasovskii functional manufactured for the use of Bessel-Legendre inequality. In addition, an event-triggered controller is designed
for nonlinear networked control system with time delay. At last, numerical examples are proposed to verify the effectiveness of the
new method.

1. Introduction

In recent years, the networked control has been applied
to the practical control process [1]. Compared with the
point to point control method, the networked control sys-
tem has better reliability and can reduce power require-
ments, operation cost [2, 3]. There are different kinds of
networked control systems, such as centralized networked
control system [4], decentralized networked control system
[5], distributed networked control system [6], and wireless
networked control system [7]. In practice, the performance
of networked control system is always influenced by the
uncertainties and disturbance and nonlinear factors. Non-
linear networked control system’s asymptotic behavior has
been researched in [8]. Stability of nonlinear networked
control system has been studied in [9]. The literature [10,
11] have investigated robust stability of nonlinear networked
control system with uncertainties. This paper also takes
into account nonlinearity to augment the performance of
networked control system.

For traditional networked control system [12, 13], trans-
mitting all sampled packets into the network is not always
necessary from the point of view of the limited network

channel resource under the time-triggered scheme.Thus, the
event-triggered scheme (ETS) is proposed to reduce the bur-
den of channel. Under the event-triggered condition, stochas-
tic stability of nonlinear system was studied in [14]. The
fault detection issue for nonlinear discrete-time networked
systems was discussed in [15]. In recent years, researchers
have improved event-triggered scheme continuously to adjust
to various networked environments. A periodic ETS was
proposed to overcome the shortcoming needing extra hard-
ware to check triggering condition instantaneously [16].
For wireless sensor networks, the decentralized ETS was
developed to better save the channel resource [17]. In order
to shorten the dynamic process, an improved static ETS
was researched in [18] which can increase the frequency of
transmission at initial times. Furthermore, dynamic ETS was
proposed by introducing a dynamic variable in triggering
condition [19]. In this paper, we will put forward a new
improved static ETS for the nonlinear networked control
systemwith time delay to decrease the burden of channel and
improve system dynamics.

At the same time, time delay problem has been widely
investigated in the practical control system [20–24]. Variable
time delay problems appear in control system [25–27]. For
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example, the stability problems of delay neural networks was
studied in [28]. Based on the stochastic process, the random
delay was researched in [29, 30]. Robust 𝐻∞ stability of
time delay system was researched widely [31–33]. Reference
[34] studied a network-induced delay to deal with the
network transmission delay problem. The distributed delay
was developed for a class of neural network control system.
However, in this improved event-triggered networked control
system, the time delay problems still have a lot of room for
improvement [35–38].

For the sake of reducing the conservatism of stability cri-
terion of time delay systems, a series of technical approaches
have been proposed. Before listing these approaches, we
state that the conservatism of stability criteria mainly results
from the estimation gap of the integral terms expressed as∫𝑡
𝑡−𝑑2

𝑥̇𝑇(𝑠)𝑅𝑥̇(𝑠)𝑑𝑠 in the derivative of Lyapunov-Krasovskii
functional. To study stability of system,model transformation
approach was used in [39]. The stability criteria obtained
by model transformation approach have large conservatism.
To decrease the conservatism of stability criteria, a free
weighting matrix method which can remedy the drawback
of model transformation was proposed in [40]. However, free
weightingmatrixmethod will increase the decision variables,
which makes the computation complex. To overcome this
point and better estimate the integral terms, the Jensen
inequality was used widely [41]. Afterwards,Wirtinger-based
inequality which is considered a tighter method than Jensen
inequality for estimation of the integral term was developed
and employed in various systems [42]. In recent years, many
researchers have improved the Wirtinger-based inequality
approach, such as free-matrix-based integral inequality [43],
auxiliary function-based integral inequality [44]. In this
note, we will make use of a new integral inequality called
Bessel-Legendre inequality together with reciprocally convex
combination lemma to research the stability of nonlinear
networked control system with time delay under improved
event-triggered scheme.

As is well known, there is a quadratic integral term∫𝑡
𝑡−𝑑2

∫𝑡
𝜃
𝑥̇𝑇(𝑠)𝑅𝑥̇(𝑠)𝑑𝑠𝑑𝜃 in Lyapunov-Krasovskii functional,

which means that there will be a term ∫𝑡
𝑡−𝑑2

𝑥̇𝑇(𝑠)𝑅𝑥̇(𝑠)𝑑𝑠 in
the derivative of Lyapunov-Krasovskii functional. We apply
the Bessel-Legendre inequality to estimate ∫𝑡

𝑡−𝑑2
𝑥̇𝑇(𝑠)𝑅𝑥̇(𝑠)𝑑𝑠

and obtain that

∫𝑡
𝑡−𝑑2

𝑥̇𝑇 (𝑠) 𝑅𝑥̇ (𝑠) 𝑑𝑠 ≥ 𝑑2𝜙𝑇𝑁𝑅𝑁𝜙𝑁, (1)

where 𝜙𝑁 = (1/𝑑2) ∫0−𝑑2 L𝑁((𝑠 + 𝑑2)/𝑑2)𝑥(𝑠)𝑑𝑠, 𝑅𝑁 = diag (𝑅,3𝑅, . . . , (2𝑁 + 1)𝑅) and L𝑁 is Legendre polynomial matrix.
This inequality provides a tighter bound on this specific
term, which makes the obtained stability condition less
conservative. In addition, we will construct an appropriate
Lyapunov-Krasovskii functional manufactured for the use of
Bessle-Legendre inequality.

The main contributions of this paper are summarized
as follows. Firstly, an improved ETS is put forward for
nonlinear networked control system in this paper to reduce

transmission load of channel by decreasing the number
of signal transmission. The triggering parameter in this
improved scheme is time-varying to achieve the situation that
transmission frequency at the beginning instants is higher
than at the other times, which can shorten the dynamic pro-
cess of system effectively. Secondly, less conservative stability
criteria subject to the order 𝑁 are obtained by employing
the Bessel-Legendre inequality and introducing a Legendre-
based Lyapunov-Krasovskii functional. Conservatism will be
reduced with the increase of the𝑁. Furthermore, a controller
is designed for event-triggered nonlinear networked control
system with time delay.

The rest of the paper is summarized as follows. Section 2
gives the considered nonlinear networked control system and
puts forward an improved ETS. In Section 3, less conservative
stability criteria are derived via Bessel-Legrendre inequality
method. Section 4 designs a controller for the system in
this paper. To verify the effectiveness of results, numerical
examples are shown in Section 5. Finally, conclusions are
summarized in Section 6.

Notations: In this paper, symbol 𝑇 denotes the transpose.
The R𝑛 denotes the n-dimensional Euclidean space. R𝑛×𝑚 is
the set of all 𝑛×𝑚matrices.The setS𝑛(S𝑛+)means the set of the
symmetric (positive definite) matrices ofR𝑛×𝑛. Furthermore,𝐻𝑒(𝐴) = 𝐴 +𝐴𝑇. For matrices 𝐴 ∈ R𝑢×V and 𝐵 ∈ R𝑚×𝑛, their
Kronecker product is a matrix in R𝑢𝑚×V𝑛 denoted as 𝐴 ⊗ 𝐵.
The N denotes non-negative integer. 𝐼𝑛 denotes the identity
matrix with 𝑛×𝑛 dimensions. 𝐼𝑛𝑁 denotes the identity matrix
with 𝑛(𝑁 + 1) × 𝑛(𝑁 + 1) dimensions.

2. Problem Formulation

In this paper, it is assumed that the networked control system
has nonlinear functionwhich satisfies the Lipschitz condition
and the system state is fully observable. Thus, in this section,
we establish the system model as𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝜏𝑓 (𝑥 (𝑡)) + 𝐵𝑢 (𝑡) ,𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑑2, 0) , (2)

where 𝑥(𝑡) ∈ R𝑛 is the state; 𝑧(𝑡) ∈ R𝑞 is the controlled
output; 𝑢(𝑡) ∈ R𝑚 denotes the control input; 𝐴, 𝐴𝜏, 𝐵, 𝐶
are real constant matrices; 𝜙(𝑡) denotes the initial condition
function; 𝑑2 is a positive scalar. Furthermore, 𝑓(𝑥(𝑡)) is
nonlinear function and satisfies󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝐹 (𝑥 − 𝑦)󵄨󵄨󵄨󵄨 , (3)

where 𝐹 is a known constant matrix.
In the nonlinear networked control system, there exists

a phenomenon of transmitting some unnecessary sampling
data during the transmission from the sensor to the con-
troller. In order to improve the networked control sys-
tem transmission performance, this paper will propose an
improved event-triggered mechanism to reduce the load of
the network transmission. Next, we will build an event-
triggered generator for the nonlinear networked control
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Figure 1: Schematic of networked control system with ETS.

system. It is assumed that the sampling sequence is S𝑠 ={0, ℎ, 2ℎ, . . . , 𝑛ℎ}. Suppose 𝑡𝑘ℎ is the current released time and𝑡𝑘+1ℎ is the next released time. In addition, 𝑡𝑘+1ℎ = 𝑡𝑘ℎ + 𝑛ℎ,
where 𝑛ℎ is the release interval of the transmitted data.

Although the data is released at 𝑡𝑘ℎ, it will arrive at
actuator at 𝑡𝑘ℎ+𝜏𝑘 instant resulting from the existence of time
delay 𝜏𝑘 ∈ [0, 𝜏), 𝑘 ∈ {0, 1, 2, ⋅ ⋅ ⋅}, scalar 𝜏 > 0.

Next, based on [18, 35] and the diagramof event-triggered
networked control system in Figure 1, a network time delay
model for the nonlinear networked control system can be
constructed. Suppose that𝜌𝑘 = min {𝑗 | 𝑡𝑘ℎ + 𝜏𝑘 + 𝑗ℎ ≥ 𝑡𝑘+1ℎ + 𝜏𝑘+1, 𝑗= 0, 1, 2, . . .} . (4)

The interval [𝑡𝑘ℎ + 𝜏𝑘, 𝑡𝑘+1ℎ + 𝜏𝑘+1) can be rewritten as

[𝑡𝑘ℎ + 𝜏𝑘, 𝑡𝑘+1ℎ + 𝜏𝑘+1 ) = 𝜌𝑘⋃
𝑗=1

Π𝑗, (5)

whereΠ𝑗 = [𝑡𝑘ℎ + 𝜏𝑘 + (𝑗 − 1) ℎ, 𝑡𝑘ℎ + 𝜏𝑘 + 𝑗ℎ) ,𝑗 = 1, 2, . . . , 𝜌𝑘 − 1,Π𝜌𝑘 = [𝑡𝑘ℎ + (𝜌𝑘 − 1) ℎ + 𝜏𝑘, 𝑡𝑘+1ℎ + 𝜏𝑘+1) .
(6)

𝑑 (𝑡) =
{{{{{{{{{{{{{{{{{

𝑡 − 𝑡𝑘ℎ, 𝑡 ∈ Π1𝑡 − 𝑡𝑘ℎ − ℎ, 𝑡 ∈ Π2... ...𝑡 − 𝑡𝑘ℎ − (𝜌𝑘 − 1) ℎ, 𝑡 ∈ Π𝜌𝑘
(7)

𝑒𝑘 (𝑡) =
{{{{{{{{{{{{{{{{{

0, 𝑡 ∈ Π1𝑥 (𝑡𝑘ℎ) − 𝑥 (𝑡𝑘ℎ + ℎ) , 𝑡 ∈ Π2... ...𝑥 (𝑡𝑘ℎ) − 𝑥 (𝑡𝑘ℎ + (𝜌𝑘 − 1) ℎ) , 𝑡 ∈ Π𝜌𝑘
(8)

where 0 < 𝜏𝑘 ≤ 𝑑(𝑡) ≤ 𝜏 + ℎ. We set the 𝑑2 = 𝜏 + ℎ, then0 < 𝜏𝑘 ≤ 𝑑(𝑡) ≤ 𝑑2.

For the 𝑡 ∈ [𝑡𝑘ℎ + 𝜏𝑘, 𝑡𝑘+1ℎ + 𝜏𝑘+1), the event-triggered
condition is𝑒𝑇𝑘 (𝑡) Ω𝑒𝑘 (𝑡) ≤ 𝜎𝑘 (𝑡) 𝑥𝑇 (𝑡 − 𝑑 (𝑡)) Ω𝑥 (𝑡 − 𝑑 (𝑡)) , (9)Ω ∈ S𝑛+, 𝜎𝑘(𝑡) is a time-varying function as𝜎𝑘 (𝑡) = 𝜎𝑘𝑗, 𝑡 ∈ Π𝑗, 𝑗 = 1, 2, . . . , 𝜌𝑘, (10)

where

𝜎𝑘(𝑗+1) = 𝜎 + 𝑒𝑇𝑘𝑗𝑒𝑘𝑗𝜆 + 𝑒𝑇
𝑘𝑗
𝑒𝑘𝑗 (𝜎𝑘𝑗 − 𝜎) , (11)

𝑒𝑘𝑗 = 𝑥 (𝑡𝑘ℎ) − 𝑥 (𝑡𝑘ℎ + (𝑗 − 1) ℎ) ,𝑗 = 1, 2, . . . , 𝜌𝑘, (12)

where known constants 𝜎 ∈ [0, 1], 𝜆 > 0, 0 < 𝜎𝑘1 < 𝜎,
and 𝜎𝑘1 is the initial value of 𝜎𝑘𝑗. It is easy to see that the 𝜎𝑘(𝑡)
is monotonically increasing and has an upper bound 𝜎.
Remark 1. The sampled data will be transmitted when con-
dition (9) is not satisfied. It is noticed that the 𝜎𝑘(𝑡) in the
improved event-triggered scheme (9) is time-varying and
meets (10), which can increase the triggering time at the initial
times to optimize the dynamic process of the system in this
paper.

Therefore, according to formulae (2)-(9), we have𝑢 (𝑡𝑘ℎ) = 𝐾𝑥 (𝑡𝑘ℎ) = 𝐾𝑒𝑘 (𝑡) + 𝐾𝑥 (𝑡 − 𝑑 (𝑡)) , (13)

where 𝑡 ∈ [𝑡𝑘ℎ + 𝜏𝑘, 𝑡𝑘+1ℎ + 𝜏𝑘+1), 𝐾 ∈ R𝑚×𝑛 represents
networked controller gain, then the system model can be
rewritten as follows:𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝜏𝐹𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡 − 𝑑 (𝑡))+ 𝐵𝐾𝑒𝑘 (𝑡) ,𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,𝑥 (𝑡) = 𝜙 (𝑡) , [−𝑑2, 0 ) ,

(14)

where 0 < 𝜏𝑘 ≤ 𝑑 (𝑡) ≤ 𝑑2,𝑑𝑚 ≤ ̇𝑑 (𝑡) ≤ 𝑑𝑀, (15)

𝑑𝑚, 𝑑𝑀 are known constants, 𝑑𝑚 < 0, 𝑑𝑀 > 0.
For analyzing the stability and stabilization problem of

nonlinear networked control system conveniently, we will
give a definition and some lemmas.

Definition 2 (see [24]). For given scalars 𝑖, 𝑗 ∈ N, the
Legendre polynomial considered over the interval 𝜇 ∈ [0, 1]
is

𝐿 𝑖 (𝜇) = (−1)𝑖 𝑖∑
𝑗=0

𝑝𝑖𝑗𝜇𝑗, (16)

where 𝑝𝑖𝑗 = (−1)𝑗 ( 𝑖𝑗 ) ( 𝑖+𝑗𝑗 ), and ( 𝑘𝑙 )means 𝑘!/(𝑘 − 𝑙)!𝑙!.
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Define that

L𝑁 (𝜇) fl [𝐿0 (𝜇) 𝐼𝑛, . . . , 𝐿𝑁 (𝜇) 𝐼𝑛]𝑇 (17)
is a polynomial matrix with (𝑁 + 1)𝑛 × 𝑛 dimensions, where
the integers𝑁 ≥ 0, 𝑛 > 0.
Lemma 3 (see [28], reciprocally convex inequality). Let
integer 𝑛 > 0 and 𝑅1, 𝑅2 be in S𝑛+. If there exist 𝑋1, 𝑋2 in
S𝑛 and 𝑌1, 𝑌2 in R𝑛×𝑛 such that

[𝑅1 00 𝑅2] − 𝛼[𝑋1 𝑌1𝑌𝑇1 0 ] − (1 − 𝛼) [ 0 𝑌2𝑌𝑇2 𝑋2] ≥ 0 (18)

holds for 𝛼 = 0, 1, then the following inequality

[[[
1𝛼𝑅1 00 11 − 𝛼𝑅2

]]] ≥ [𝑅1 00 𝑅2] + (1 − 𝛼) [𝑋1 𝑌2𝑌𝑇2 0 ]
+ 𝛼[ 0 𝑌1𝑌𝑇1 𝑋2]

(19)

holds for all 𝛼 ∈ (0, 1).
Lemma 4 (see [3]). S1, S2 and S3 are given constant
matrices, where S𝑇1 = S1, S2 = S𝑇2 . If and only if

[S1 S3

S𝑇3 −S2] < 0
𝑜𝑟 [−S2 S3

S𝑇3 S1
] < 0, (20)

then we have S1 +S𝑇3S
−1
2 S3 < 0.

Lemma 5 (see [42]). For any matrix 𝑅 ∈ S𝑛+, integer 𝑁 ≥ 0,
time functions 𝑎, 𝑏, 𝑎 < 𝑏, and a function 𝑥 inL2([𝑎, 𝑏]) 󳨀→
R𝑛), the inequality

∫𝑏
𝑎
𝑥𝑇 (𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 ≥ (𝑏 − 𝑎) 𝜙𝑇𝑁𝑅𝑁𝜙𝑁 (21)

holds, where

𝜙𝑁 = 1𝑏 − 𝑎 ∫𝑏𝑎 L𝑁 ( 𝑠 − 𝑎𝑏 − 𝑎) 𝑥 (𝑠) 𝑑𝑠𝑅𝑁 = diag (𝑅, 3𝑅, . . . , (2𝑁 + 1) 𝑅) . (22)

Lemma 6 (see [29]). For any given positive matrices 𝐿 > 0,𝑌 > 0, if the following inequality holds(𝐿 − 𝑌)𝑌−1 (𝐿 − 𝑌) > 0, (23)

then we have 𝐿𝑌−1𝐿 > 2𝐿 − 𝑌. (24)

Remark 7. For the networked control system, we have
designed an improved event-triggered generator in this
section. Under the nonlinear function and improved event-
triggered condition, the time delay problem will be reconsid-
ered. Based on above preliminaries, we will give the related
stability analysis in the next section.

3. Stability Criteria

In this section, let us investigate the stability problem of
nonlinear networked control system. Compared with the
previous networked control system, we will employ the
Bessel-Legendre inequalitymethod to reduce the delay upper
bound conservatism of the nonlinear networked control
system with time delay. At first, the relevant properties of
the Legendre polynomials will be introduced. For any given
matrix 𝑅 ∈ S𝑛+, it holds that

∫1
0
L𝑁 (𝜇) 𝑅−1L𝑇𝑁 (𝜇) 𝑑𝜇 = 𝑅−1𝑁 , (25)

where

𝑅𝑁 = diag {𝑅, 3𝑅, . . . , (2𝑁 + 1) 𝑅}
L𝑁 (1) = [[[[[[[

𝐼𝑛𝐼𝑛...𝐼𝑛
]]]]]]]
fl 1𝑁,

L𝑁 (0) = [[[[[[[[

𝐼𝑛−𝐼𝑛...(−1)𝑁 𝐼𝑛
]]]]]]]]
fl 1𝑁.

(26)

According to the properties of the orthogonal polynomi-
als, the Legendre polynomials satisfy

𝑑L𝑁 (𝜇)𝑑𝜇 = Γ𝑁L𝑁 (𝜇) = Γ𝑁L𝑁−1 (𝜇) ,
𝑑 (𝜇L𝑁 (𝜇))𝑑𝜇 = L𝑁 (𝜇) + Θ𝑁L𝑁 (𝜇) , (27)

where Γ𝑁 = [Γ𝑁 0𝑛(𝑁+1),𝑛], Γ𝑁 = 𝛾𝑁⊗𝐼𝑛 andΘ𝑁 = 𝜃𝑁⊗𝐼𝑛,
matrices 𝛾𝑁 ∈ R(𝑁+1)×𝑁 and 𝜃𝑁 ∈ R(𝑁+1)×(𝑁+1) are defined
as

𝛾𝑁 (𝑘, 𝑖) = {{{
0 𝑖𝑓 𝑘 ≥ 𝑖,(2𝑘 − 1) (1 − (−1)𝑖+𝑘) 𝑖𝑓 𝑘 < 𝑖,

𝜃𝑁 (𝑘, 𝑖) = {{{{{{{{{
0 𝑖𝑓 𝑘 ≥ 𝑖,𝑘 𝑖𝑓 𝑘 = 𝑖,(2𝑘 − 1) (1 − (−1)𝑖+𝑘) 𝑖𝑓 𝑘 < 𝑖.

(28)

Theorem 8. For given𝑁 ∈ N, the system (14) is stable if there
exist any matrices 𝑃𝑁 ∈ S(2𝑁+3)𝑛+ , 𝑄1 ∈ S𝑛+, 𝑄2 ∈ S𝑛+, 𝑅 ∈ S𝑛+,
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Ω ∈ S𝑛+, and 𝑌1 ∈ R(𝑁+2)𝑛×(𝑁+2)𝑛, 𝑌2 ∈ R(𝑁+2)𝑛×(𝑁+2)𝑛 such
that the following inequality holds for all (𝑑(𝑡), ̇𝑑(𝑡)) ∈ H:

Ξ
= [[[[[[[

Ξ𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡)) 𝑊𝑇𝑁Y1 𝑊𝑇𝑁Y2∗ −𝑑2 − 𝑑 (𝑡)𝑑2 𝑅̃𝑁+1 0
∗ ∗ −𝑑 (𝑡)𝑑2 𝑅̃𝑁+1

]]]]]]]≤ 0,
(29)

where

H = C𝑜 {(0, 0) , (0, 𝑑𝑀) , (𝑑2, 0) , (𝑑2, 𝑑𝑚)} ,
𝐻𝑁 = [[[[

0 0 0 0 0 00 1𝑁 0 0 Γ𝑁 − Θ𝑁 00 −1𝑁 0 0 0 Θ𝑁
]]]] ,

𝐽𝑁 = [[[[
𝐴 + 𝐴𝜏𝐹 𝐵𝐾 𝐵𝐾 0 0 01𝑁 −1𝑁 0 0 −Γ𝑁 00 1𝑁 0 −1𝑁 0 −Γ𝑁

]]]] ,
𝑊𝑁 = [1𝑁+1 −1𝑁+1 0 0 −Γ𝑁+1 00 1𝑁+1 0 −1𝑁+1 0 −Γ𝑁+1] ,
Λ𝑁 = [𝑅𝑁+1 00 𝑅𝑁+1] + 𝑑2 − 𝑑 (𝑡)𝑑2 [𝑅𝑁+1 𝑌2𝑌𝑇2 0 ]

+ 𝑑 (𝑡)𝑑2 [ 0 𝑌1𝑌𝑇1 𝑅𝑁+1] ,
Y1 = [[

𝑑2 − 𝑑 (𝑡)𝑑2 𝑌10 ]] ,
Y2 = [[[

0𝑑 (𝑡)𝑑2 𝑌𝑇2 ]]] ,𝐹𝑁 = [𝐴 + 𝐴𝜏𝐹 𝐵𝐾 𝐵𝐾 0 0 0] ,𝑅̃𝑁+1 = diag (𝑅, 3𝑅, . . . , (2𝑁 + 1) 𝑅, (2𝑁 + 3) 𝑅) ,

(30)

𝐺𝑁 (𝑑 (𝑡))
= [[[

𝐼𝑛 0 0 0 0 00 0 0 0 𝑑 (𝑡) 𝐼𝑛𝑁 00 0 0 0 0 (𝑑2 − 𝑑 (𝑡)) 𝐼𝑛𝑁
]]] ,Σ𝑁 ( ̇𝑑 (𝑡)) = diag (𝑄1, − (1 − ̇𝑑 (𝑡)) (𝑄1 − 𝑄2)+ 𝜎𝑘 (𝑡) Ω, −Ω, −𝑄2, 0, 0) ,

Ξ𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡))
= 𝐻𝑒 (𝐺𝑇𝑁 (𝑑 (𝑡)) 𝑃𝑁 (𝐽𝑁 + ̇𝑑 (𝑡)𝐻𝑁))+ Σ𝑁 ( ̇𝑑 (𝑡)) + 𝑑22𝐹𝑇𝑁𝑅𝐹𝑁 −𝑊𝑇𝑁Λ𝑁𝑊𝑁.

(31)

Proof. Now we choose the Lyapunov-Krasovskii functional
candidate to investigate nonlinear networked control system
as 𝑉 (𝑥 (𝑡) , 𝑥̇ (𝑡)) = 𝑉1 (𝑥 (𝑡) , 𝑥̇ (𝑡)) + 𝑉2 (𝑥 (𝑡) , 𝑥̇ (𝑡))+ 𝑉3 (𝑥 (𝑡) , 𝑥̇ (𝑡)) , (32)

𝑉1 (𝑥 (𝑡) , 𝑥̇ (𝑡)) = 𝑥𝑇 (𝑡) 𝑃𝑁𝑥 (𝑡) ,
𝑉2 (𝑥 (𝑡) , 𝑥̇ (𝑡)) = ∫𝑡

𝑡−𝑑(𝑡)
𝑥𝑇 (𝑠) 𝑄1𝑥 (𝑠) 𝑑𝑠

+ ∫𝑡−𝑑(𝑡)
𝑡−𝑑2

𝑥𝑇 (𝑠) 𝑄2𝑥 (𝑠) 𝑑𝑠,
𝑉3 (𝑥 (𝑡) , 𝑥̇ (𝑡)) = 𝑑2 ∫𝑡

𝑡−𝑑2

∫𝑡
𝜃
𝑥̇𝑇 (𝑠) 𝑅𝑥̇ (𝑠) 𝑑𝑠𝑑𝜃,

(33)

where𝑥𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑑 (𝑡) 𝜙𝑇1,𝑁 (𝑡) (𝑑2 − 𝑑 (𝑡)) 𝜙𝑇2,𝑁 (𝑡)] ,
𝜙1,𝑁 (𝑡) = 1𝑑 (𝑡) ∫𝑡𝑡−𝑑(𝑡) L𝑁 (𝑠 − 𝑡 + 𝑑 (𝑡)𝑑 (𝑡) ) 𝑥 (𝑠) 𝑑𝑠,
𝜙2,𝑁 (𝑡) = 1𝑑2 − 𝑑 (𝑡) ∫𝑡−𝑑(𝑡)𝑡−𝑑2

L𝑁 (𝑠 − 𝑡 + 𝑑2𝑑2 − 𝑑 (𝑡)) 𝑥 (𝑠) 𝑑𝑠.
(34)

Taking the derivative of 𝑉(𝑥(𝑡), 𝑥̇(𝑡)), we have𝑉̇ (𝑥 (𝑡) , 𝑥̇ (𝑡))= 𝑉̇1 (𝑥 (𝑡) , 𝑥̇ (𝑡)) + 𝑉̇2 (𝑥 (𝑡) , 𝑥̇ (𝑡))+ 𝑉̇3 (𝑥 (𝑡) , 𝑥̇ (𝑡)) ,𝑉̇1 (𝑥 (𝑡) , 𝑥̇ (𝑡)) = 𝐻𝑒 (𝑥𝑇 (𝑡) 𝑃𝑁 ̇̃𝑥 (𝑡)) ,𝑉̇2 (𝑥 (𝑡) , 𝑥̇ (𝑡))= 𝑥𝑇 (𝑡) 𝑄1𝑥 (𝑡)− (1 − ̇𝑑 (𝑡)) 𝑥𝑇 (𝑡 − 𝑑 (𝑡)) (𝑄1 − 𝑄2) 𝑥 (𝑡 − 𝑑 (𝑡))− 𝑥𝑇 (𝑡 − 𝑑2) 𝑄2𝑥 (𝑡 − 𝑑2) ,𝑉̇3 (𝑥 (𝑡) , 𝑥̇ (𝑡))
= 𝑑22𝑥̇𝑇 (𝑡) 𝑅𝑥̇ (𝑡) − 𝑑2 ∫𝑡

𝑡−𝑑2

𝑥̇ (𝑠) 𝑅𝑥̇ (𝑠) 𝑑𝑠.

(35)

Now, we define the𝜉𝑇 (𝑡)= [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − 𝑑 (𝑡)) 𝑒𝑇𝑘 (𝑡) 𝑥𝑇 (𝑡 − 𝑑2) 𝜙𝑇1,𝑁 (𝑡) Φ𝑇2,𝑁 (𝑡)] , (36)
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then due to the networked control system model (29), the
derivative of 𝑥(𝑡) can be represented by ̇̃𝑥(t) = (𝐽𝑁 +̇𝑑(𝑡)𝐻𝑁)𝜉(𝑡), where matrices 𝐽𝑁 and 𝐻𝑁 are defined in (31).
On the one hand, let us consider

𝜙𝑁 = 1𝑏 − 𝑎 ∫𝑏𝑎 L𝑁 ( 𝑠 − 𝑎𝑏 − 𝑎) 𝑥 (𝑠) 𝑑𝑠, (37)

where 𝑎 and 𝑏 are time functions. Nowwe set 𝑠(𝜇) = (𝑏−𝑎)𝜇+𝑎 to get
𝜙𝑁 = ∫1

0
L𝑁 (𝜇) 𝑥 (𝑠 (𝜇)) 𝑑𝜇, (38)

and 𝑑 [(𝑏 − 𝑎) 𝜙𝑁]𝑑𝑡 = ̇𝑎𝜓1,𝑁 + (𝑏̇ − ̇𝑎) (𝜓2,𝑁 + 𝜙𝑁) , (39)

where 𝜓1,𝑁 = (𝑏 − 𝑎) ∫1
0
L𝑁 (𝜇) 𝑥̇ (𝑠 (𝜇)) 𝑑𝜇,

𝜓2,𝑁 = (𝑏 − 𝑎) ∫1
0
𝜇L𝑁 (𝜇) 𝑥̇ (𝑠 (𝜇)) 𝑑𝜇. (40)

Applying integration by parts, we obtain𝜓1,𝑁 = 1𝑁𝑥 (𝑏) − 1𝑁𝑥 (𝑎) − Γ𝑁𝜙𝑁,𝜓2,𝑁 = 1𝑁𝑥 (𝑏) − Θ𝑁𝜙𝑁 − 𝜙𝑁. (41)

Adding these equations into (39), for all 𝑡 ∈ R+,𝑑 [(𝑏 − 𝑎) 𝜙𝑁]𝑑𝑡= ̇𝑎 (1𝑁𝑥 (𝑏) − 1𝑁𝑥 (𝑎) − Γ𝑁𝜙𝑁)+ (𝑏̇ − ̇𝑎) (1𝑁𝑥 (𝑏) − Θ𝑁) 𝜙𝑁 − 𝜙𝑁 + 𝜙𝑁)= 𝑏̇1𝑁𝑥 (𝑏) − ̇𝑎1𝑁𝑥 (𝑎) − ( ̇𝑎Γ𝑁 + (𝑏̇ − ̇𝑎)Θ𝑁) 𝜙𝑁.
(42)

Now, let us analyze two cases that (𝑎, 𝑏) = (𝑡 − 𝑑(𝑡), 𝑡)
and (𝑎, 𝑏) = (𝑡 − 𝑑2, 𝑡 − 𝑑(𝑡)).̇̃𝑥 = [𝑥̇𝑇 (𝑡) 𝑑 (𝑑 (𝑡) 𝜙𝑇1,𝑁)𝑑𝑡 𝑑 (𝑑2 − 𝑑 (𝑡)) 𝜙𝑇2,𝑁𝑑𝑡 ] ,
𝑥̇ (𝑡) = 𝐴 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑 (𝑡)) , (43)

then we have𝑑 (𝑑 (𝑡) 𝜙1,𝑁)𝑑𝑡= 1𝑁𝑥 (𝑡) − (1 − ̇𝑑 (𝑡)) 1𝑁𝑥 (𝑡 − 𝑑 (𝑡))− ((1 − ̇𝑑 (𝑡)) Γ𝑁 + ̇𝑑 (𝑡) Θ𝑁) 𝜙1,𝑁,𝑑 ((𝑑2 − 𝑑 (𝑡)) 𝜙2,𝑁)𝑑𝑡= (1 − ̇𝑑 (𝑡)) 1𝑁𝑥 (𝑡 − 𝑑 (𝑡)) − 1𝑁𝑥 (𝑡 − 𝑑2)− (Γ𝑁 − ̇𝑑 (𝑡) Θ𝑁) 𝜙2,𝑁.

(44)

On the other hand, for the function of 𝑉3(𝑥(𝑡), 𝑥̇(𝑡)), we
have

∫𝑡
𝑡−𝑑2

𝑥̇𝑇 (𝑠) 𝑅𝑥̇ (𝑠) 𝑑𝑠 ≥ [𝜙1,𝑁+1𝜙2,𝑁+1]
𝑇

⋅ [𝑑 (𝑡) 𝑅̃𝑁+1 00 (𝑑2 − 𝑑 (𝑡)) 𝑅̃𝑁+1][𝜙1,𝑁+1𝜙2,𝑁+1] ,
(45)

where

𝜙1,𝑁+1 = 1𝑑 (𝑡) ∫𝑡𝑡−𝑑(𝑡) L𝑁+1 (𝑠 − 𝑡 + 𝑑 (𝑡)𝑑 (𝑡) ) 𝑥̇ (𝑠) 𝑑𝑠,
𝜙2,𝑁+1 = 1𝑑2 − 𝑑 (𝑡) ∫𝑡−𝑑(𝑡)𝑡−𝑑2

L(𝑠 − 𝑡 + 𝑑2𝑑2 − 𝑑 (𝑡)) 𝑥̇ (𝑠) 𝑑𝑠.
(46)

Due to equation (27), we obtain

[ 𝑑 (𝑡) 𝜙1,𝑁+1(𝑑2 − 𝑑 (𝑡)) 𝜙2,𝑁+1]
= [ 1𝑁+1𝑥 (𝑡) − 1𝑁+1𝑥 (𝑡 − 𝑑 (𝑡)) − Γ𝑁+1𝜙1,𝑁1𝑁+1𝑥 (𝑡 − 𝑑 (𝑡)) − 1𝑁+1𝑥 (𝑡 − 𝑑 (𝑡)) − Γ𝑁+1𝜙2,𝑁]= 𝑊𝑁𝜉𝑁,

(47)

where𝑊𝑁𝜉𝑁 is defined in (31).
According to Lemma 5 and Bessel-Legendre inequality,

we have

𝑑2 ∫𝑡
𝑡−𝑑2

𝑥̇𝑇 (𝑠) 𝑅𝑥̇ (𝑠) 𝑑𝑠
≥ 𝜉𝑇 (𝑡)𝑊𝑇𝑁[[[[

𝑑2𝑑 (𝑡) 𝑅̃𝑁+1 00 𝑑2𝑑2 − 𝑑 (𝑡) 𝑅̃𝑁+1
]]]]𝑊𝑁𝜉 (𝑡) .

(48)

In addition, for any 𝑌1, 𝑌2 ∈ R(𝑁+2)𝑛×(𝑁+2)𝑛, consider the
matrix

Λ𝑁0 = [[[[
𝑑2 − 𝑑 (𝑡)𝑑2 𝑌1𝑅̃−1𝑁+1𝑌𝑇1 0

0 𝑑 (𝑡)𝑑2 𝑌𝑇2 𝑅̃−1𝑁+1𝑌2
]]]] . (49)

By applying Lemma 3, we have

𝑑2 ∫𝑡
𝑡−𝑑2

𝑥̇𝑇 (𝑠) 𝑅𝑥̇ (𝑠) 𝑑𝑠
≥ 𝜉𝑇 (𝑡)𝑊𝑇𝑁 [Λ𝑁 − Λ𝑁0]𝑊𝑁𝜉 (𝑡) , (50)

where Λ𝑁 is defined in (31).
In addition, let us consider the following event-triggered

condition of the networked control system

𝑒𝑇𝑘 (𝑡) Ω𝑒𝑘 (𝑡) ≤ 𝜎𝑘 (𝑡) 𝑥𝑇 (𝑡 − 𝑑 (𝑡))Ω𝑥 (𝑡 − 𝑑 (𝑡)) . (51)
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Let us add (51) into the derivative of 𝑉(𝑥(𝑡), 𝑥̇(𝑡)), then,
we have

𝑉̇ (𝑥 (𝑡) , 𝑥̇ (𝑡))
= 𝐻𝑒 (𝜉𝑇 (𝑡) 𝐺𝑇𝑁 (𝑑 (𝑡)) 𝑃𝑁 ̇̃𝑥 (𝑡))
+ 𝜉𝑇 (𝑡) [𝑑22𝐹𝑇𝑁𝑅𝐹𝑁 + Σ𝑁 ( ̇𝑑 (𝑡))] 𝜉 (𝑡)
− 𝑑2 ∫𝑡

𝑡−𝑑2

𝑥̇𝑇 (𝑠) 𝑅𝑥̇ (𝑠) 𝑑𝑠,
(52)

where 𝐺𝑁, 𝐹𝑁, Σ𝑁( ̇𝑑(𝑡)) are given in (31).
By the integral inequality method (50), the derivative of

Lyapunov-Krasovskii can be rewritten as

𝑉̇ (𝑥 (𝑡) , 𝑥̇ (𝑡)) ≤ 𝜉𝑇 (𝑡)
⋅ [𝐻𝑒 (𝐺𝑇𝑁 (𝑑 (𝑡)) 𝑃𝑁 (𝐽𝑁 + ̇𝑑 (𝑡)𝐻𝑁))
+ Σ𝑁 ( ̇𝑑 (𝑡)) + 𝑑22𝐹𝑇𝑁𝑅𝐹𝑁
−𝑊𝑇𝑁 [Ξ𝑁 (𝑑 (𝑡)) − Ξ𝑁0 (𝑑 (𝑡))]𝑊𝑁] 𝜉 (𝑡) = 𝜉𝑇 (𝑡)⋅ (Ψ𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡)) + 𝑊𝑇𝑁Ξ𝑁0 (𝑑 (𝑡))𝑊𝑁) 𝜉 (𝑡) .

(53)

Notice that the Ψ𝑁0(𝑑(𝑡), ̇𝑑(𝑡)) + 𝑊𝑇𝑁Ξ𝑁0(𝑑(𝑡))𝑊𝑁 is
multi-affine about 𝑑(𝑡) and ̇𝑑(𝑡), where (𝑑(𝑡), ̇𝑑(𝑡)) ∈ H.
Therefore, by the Schur’s complement, if the matrix Ξ < 0,
then 𝑉̇(𝑥(𝑡), 𝑥̇(𝑡)) < 0 for (𝑑(𝑡), ̇𝑑(𝑡)) ∈ H, the system is
stable. This proof is completed.

Remark 9. Notice that LMI (29) is considered satisfying(𝑑(𝑡), ̇𝑑(𝑡)) ∈ H, where

H = C𝑜 {(0, 0) , (0, 𝑑𝑀) , (𝑑2, 0) , (𝑑2, 𝑑𝑚)} . (54)

That is because the vertices (0, 𝑑𝑚), (𝑑2, 𝑑𝑀) are impossible
to reach. In another words, at the lower bound of time delay0, the derivative of time delay ̇𝑑(𝑡) can not be negative; at the
upper bound of time delay𝑑2, the derivative of time delay ̇𝑑(𝑡)
should be non-positive. Thus, we choose the allowable delay
set asH.

Remark 10. In this section, the stability problem of the
nonlinear networked control system has been discussed. We
employed the Bessel-Legendre inequality method to improve
the Lyapunov-Krasovskii functional and obtained the delay
upper bound. For the 𝑉1(𝑥(𝑡), 𝑥̇(𝑡)), we take the terms𝜙1,𝑁(𝑡) and 𝜙2,𝑁(𝑡) into 𝑥(𝑡) to consider the delay dependent
condition. Furthermore, the 𝑉2(𝑥(𝑡), 𝑥̇(𝑡)) will be zoomed by
this integral method.

4. Stabilization of Networked Control System

In this section, we will deal with the stabilization problem of
the event-triggered nonlinear networked control system with
time delay. In order to more effectively control the system
state and achieve a stable, fast and accurate networked control
system, the state feedback controller will be designed. Next,
the relevant stabilization theorem is given as follows.

Theorem 11. For given integer scalar𝑁 ≥ 0, scalar 𝜖 > 0, sys-
tem (14) with the feedback controller gain𝐾 = −𝜖𝐵−1𝑃̂−11 is sta-
ble if there exist matrices 𝑃̂1 ∈ S𝑛+, 𝑃̂2 ∈ S(𝑁+1)𝑛+ , 𝑃̂3 ∈ S(𝑁+1)𝑛+ ,𝑄1,𝑄2,𝑅 ∈ S𝑛+,Ω ∈ S𝑛+, and𝑌1,𝑌2 ∈ R(𝑁+2)𝑛×(𝑁+2)𝑛, such that

Ξ =
[[[[[[[[[[[[

Ξ̃𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡)) 𝑊𝑇𝑁Y1 𝑊𝑇𝑁Y2 𝑑22𝐹𝑇𝑁 −𝑊𝑇𝑁Λ𝑁∗ −𝑑2 − 𝑑 (𝑡)𝑑2 𝑅̃𝑁+1 0 0 0
∗ ∗ −𝑑 (𝑡)𝑑2 𝑅̃𝑁+1 0 0∗ ∗ ∗ −2𝐼𝑛 + 𝑅 0∗ ∗ ∗ ∗ Λ𝑁

]]]]]]]]]]]]
≤ 0 (55)

holds for all (𝑑(𝑡), ̇𝑑(𝑡)) ∈ H, where

H = C𝑜 {(0, 0) , (0, 𝑑𝑀) , (𝑑2, 0) , (𝑑2, 𝑑𝑚)} ,
𝐹𝑁 = [𝐴 + 𝐴𝜏𝐹 𝜖 (−2𝐼𝑛 + 𝑃̂1) 𝜖 (−2𝐼𝑛 + 𝑃̂1) 0 0 0] ,
𝑊𝑁 = [1𝑁+1 −1𝑁+1 0 0 −Γ𝑁+1 00 1𝑁+1 0 −1𝑁+1 0 −Γ𝑁+1] ,
Λ𝑁 = [𝑅𝑁+1 00 𝑅𝑁+1] + 𝑑2 − 𝑑 (𝑡)𝑑2 [𝑅𝑁+1 𝑌2𝑌𝑇2 0 ] + 𝑑 (𝑡)𝑑2

⋅ [ 0 𝑌1𝑌𝑇1 𝑅𝑁+1] ,
𝑅̃𝑁+1 = diag (𝑅, 3𝑅, . . . , (2𝑁 + 1) 𝑅, (2𝑁 + 3) 𝑅) ,
𝐺𝑁 (𝑑 (𝑡)) = [[[

𝐼𝑛 0 0 0 0 00 0 0 0 𝑑 (𝑡) 𝐼𝑛𝑁 00 0 0 0 0 (𝑑2 − 𝑑 (𝑡)) 𝐼𝑛𝑁
]]] ,Σ𝑁 ( ̇𝑑 (𝑡)) = diag (𝑄1, − (1 − ̇𝑑 (𝑡)) (𝑄1 − 𝑄2) + 𝜎𝑘 (𝑡) Ω,− Ω, −𝑄2, 0, 0) ,
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Ξ̃𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡)) = 𝐻𝑒 (𝐺𝑇𝑁 (𝑑 (𝑡)) Ξ𝑁0 ( ̇𝑑 (𝑡))) + Σ𝑁 ( ̇𝑑 (𝑡)) ,Ξ𝑁0 ( ̇𝑑 (𝑡))
= [[[[

𝑃̂1 (𝐴 + 𝐴𝜏𝐹) −𝜖𝐼𝑛 −𝜖𝐼𝑛 0 0 0𝑃̂2 (1𝑁) −𝑃̂21𝑁 0 0 −𝑃̂2Γ𝑁 00 𝑃̂31𝑁 0 −𝑃̂31𝑁 0 −𝑃̂3Γ𝑁
]]]]

+ ̇𝑑 (𝑡) [[[[
0 0 0 0 0 00 𝑃̂21𝑁 0 0 𝑃̂2Γ𝑁 − 𝑃̂2Θ𝑁 00 −𝑃̂31𝑁 0 0 0 𝑃̂3Θ𝑁

]]]] ,
Y1 = [[

𝑑2 − 𝑑 (𝑡)𝑑2 𝑌10 ]] ,
Y2 = [[[

0𝑑 (𝑡)𝑑2 𝑌𝑇2 ]]] ,
(56)

Proof. According to Theorem 8 and Lemma 4, we have
obtained the LMI as follows:Ξ
= [[[[[[[[[

Ξ̂𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡)) 𝑊𝑇𝑁Y1 𝑊𝑇𝑁Y2 𝑑22𝐹𝑇𝑁∗ −𝑑2 − 𝑑 (𝑡)𝑑2 𝑅̃𝑁+1 0 0
∗ ∗ −𝑑 (𝑡)𝑑2 𝑅̃𝑁+1 0∗ ∗ ∗ −𝑅−1

]]]]]]]]]

≤ 0,
(57)

where Ξ̂𝑁0(𝑑(𝑡), ̇𝑑(𝑡)) = 𝐻𝑒(𝐺𝑇𝑁𝑃𝑁(𝐽𝑁+ ̇𝑑(𝑡)𝐻𝑁))+Σ𝑁( ̇𝑑(𝑡))+𝑊𝑇𝑁Λ𝑁𝑊𝑁.
For the symmetric matrix 𝑃𝑁, we set

𝑃𝑁 = [[[[
𝑃̂1 0 00 𝑃̂2 00 0 𝑃̂3

]]]] , (58)

where 𝑃̂1 ∈ S𝑛+, 𝑃̂2 ∈ S(𝑁+1)𝑛+ and 𝑃̂3 ∈ S(𝑁+1)𝑛+ . Then we have

𝐺𝑇𝑁Ξ𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡)) = 𝐺𝑇𝑁𝑃𝑁 (𝐽𝑁 + ̇𝑑 (𝑡)𝐻𝑁)

= 𝐺𝑇𝑁[[[[
𝑃̂1 0 00 𝑃̂2 00 0 𝑃̂3

]]]](
[[[[
𝐴 + 𝐴𝜏𝐹 𝐵𝐾 𝐵𝐾 0 0 01𝑁 −1𝑁 0 0 −Γ𝑁 00 1𝑁 0 −1𝑁 0 −Γ𝑁

]]]] + ̇𝑑 (𝑡)
⋅ [[[[
0 0 0 0 0 00 1𝑁 0 0 Γ𝑁 − Θ𝑁 00 −1𝑁 0 0 0 Θ𝑁

]]]]) .
(59)

At the same time, we set the controller gain 𝐾 = −𝜖𝐵−1𝑃̂−11 ,
then we obtain

𝐺𝑇𝑁Ξ𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡))
= 𝐺𝑇𝑁([[[[

𝑃̂1 (𝐴 + 𝐴𝜏𝐹) −𝜖𝐼𝑛 −𝜖𝐼𝑛 0 0 0𝑃̂2 (1𝑁) −𝑃̂21𝑁 0 0 −𝑃̂2Γ𝑁 00 𝑃̂31𝑁 0 −𝑃̂31𝑁 0 −𝑃̂3Γ𝑁
]]]] + ̇𝑑 (𝑡) [[[[

0 0 0 0 0 00 𝑃̂21𝑁 0 0 𝑃̂2Γ𝑁 − 𝑃̂2Θ𝑁 00 −𝑃̂31𝑁 0 0 0 𝑃̂3Θ𝑁
]]]]) . (60)

Thanks to Lemma 6, we replace −𝑅−1 with −2𝐼𝑛 + 𝑅; on
the other hand, define

𝐹𝑁 = [𝐴 + 𝐴𝜏𝐹 𝜖 (−2𝐼𝑛 + 𝑃̂1) 0 0 0] . (61)

Combining equations (58), (59), (60) and (61), we obtain
the following inequality:

[[[[[[[[[

Ξ̂𝑁0 (𝑑 (𝑡) , ̇𝑑 (𝑡)) 𝑊𝑇𝑁Y1 𝑊𝑇𝑁Y2 𝑑22𝐹𝑇𝑁∗ −𝑑2 − 𝑑 (𝑡)𝑑2 𝑅̃𝑁+1 0 0
∗ ∗ −𝑑 (𝑡)𝑑2 𝑅̃𝑁+1 0∗ ∗ ∗ −2𝐼𝑛 + 𝑅

]]]]]]]]]≤ 0.
(62)

In addition, apply the Schur’s complement to (62) again.
Then, linear matrix inequality is obtained inTheorem 11.This
proof is completed.

5. Numerical Examples

Example 1. In order to understand the applicability of the
system more clearly, and demonstrate the effectiveness of
Bessel-Legendre inequalities method, we give Example 1.
First of all, let us consider the system model as follows:𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝜏𝐹𝑥 (𝑡) + 𝐵𝑢 (𝑡) , (63)

and the system relevant parameters are given as

𝐴 = [−2 00 −0.9] ,
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Table 1: Delay upper bound 𝑑2 for different ̇𝑑(𝑡)(𝑑𝑀 = −𝑑𝑚 = ̇𝑑(𝑡)).
Method \ ̇𝑑(𝑡) 0.1 0.3 0.5 0.9
Theorem 8, N=3 4.7526 3.01780 3.0472 2.9856
Theorem 8, N=2 3.2546 2.3136 2.1797 2.0732
Theorem 8, N=1 2.8572 2.6095 2.1472 2.0153
Theorem 8, N=0 2.3544 1.1498 1.0755 1.0526
Theorem 1 of [45] 2.1403 1.0653 0.8671 0.7644
Theorem 1 of [46] 0.7522 0.7197 0.6496 0.4768
Theorem 1 of [13] 1.2890 1.0126 0.9775 0.6324

𝐴𝜏 = [−1 0−1 −1] ,
𝐵 = [ −1 0−0.5 −1] ,
𝐹 = [ −1 0−0.5 −1] .

(64)

For testifying the less conservatism of the obtained
stability condition in this paper, the comparison with other
paper’s results about the upper bound of delay is given in
Table 1. From Table 1, for 𝑁 = 0, ̇𝑑(𝑡) is taken different
values as 0.1, 0.3, 0.5, 0.9, respectively, then the obtained
upper bound of time delays are 2.3544, 1.1498, 1.0755, 1.0526,
respectively, which are all larger than the values in [13, 45,
46] for the corresponding values of ̇𝑑(𝑡). Obviously, for this
nonlinear networked control system, the conservatism of the
stability criteria derived by using Bessel-Legendre inequality
method in this paper has been greatly reduced. Furthermore,
the obtained stability criteria are related to the order𝑁. As we
can see in Table 1, the upper bound of time delay increases
with 𝑁 increasing. In other words, the larger 𝑁, the lower
conservatism.

Next, we propose Example 2 to investigate the triggering
performance of nonlinear networked control system under
the improved event-triggered scheme.

Example 2. This example concerns the parameters of nonlin-
ear networked control system as follows:

𝐴 = [[[[[[
0 0.5 0 00 0 −3 0−1 0 0 10.5 0 −3 0.7

]]]]]]
,

𝐴𝜏 = [[[[[[
0 0.1 0 00 0 1 0−1 0 0 10.5 0 −3 1

]]]]]]
,

𝐵 = [[[[[[
00.10−0.01

]]]]]]
,

𝐹 = [[[[[[
5 0 0 00 −0.3 0 00 2.0 −0.6667 0.66670 −2.7 0.1 −0.8

]]]]]]
.

(65)

Set 𝜎𝑘1 = 0.01, 𝜎 = 0.6, ℎ = 0.22, ̇𝑑(𝑡) = 0.1. Under
the improved event-triggered scheme, the obtained controller
gains 𝐾 and triggering parameters Ω at 𝑡 = 0, 𝑡 = 1, . . . , 𝑡 =30 are shown in Table 2.

In this improved event-triggered scheme, the parameter𝜎𝑘(𝑡) is time-varying and satisfies (10), which can change
the release rate at different times while saving the network
transmission resource. When ℎ = 0.22, 𝜆 = 0.01, the
variation of 𝜎𝑘(𝑡) and release instants are shown in Figure 2.
In Figure 2, there are only 29 sampled signals which takes21.3% of the whole sampled signals need to be sent out when𝑡 ∈ [0, 30]. In addition, from Figure 2, we can see that the
parameter 𝜎𝑘(𝑡) varies from 0.01 to 0.4 and the frequency of
triggering in initial times is higher than other times, which
can shorten the dynamic process.

To further illustrate the advantage of our improved static
event-triggered scheme, we compare it with the general static
event-triggered scheme in which the parameter 𝜎𝑘(𝑡) is time
invariant. We set ℎ = 0.12, then the results are shown in
Figures 3 and 4. Obviously, the release times in initial times in
Figure 4 are more than those in Figure 3 and there are more
packets that can be transmitted in initial times.

The state response of the event-triggered nonlinear net-
worked control system is shown in Figure 5. At 3 seconds, the
system achieves steady.

6. Conclusions

In this paper, we discussed the stability and stabilization
problem of the event-triggered nonlinear networked control
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Table 2: The controller gains 𝐾 and triggering parameters Ω at different times.

t 0 1 . . . 30

Ω [[[[[[[
4.57 1.06 4.46 0.491.06 6.19 0.14 0.954.46 0.14 9.79 3.700.49 0.95 3.70 9.65

]]]]]]]
[[[[[[[
4.47 0.15 1.67 1.330.15 7.62 0.13 0.951.67 0.13 8.89 0.401.33 0.95 0.40 7.23

]]]]]]]
. . . [[[[[[[

9.77 0.13 0.22 0.360.13 5.14 0.20 0.940.22 0.20 6.94 0.180.36 0.94 0.18 5.53
]]]]]]]

K
[[[[[[[
6.26675.61342.01624.8761

]]]]]]]

𝑇 [[[[[[[
4.40355.14346.14416.5962

]]]]]]]

𝑇

. . . [[[[[[[
3.33672.49315.08298.9023

]]]]]]]

𝑇
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Figure 2: The variation of 𝜎𝑘(𝑡) and release instants, h=0.22.
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Figure 4: Static event-based release interval and release instants, h=0.12.
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Figure 5: State response of the event-trigger nonlinear networked control system.

system with time varying delay. Firstly, on one hand, com-
pared with the previous investigation of networked control
system, this paper utilizes the Bessel-Legendre inequality
method to reduce the conservatism of the system delay upper
bound. On the other hand, by designing an appropriate state
feedback controller, the stabilization problem of the non-
linear networked control system has been solved. Secondly,
an improved ETS was put forward to reduce transmission
load and make the system has a better dynamic process.
Finally, two simulation examples have been shown to verify
the effectiveness of the improved time delay method and
ETS. Further study can be concentrated on the discrete time

matters for the networked control system and finite time
issues for nonlinear networked control switch system under
an improved ETS.
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