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The fault detection (FD) reduced-order filtering problem is investigated for a family of polytopic uncertain discrete-timeMarkovian
jump linear systems (MJLSs) with time-varying delays. Under meeting the control precision requirements of the complex systems,
the reduced-order fault detection filter can improve the efficiency of the fault detection.Then, by the aid of theMarkovian Lyapunov
function and convex polyhedron techniques, some novel time-varying delays and polytopic uncertain sufficient conditions in terms
of linear matrix inequality (LMI) are proposed to insure the existence of the FD reduced-order filter. Finally, an illustrative example
is provided to verify the usefulness of the given method.

1. Introduction

The past decades have witnessed a boom of advanced studies
on theories and applications ofMarkov jump systems inmany
fields, such as networks communication systems, automotive
systems, energy systems, biological systems, cyber-physical
systems, aerospace systems, manufacturing, automation,
smart grids, vehicular networking and connected vehicles,
power systems, robotics, economic systems, and social sys-
tems [1–4]. MJLSs can effectively model dynamic hybrid sys-
tems involving stochastic switching (generally autonomous)
subject to the Markov chains. For nonlinear systems, accord-
ing to the characteristics of local linearization, the character-
istics of nonlinear systems can be described by usingmultiple
linear Markovian jump systems. Many fruitful results have
been extended to MJLSs, such as the filtering, and estimation
problem was studied in [5], state feedback control problems
were considered in [6, 7], model reduction was presented
in [8] for MJLSs with polytopic uncertainties, output feed-
back control problem was investigated in [9], stability and
stabilization problems were addressed in [10], fault detection
and diagnosis of MJLSs were studied in [11], and diverse
control methodologies were considered in [12–14]. However,

as an important factor governing the behaviors of MJLSs,
the transition probabilities (TPs) are usually deemed to be
certain and completely known, which do not change over
time. In practice, the unrealistic and incomplete TPs are
often encountered, especially when the accurate transition
probability information takes time and resources consump-
tion to obtain. Furthermore, the polytopic uncertain TPs are
common inmany engineering due to the influence of various
environmental factors.Therefore, there aremore rational and
general MJLSs with the polytopic uncertain TRs. But there
are few research literature about fault detection of Markovian
jump systems with the exactly known, partially unknown,
and uncertain TRs concurrently, and the loss of sensor or
actuator information can be efficiently modeled by means of
Markov chain frameworks. This is the need to solve the main
problem, which is one of the motivations for our research.

On another active research front line, the fact that the
fault detection, isolation, and fault-tolerant control tech-
niques have affected the development of modern society is
very prominent for the sake of higher safety and reliability
(see [15–18]). The plant operation should be monitored in
real time. When the components or instrument fault had
been found, through the fault-tolerant control approach,
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the stable system performance has always be maintained.
Therefore, many fault detection methodologies have been
addressed in engineering applications, since failure may
result in disastrous consequences and hazards for personnel,
plant, and environment (see, e.g., [19–22]). For instance,
many fruitful results to detect fault of systems without time-
varying delays have been reported. Nevertheless, time-delays
occur frequently in practical application because of the signal
transmission, and they affect the system performance and
even degrade the stability (see [23–26]). Many literature on
the fault detection and filter design for the time-varying
delays systems has been reported so far, but, up to now, due
to the technical difficulty, there is no corresponding fault
detection filter design result for polytopic uncertain discrete-
time Markovian Jump Systems with time-varying delays,
which has important research value in practical application.

From what has been discussed above, an improved
design method of reduced-order fault detection filter for
polytopic uncertain discrete MJLSs with time-varying delays
is firstly proposed. Then, the new method mentioned above
is researched by using the Markovian Lyapunov functional
method and Wirtinger-based inequality techniques, which
convert the filtering design into a convex optimisation prob-
lem. Under meeting the control precision requirements of
the complex systems, the fault detection reduced-order filter
can improve the efficiency of the fault detection. Some novel
significant results have been reported.Themain contribution
of the work in this paper is threefold. (i) The fault detection
filtering problem for a class of discrete-time MJLSs with
time-varying delays is extended to polytopic-type uncertain
transition information for the first time. The more general
and practicable results are derived. (ii) The new designed FD
filtering stochastic stability condition for a kind of discrete-
timeMJLSswith time-varying delays and polytopic uncertain
TPs has been established for the first time. (iii) By applying
Wirtinger-based inequality, it has shown the effectiveness
of the proposed design approach, which can improve the
sensitivity of fault detection and reduce the fault detection
rate of false positives.

Notations. Throughout this paper, for real symmetric matrix𝑃, 𝑃 > 0means that𝑃 is positive definite and ∗ represents the
symmetric element.R𝑛 denotes the 𝑛-dimensional Euclidean
space, R𝑚×𝑛 denotes the set of all 𝑚 × 𝑛 real matrices, and𝑁 represents a positive integer. ‖ ⋅ ‖ denotes the Euclidean
norm for vectors, 𝑙2[0,∞) represents the space of square
integrable vector functions over 𝜙 = {𝜙(𝑘)} ∈ 𝑙2[0,∞), and
its norm is given by ‖𝜙‖2 = √𝐸[∑∞

𝑘=0 ‖𝜙‖2]. 𝐸[⋅] stands for
the mathematical expectation. 𝑑1 and 𝑑2 denote the lower
and upper bounds of 𝑑(𝑘). 𝑑12 is the shorthand notation for𝑑2 − 𝑑1. 𝑑(𝑘) is believed an interval-like time-varying delay.

2. Problem Formulation

In this section, we will consider a class of discrete MJLS with
time-varying delays of the form,

𝑥 (𝑘 + 1) = 𝐴 (𝜍 (𝑘)) 𝑥 (𝑘) + 𝐴𝑑 (𝜍 (𝑘)) 𝑥 (𝑘 − 𝑑 (𝑘))
+ 𝐵 (𝜍 (𝑘)) 𝑢 (𝑘) + 𝐸 (𝜍 (𝑘)) 𝜔 (𝑘)

+ 𝐹 (𝜍 (𝑘)) 𝑓 (𝑘) ,
𝑦 (𝑘) = 𝐶 (𝜍 (𝑘)) 𝑥 (𝑘) + 𝐶𝑑 (𝜍 (𝑘)) 𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝐷 (𝜍 (𝑘)) 𝜔 (𝑘) + 𝐻 (𝜍 (𝑘)) 𝑓 (𝑘) ,
(1)

where 𝑢(𝑘) ∈ R𝑛𝑢 stands for the known control input, 𝑦(𝑘) ∈
R𝑛𝑦 represents the measured output, 𝑥(𝑘) ∈ R𝑛𝑥 refers to the
plant state, 𝑓(𝑘) ∈ R𝑛𝑓 denotes the fault signal to be detected,𝜔(𝑘) ∈ R𝑛𝑑 is the unknown disturbance signal, 𝑢(𝑘), 𝜔(𝑘),
and𝑓(𝑘) are considered to belong to 𝑙2[0,∞). 𝑑(𝑘) represents
a time-varying delay satisfying the following assumption:

1 ≤ 𝑑1 ≤ 𝑑 (𝑘) ≤ 𝑑2, (2)

where 𝑑1, 𝑑2 denote the lower and upper bounds of 𝑑(𝑘). For
this case, 𝑑(𝑘) is believed an interval-like time-varying delay.{𝜍(𝑘), 𝑘 ≥ 0} represents a discrete-time Markovian process
with values in a given finite set 𝑆 = {1, 2, . . . , 𝑛} and transition
rates (TRs) for the process are defined as

Prob {𝜍 (𝑘 + 1) = 𝑗 | 𝜍 (𝑘) = 𝑔} = 𝜆𝑔𝑗,
∀𝑔, 𝑗 ∈ 𝑆, 𝜆𝑔𝑗 ≥ 0, 𝑠∑

𝑗=1

𝜆𝑔𝑗 = 1. (3)

Moreover, the TRs of the Markov process usually involve
polytopic uncertain and partly unknown TRs, and these
transition probability matrices Λ = {𝜆𝑔𝑗} are contained in
the polytopic-type convex body 𝑃Λ; that is, the mathematical
expression is as follows:

𝑃Λ fl {Λ | Λ = 𝑀∑
𝑠=1

𝛼𝑠Λ 𝑠; 𝛼𝑠 ≥ 0, 𝑀∑
𝑠=1

𝛼𝑠 = 1} , (4)

where vertices Λ 𝑠 = [𝜆𝑔𝑗]𝑁×𝑁, 𝑔, 𝑗 ∈ 𝑆, 𝑆 = 1, 2, . . . ,𝑀
contain some unknown and uncertain factors. For example,
for system (1) with four variation modes, the TRM is
expressed as

[[[[[[
[

𝜆11 𝜆̂12 𝜆̃13 𝜆14

𝜆̃21 𝜆22 𝜆̂23 𝜆24

𝜆31 𝜆32 𝜆̃33 𝜆̂34

𝜆̃41 𝜆42 𝜆43 𝜆̃44

]]]]]]
]
, (5)

where unknown TRs and the polytopic uncertainties TRs
are represented as the superscripts labeled with “̂” and “̃”
separately. We denote 𝑆 = 𝑆(𝑔)

𝑘
∪ 𝑆(𝑔)

𝑢𝑐 ∪ 𝑆(𝑔)

𝑢𝑘
as follows:

𝑆(𝑔)

𝑘
fl {𝑗 : 𝜆𝑔𝑗 is known} ,

𝑆(𝑔)
𝑢𝑐 fl {𝑗 : 𝜆̃𝑔𝑗 is uncertain} ,
𝑆(𝑔)

𝑢𝑘
fl {𝑗 : 𝜆̂𝑔𝑗 is unknown} .

(6)

Also, we define 𝜆(𝑔V)
𝑢𝑘

fl ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘

𝜆̂𝑔𝑗 = 1 − ∑
𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗 −
∑

𝑗∈𝑆
(𝑔)
𝑢𝑐
𝜆̃(𝑔V)

𝑔𝑗 .
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Remark 1. Before proceeding further, it is worth briefly
describing for each possible 𝜍(𝑘) = 𝑔, 𝑔 ∈ 𝑆, the matrices𝐴(𝑘, 𝜍(𝑘)) = 𝐴𝑔(𝑘), 𝐵(𝜍(𝑘)) = 𝐵𝑔, 𝐴𝐹(𝜍(𝑘)) = 𝐴𝐹𝑔, and so
on for notational simplicity.

Remark 2. The transition probabilities considered in this
paper are more common to the MJLSs, because the TRM
includes some polytopic uncertain transition probabilities in
the MJLSs with time-varying delays. Then, our important
task is to design fault detection filter for the required system,
where the desired structure is considered to be

𝑥 (𝑘 + 1) = 𝐴𝐹𝑔𝑥 (𝑘) + 𝐵𝐹𝑔𝑦 (𝑘) ,
𝑟 (𝑘) = 𝐶𝐹𝑔𝑥 (𝑘) + 𝐷𝐹𝑔𝑦 (𝑘) , (7)

where 𝑥(𝑘) ∈ R𝑛𝑟 , 1 ≤ 𝑛𝑟 ≤ 𝑛𝑥. When 𝑛𝑟 = 𝑛𝑥, 𝑥(𝑘) is the
state variable of full-order fault detection filter; when 1 ≤ 𝑛𝑟 <𝑛𝑥, 𝑥(𝑘) is the state variable of reduced-order fault detection
filter. 𝑟(𝑘) ∈ R𝑛𝑓 is the so-called residual, and 𝐴𝐹𝑔, 𝐵𝐹𝑔, 𝐶𝐹𝑔,
and𝐷𝐹𝑔 are the filter matrices to be calculated.

In order to improve the performance of the fault detection
system, we introduced the weighting fault signal 𝑓(𝑘) which
satisfies 𝑓(𝑧) = 𝑊𝑓(𝑧)𝑓(𝑧), where the matrix𝑊𝑓(𝑧) presents
a given stable weighting function matrix. 𝑓(𝑧) and 𝑓(𝑧)
denote Laplace transforms of𝑓(𝑘) and𝑓(𝑘), respectively.One
minimal state space realization of 𝑓(𝑘) and 𝑓(𝑘) can be

𝑥𝑓 (𝑘 + 1) = 𝐴𝑤𝑓𝑥𝑓 (𝑘) + 𝐵𝑤𝑓𝑓 (𝑘) ,
𝑓 (𝑘) = 𝐶𝑤𝑓𝑥𝑓 (𝑘) + 𝐷𝑤𝑓𝑓 (𝑘) , (8)

where 𝑥𝑘(𝑡) ∈ 𝑅𝑞 is the state vector, and 𝐴𝑤𝑓, 𝐵𝑤𝑓, 𝐶𝑤𝑓, and𝐷𝑤𝑓 are constant matrices.
Define the weighted fault estimation error 𝑒(𝑘) fl 𝑟𝐹(𝑘) −𝑓(𝑘) and the state vector 𝑥(𝑘) fl [𝑥𝑇(𝑘) 𝑥𝐹

𝑇(𝑘) 𝑥𝑓
𝑇(𝑘)]𝑇.

Then, by augmenting (1) and (7), the error augmented system
is obtained as follows:

𝑥 (𝑘 + 1) = 𝐴𝑔𝑥 (𝑘) + 𝐴𝑑𝑔𝐸𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵𝑔𝜓 (𝑘) ,
𝑒 (𝑘) = 𝐶𝑔𝑥 (𝑘) + 𝐶𝑑𝑔𝐸𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷𝑔𝜓 (𝑘) , (9)

where 𝜓(𝑘) = [𝑢𝑇(𝑘) 𝜔𝑇(𝑘) 𝑓𝑇(𝑘)]𝑇 and

𝐴𝑔 = [[[
[

𝐴𝑔 0 0
𝐵𝐹𝑔𝐶𝑔 𝐴𝐹𝑔 0

0 0 𝐴𝑤𝑓𝑔

]]]
]
,

𝐴𝑑𝑔 = [[
[

𝐴𝑑𝑔𝐵𝐹𝑔𝐶𝑑𝑔0
]]
]
,

𝐵𝑔 = [[[
[
𝐵𝑔 𝐸𝑔 𝐹𝑔0 𝐵𝐹𝑔𝐷𝑔 𝐵𝐹𝑔𝐻𝑔0 0 𝐵𝑤𝑓𝑔

]]]
]
,

𝐶𝑔 = [𝐷𝐹𝑔𝐶𝑔 𝐶𝐹𝑔 −𝐶𝑤𝑓𝑔] ,
𝐶𝑑𝑔 = 𝐷𝐹𝑔𝐶𝑑𝑔,
𝐷𝑔 = [0 𝐷𝐹𝑔𝐷𝑔 𝐷𝐹𝑔𝐻𝑔 − 𝐷𝑤𝑓𝑔] ,
𝐸 = [𝐼 0 0] .

(10)

In order to study the next step of progress, we first
recommend the definitions of stochastic stability of the
Markovian jump system for system (9).

Definition 3 (see [2]). The filtering error system (9) is said to
be randomly stable if for 𝜓(𝑘) = 0 and any initial condition𝑥(0) ∈ R𝑛𝑥 and 𝑟(0) ∈ 𝑆. Then, the following holds:𝐸{∑∞

𝑘=0 ‖𝑥(𝑘)‖2 | 𝑥(0), 𝑟(0)} < ∞.

Definition 4 (see [6]). Given the signal 𝜓(𝑘) ∈ 𝑙2[0,∞) and
a scalar 𝛾 > 0, system (9) is randomly stable with an H∞

disturbance attenuation performance index 𝛾 if the following
two conditions are satisfied.

(1) When 𝜓(𝑘) = 0, 𝑘 ≥ 0, system (9) is randomly stable
in the sense of Definition 3.

(2) When 𝜓(𝑘) ̸= 0, 𝑘 ≥ 0, under zero initial conditions,
the following inequality holds:

𝐸{ ∞∑
𝑘=0

‖𝑒 (𝑘)‖2} < 𝛾2𝐸{ ∞∑
𝑘=0

󵄩󵄩󵄩󵄩𝜓 (𝑘)󵄩󵄩󵄩󵄩2} . (11)

To sum up, the main process of the fault detection filter
design is to determine the filter matrices {𝐴𝐹𝑔, 𝐵𝐹𝑔, 𝐶𝐹𝑔, 𝐷𝐹𝑔}
in system (7), such that the filtering error system (9)
is stochastically stable with a reliable H∞ performance
level index. Moreover, in order to detect the fault 𝑓(𝑘),
the residual evaluation function is designed as 𝐽(𝑟(𝑘)) =√∑𝑘0+𝐿

𝑘=𝑘0
𝑟𝑇(𝑘)𝑟(𝑘), where 𝑘0 refers to the initial evaluation

time instant. The fault 𝑓(𝑘) can be detected by the following
steps.

(i)The threshold is selected as 𝐽th ≜ sup𝑑∈𝑙2,𝑓=0𝐸[𝐽(𝑟(𝑘))].
(ii) Based on the above design, the occurrence of fault𝑓(𝑘) can be judged by the following logical relationship.
When 𝐽(𝑟(𝑘)) ≥ 𝐽th, there are some faults, we should give

an alarm; when 𝐽(𝑟(𝑘)) < 𝐽th, there are no faults.
Lemma 5 (see [27, 28]). For given positive integers m, n, a
scalar 𝛽 ∈ (0, 1), and two matrices 𝑉1 ∈ S+

𝑛 and 𝑉2 ∈ S+
𝑚.

Introduce the matrix Θ(𝛽) as

Θ(𝛽) = [[[
[

1𝛽𝑉1 0
0 11 − 𝛽𝑉2

]]]
]
, (12)
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If there exists a matrix 𝑋 ∈ R𝑛×𝑚 such that

Θ𝑚 = [𝑉1 𝑋
∗ 𝑉2

] ≥ 0, (13)

then the following inequality holds:
Θ(𝛽) ≥ Θ𝑚. (14)

Lemma 6 (Wirtinger-based inequality [29, 30]). For a given
symmetric positive definite matrix 𝑉 ∈ S+

𝑛 , any sequence of
discrete-time variable 𝑥 in [−ℎ, 0] ∩ Z → R𝑛, where ℎ ≥ 1,
the following inequality holds:

0∑
𝑔=−ℎ+1

𝑍𝑇 (𝑔)𝑉𝑍 (𝑔) ≥ 1ℎ [𝑍0𝑍1

]𝑇 [𝑉 0
0 3𝑉][𝑍0𝑍1

] , (15)

where 𝑍(𝑔) = 𝑥(𝑔) − 𝑥(𝑔 − 1), 𝑍0 = 𝑥(0) − 𝑥(−ℎ), 𝑍1 =𝑥(0) + 𝑥(−ℎ) − (2/(ℎ + 1))∑0
𝑔=−ℎ 𝑥(𝑔). The set S+

𝑛 refers to the
set of symmetric positive definite matrices.

3. Main Results

In the this section, we will first introduce the stability
criterion for the filtering error system (9) with polytopic
uncertain TRs and time-varying delays; then we will further
research on the design of the reduced-order FD filter for
polytopic uncertain MJLS with time-varying delays.

3.1. FD Filtering Stochastic Stability Condition for Discrete
Time MJLSs with Polytopic Uncertain TRs and Time-
Varying Delays

Theorem 7. Given scalars 1 ≤ 𝑑1 ≤ 𝑑2, then, for any
delay 𝑑(𝑘), the discrete-time error augmented system (9) with
deficient transition probabilities is randomly stable if there exist
positive-definite symmetric matrices 𝑃𝑔, 𝑄1, 𝑄2, 𝑄3, 𝑍1, 𝑍2 ∈
R𝑛×𝑛, and a matrix 𝑋 ∈ R2𝑛×2𝑛 such that the following
inequalities hold for any 𝑔 = 1, . . . , 𝑁:

Π𝑔

=

[[[[[[[[[[[[[[[[[[[[
[

Λ 11 Λ 12 0 0 2𝑍1 0 0 Λ 18

∗ Λ 22 0 0 0 0 2𝑍̃2 Λ 28∗ ∗ Λ 33 0 2𝑍1 0 0 0
∗ ∗ ∗ Λ 44 0 0 2𝑍̃2 0
∗ ∗ ∗ ∗ −4𝑍1 0 0 0
∗ ∗ ∗ ∗ ∗ −4𝑍̃2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −4𝑍̃2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ 88

]]]]]]]]]]]]]]]]]]]]
]

< 0,

(16)

𝑍̃2 = [𝑍2 𝑋
∗ 𝑍2

] ≥ 0, (17)

where

𝑍1 = [𝑍1 0
0 3𝑍1

] ,
𝑍2 = [𝑍2 0

0 3𝑍2

] ,
(18)

Λ 11 = 𝐴𝑇
𝑔𝑃𝑗𝐴𝑔 − 𝑃𝑔

+ 𝐸𝑇 ((1 + 𝑑12) 𝑄1 + 𝑄2 + 𝑄3) 𝐸
+ 𝐴𝑇

𝑔 (𝑑2
1𝑍1 + 𝑑2

12𝑍2)𝐴𝑔 + 𝐶𝑇
𝑔𝐶𝑔,

Λ 12 = 𝐴𝑇
𝑔𝑃𝑗𝐴𝑔 + 𝐴𝑇

𝑔 (𝑑2
1𝑍1 + 𝑑2

12𝑍2)𝐴𝑑𝑔 + 𝐶𝑇
𝑔𝐶𝑑𝑔,

Λ 22 = 𝐴𝑇
𝑑𝑔𝑃𝑗𝐴𝑑𝑔 + 𝐴𝑇

𝑑𝑔 (𝑑2
1𝑍1 + 𝑑2

12𝑍2)𝐴𝑑𝑔 − 𝑄1

− 4𝑍̃2 + 𝐶𝑇
𝑑𝑔𝐶𝑑𝑔,

Λ 33 = −𝑄2 − 2𝑍1 − 2𝑍̃2,
Λ 44 = −𝑄3 − 2𝑍̃2,
Λ 18 = 𝐶𝑇

𝑔𝐷𝑔,
Λ 28 = 𝐶𝑇

𝑑𝑔𝐷𝑔,
Λ 88 = 𝐷𝑇

𝑔𝐷𝑔 − 𝛾2𝐼,
𝑃𝑗 fl ∑

𝑗∈𝐼
𝑔

𝑘

𝜆𝑔𝑗𝑃𝑗 + ∑
𝑗∈𝐼
𝑔
𝑢𝑐

𝜆̃𝑙
𝑔𝑗𝑃𝑗 + 𝜆̂𝑔𝑙

𝑢𝑘
𝑃𝑗,

𝜆̂𝑔𝑙

𝑢𝑘
fl 1 − ∑

𝑗∈𝐼
𝑔

𝑘

𝜆𝑔𝑗 − ∑
𝑗∈𝐼
𝑔
𝑢𝑐

𝜆̃𝑙
𝑔𝑗.

(19)

Proof. When 𝜓(𝑘) = 0, we consider the following Lyapunov-
Krasovskii functional:

𝑉 (𝑔, 𝑥 (𝑘)) fl 5∑
𝑖=1

𝑉𝑖 (𝑔, 𝑥 (𝑘)) , (20)

with

𝑉1 (𝑔, 𝑥 (𝑘)) fl 𝑥𝑇 (𝑘) 𝑃𝑔𝑥 (𝑘) ,
𝑉2 (𝑔, 𝑥 (𝑘)) fl 𝑘−1∑

𝑗=𝑘−𝑑(𝑘)

𝑥𝑇 (𝑗) 𝐸𝑇𝑄1𝐸𝑥 (𝑗) ,

𝑉3 (𝑔, 𝑥 (𝑘)) fl 𝑘−1∑
𝑗=𝑘−𝑑1

𝑥𝑇 (𝑗) 𝐸𝑇𝑄2𝐸𝑥 (𝑗)

+ 𝑘−1∑
𝑗=𝑘−𝑑2

𝑥𝑇 (𝑗) 𝐸𝑇𝑄3𝐸𝑥 (𝑗) ,
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𝑉4 (𝑔, 𝑥 (𝑘)) fl −𝑑1∑
𝑚=−𝑑2+1

𝑘−1∑
𝑗=𝑘−𝑑(𝑘)

𝑥𝑇 (𝑗) 𝐸𝑇𝑄1𝐸𝑥 (𝑗) ,

𝑉5 (𝑔, 𝑥 (𝑘)) fl 𝑑1

−1∑
𝑚=−𝑑1

𝑘−1∑
𝑗=𝑘+𝑚

(𝑥 (𝑗 + 1) − 𝑥 (𝑗))𝑇
⋅ 𝐸𝑇𝑍1𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗))
+ 𝑑12

−𝑑1−1∑
𝑚=−𝑑2

𝑘−1∑
𝑗=𝑘+𝑚

(𝑥 (𝑗 + 1) − 𝑥 (𝑗))𝑇
⋅ 𝐸𝑇𝑍2𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)) ,

(21)

where 𝑃𝑔 = 𝑃𝑇
𝑔 > 0, 𝑄𝑖 = 𝑄𝑇

𝑖 > 0, 𝑖 ∈ {1, 2, 3}, 𝑍𝑗 = 𝑍𝑇
𝑗 > 0,𝑗 ∈ {1, 2} are parameter-dependent Lyapunov matrices to be

determined.
Calculating the difference of 𝑉(𝑔, 𝑥(𝑘)) for each 𝑔, we

obtain

Δ𝑉1 = 𝑥𝑇 (𝑘 + 1) 𝑁∑
𝑗=1

𝜆𝑔𝑗𝑃𝑗𝑥 (𝑘 + 1) − 𝑥𝑇 (𝑘) 𝑃𝑔𝑥 (𝑘)

= (𝐴𝑔𝑥 (𝑘) + 𝐴𝑑𝑔𝐸𝑥 (𝑘 − 𝑑 (𝑘)))𝑇 ( 𝑁∑
𝑗=1

𝜆𝑔𝑗𝑃𝑗)
⋅ (𝐴𝑔𝑥 (𝑘) + 𝐴𝑑𝑔𝐸𝑥 (𝑘 − 𝑑 (𝑘))) − 𝑥𝑇 (𝑘) 𝑃𝑔𝑥 (𝑘) ,

Δ𝑉2 ≤ 𝑥𝑇 (𝑘) 𝐸𝑇𝑄1𝐸𝑥 (𝑘) − 𝑥𝑇 (𝑘 − 𝑑 (𝑘))
⋅ 𝐸𝑇𝑄1𝐸𝑥 (𝑘 − 𝑑 (𝑘)) + 𝑘−𝑑1∑

𝑗=𝑘−𝑑2+1

𝑥𝑇 (𝑗) 𝐸𝑇𝑄1𝐸𝑥 (𝑗) ,
Δ𝑉3 = 𝑥𝑇 (𝑘) 𝐸𝑇 (𝑄2 + 𝑄3) 𝐸𝑥 (𝑘) − 𝑥𝑇 (𝑘 − 𝑑1)

⋅ 𝐸𝑇𝑄2𝐸𝑥 (𝑘 − 𝑑1) − 𝑥𝑇 (𝑘 − 𝑑2)
⋅ 𝐸𝑇𝑄3𝐸𝑥 (𝑘 − 𝑑2) ,

Δ𝑉4 = 𝑑12𝑥𝑇 (𝑘) 𝐸𝑇𝑄1𝐸𝑥 (𝑘) − 𝑘−𝑑1∑
𝑗=𝑘−𝑑2+1

𝑥𝑇 (𝑗)
⋅ 𝐸𝑇𝑄1𝐸𝑥 (𝑗) ,

Δ𝑉5 = (𝐸 (𝑥 (𝑘 + 1) − 𝑥 (𝑘)))𝑇 (𝑑2
1𝑍1 + 𝑑2

12𝑍2)
⋅ (𝐸 (𝑥 (𝑘 + 1) − 𝑥 (𝑘)))
− 𝑑1

𝑘−1∑
𝑗=𝑘−𝑑1

(𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))𝑇
⋅ 𝑍1 (𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))

− 𝑑12

𝑘−𝑑1−1∑
𝑗=𝑘−𝑑2

(𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))𝑇
⋅ 𝑍2 (𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗))) .

(22)

On the other hand, according to Lemmas 5 and 6, the
following inequality is given:

− 𝑑1

𝑘−1∑
𝑗=𝑘−𝑑1

(𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))𝑇
⋅ 𝑍1 (𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗))) ≤ −𝜃1

𝑇𝑍1𝜃1

= 𝜂𝑇
1 Λ𝑇

1𝑍1Λ 1𝜂1,
(23)

where

𝜃1 = [[[
[

𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑1)
𝑥 (𝑘) + 𝑥 (𝑘 − 𝑑1) − 2𝑑1 + 1

𝑘∑
𝑗=𝑘−𝑑1

𝑥 (𝑗)
]]]
]
,

𝑍1 = [𝑍1 0
0 3𝑍1

] ,

𝜂1 (𝑘) =

[[[[[[[[[[[[[[[[[[[[[[
[

𝑥 (𝑘)
𝑥 (𝑘 − 𝑑 (𝑘))
𝑥 (𝑘 − 𝑑1)𝑥 (𝑘 − 𝑑2)
1𝑑1 + 1

𝑘∑
𝑗=𝑘−𝑑1

𝑥 (𝑗)
1𝑑 (𝑘) − 𝑑1 + 1

𝑘−𝑑1∑
𝑗=𝑘−𝑑(𝑘)

𝑥 (𝑗)
1𝑑2 − 𝑑 (𝑘) + 1

𝑘−𝑑(𝑘)∑
𝑗=𝑘−𝑑2

𝑥 (𝑗)

]]]]]]]]]]]]]]]]]]]]]]
]

,

Λ 1 = [𝐼 0 −𝐼 0 0 0 0
𝐼 0 𝐼 0 −2𝐼 0 0] ,

− 𝑑12

𝑘−𝑑1−1∑
𝑗=𝑘−𝑑2

(𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))𝑇
⋅ 𝑍2 (𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))
= −𝑑12

𝑘−𝑑1−1∑
𝑗=𝑘−𝑑(𝑘)

(𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))𝑇
⋅ 𝑍2 (𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))
− 𝑑12

𝑘−𝑑(𝑘)−1∑
𝑗=𝑘−𝑑2

(𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗)))𝑇
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⋅ 𝑍2 (𝐸 (𝑥 (𝑗 + 1) − 𝑥 (𝑗))) ≤ − 𝑑12𝑑 (𝑘) − 𝑑1

𝜃2
𝑇𝑍2𝜃2

− 𝑑12𝑑2 − 𝑑 (𝑘)𝜃3
𝑇𝑍2𝜃3

= −𝜂𝑇
1 Λ𝑇

2

[[[
[

𝑑12𝑑 (𝑘) − 𝑑1

𝑍2 0
0 𝑑12𝑑2 − 𝑑 (𝑘)𝑍2

]]]
]
Λ 2𝜂1

≤ −𝜂𝑇
1 Λ𝑇

2 [𝑍2 𝑋
∗ 𝑍2

]Λ 2𝜂1,
(24)

where

𝜃2

= [[[
[

𝑥 (𝑘 − 𝑑1) − 𝑥 (𝑘 − 𝑑 (𝑘))
𝑥 (𝑘 − 𝑑1) + 𝑥 (𝑘 − 𝑑 (𝑘)) − 2𝑑 (𝑘) − 𝑑1 + 1

𝑘−𝑑1∑
𝑗=𝑘−𝑑(𝑘)

𝑥 (𝑗)
]]]
]
,

𝜃3

= [[[
[

𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑2)
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝑥 (𝑘 − 𝑑2) − 2𝑑2 − 𝑑 (𝑘) + 1

𝑘−𝑑(𝑘)∑
𝑗=𝑘−𝑑2

𝑥 (𝑗)
]]]
]
,

𝑍2 = [𝑍2 0
0 3𝑍2

] ,

Λ 2 = [[[[[
[

0 −𝐼 𝐼 0 0 0 0
0 𝐼 𝐼 0 0 −2𝐼 0
0 𝐼 0 −𝐼 0 0 0
0 𝐼 0 𝐼 0 0 −2𝐼

]]]]]
]
.

(25)

Using this and combining (20)–(24), we have

Δ𝑉 = Δ𝑉1 + Δ𝑉2 + Δ𝑉3 + Δ𝑉4 + Δ𝑉5

≤ (𝐴𝑔𝑥 (𝑘) + 𝐴𝑑𝑔𝐸𝑥 (𝑘 − 𝑑 (𝑘)))𝑇 ( 𝑁∑
𝑗=1

𝜆𝑔𝑗𝑃𝑗)
⋅ (𝐴𝑔𝑥 (𝑘) + 𝐴𝑑𝑔𝐸𝑥 (𝑘 − 𝑑 (𝑘))) − 𝑥𝑇 (𝑘) 𝑃𝑔𝑥 (𝑘)
+ 𝑥𝑇 (𝑘) 𝐸𝑇𝑄1𝐸𝑥 (𝑘) − 𝑥𝑇 (𝑘 − 𝑑 (𝑘))
⋅ 𝐸𝑇𝑄1𝐸𝑥 (𝑘 − 𝑑 (𝑘)) + 𝑥𝑇 (𝑘) 𝐸𝑇 (𝑄2 + 𝑄3) 𝐸𝑥 (𝑘)
− 𝑥𝑇 (𝑘 − 𝑑1) 𝐸𝑇𝑄2𝐸𝑥 (𝑘 − 𝑑1) − 𝑥𝑇 (𝑘 − 𝑑2)
⋅ 𝐸𝑇𝑄3𝐸𝑥 (𝑘 − 𝑑2) + 𝑑12𝑥𝑇 (𝑘) 𝐸𝑇𝑄1𝐸𝑥 (𝑘)
+ (𝐸 (𝑥 (𝑘 + 1) − 𝑥 (𝑘)))𝑇 (𝑑2

1𝑍1 + 𝑑2
12𝑍2)

⋅ (𝐸 (𝑥 (𝑘 + 1) − 𝑥 (𝑘))) − 𝜂𝑇
1 (𝑘) Λ𝑇

1𝑍1Λ 1𝜂1 (𝑘)
− 𝜂𝑇

1 (𝑘) Λ𝑇
2𝑍̃2Λ 2𝜂1 (𝑘) = 𝜂𝑇

1 (𝑘)Π1𝑔𝜂1 (𝑘) ,

Π1𝑔 =

[[[[[[[[[[[[[[[[[
[

Λ11 Λ12 0 0 2𝑍1 0 0
∗ Λ22 0 0 0 0 2𝑍̃2∗ ∗ Λ 33 0 2𝑍1 0 0
∗ ∗ ∗ Λ 44 0 0 2𝑍̃2∗ ∗ ∗ ∗ −4𝑍1 0 0
∗ ∗ ∗ ∗ ∗ −4𝑍̃2 0
∗ ∗ ∗ ∗ ∗ ∗ −4𝑍̃2

]]]]]]]]]]]]]]]]]
]

,

(26)

where Λ 33, Λ 44 are defined in (19) and

Λ11 = 𝐴𝑇
𝑔 ( 𝑁∑

𝑗=1

𝜆𝑔𝑗𝑃𝑗)𝐴𝑔 − 𝑃𝑔

+ 𝐸𝑇 ((1 + 𝑑12) 𝑄1 + 𝑄2 + 𝑄3) 𝐸
+ 𝐴𝑇

𝑔 (𝑑2
1𝑍1 + 𝑑2

12𝑍2)𝐴𝑔,
Λ12 = 𝐴𝑇

𝑔 ( 𝑁∑
𝑗=1

𝜆𝑔𝑗𝑃𝑗)𝐴𝑔 + 𝐴𝑇
𝑔 (𝑑2

1𝑍1 + 𝑑2
12𝑍2)𝐴𝑑𝑔,

Λ22 = 𝐴𝑇
𝑑𝑔 ( 𝑁∑

𝑗=1

𝜆𝑔𝑗𝑃𝑗)𝐴𝑑𝑔

+ 𝐴𝑇
𝑑𝑔 (𝑑2

1𝑍1 + 𝑑2
12𝑍2)𝐴𝑑𝑔 − 𝑄1 − 4𝑍̃2.

(27)

Because Π1𝑔 < 0, we can see that Δ𝑉 ≤ 0 is holding.
We can conclude that 𝑥(0) ∈ R𝑛𝑥 and 𝑟(0) ∈ 𝑆. Then, the
following holds:

𝐸{ ∞∑
𝑘=0

‖𝑥 (𝑘)‖2 | 𝑥 (0) , 𝑟 (0)} < ∞. (28)

The stochastic stability is satisfied.
When 𝜓(𝑘) ̸= 0, we set

𝜂2 (𝑘) =

[[[[[[[[[[[[[[[[[[[[[[[[
[

𝑥 (𝑘)
𝑥 (𝑘 − 𝑑 (𝑘))
𝑥 (𝑘 − 𝑑1)𝑥 (𝑘 − 𝑑2)
1𝑑1 + 1

𝑘∑
𝑗=𝑘−𝑑1

𝑥 (𝑗)
1𝑑 (𝑘) − 𝑑1 + 1

𝑘−𝑑1∑
𝑗=𝑘−𝑑(𝑘)

𝑥 (𝑗)
1𝑑2 − 𝑑 (𝑘) + 1

𝑘−𝑑(𝑘)∑
𝑗=𝑘−𝑑2

𝑥 (𝑗)
𝜓 (𝑘)

]]]]]]]]]]]]]]]]]]]]]]]]
]

,
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𝐽 = 𝐸{ ∞∑
𝑘=0

[𝑒𝑇 (𝑘) 𝑒 (𝑘) − 𝛾2𝜓𝑇 (𝑘) 𝜓 (𝑘)
+ Δ𝑉 (𝑥 (𝑘) , 𝑔)]} − 𝐸 (𝑉 (𝑥 (𝑘) , 𝑔))󵄨󵄨󵄨󵄨𝑘→∞

≤ ∞∑
𝑘=0

[𝑒𝑇 (𝑘) 𝑒 (𝑘) − 𝛾2𝜓𝑇 (𝑘) 𝜓 (𝑘)
+ Δ𝑉 (𝑥 (𝑘) , 𝑔)] ≤ ∞∑

𝑘=0

𝜂𝑇
2 (𝑘)Π2𝑔𝜂2 (𝑘) ,

(29)

where

Π2𝑔

=

[[[[[[[[[[[[[[[[[[[[
[

Λ󸀠
11 Λ󸀠

12 0 0 2𝑍1 0 0 Λ 18

∗ Λ󸀠
22 0 0 0 0 2𝑍̃2 Λ 28∗ ∗ Λ 33 0 2𝑍1 0 0 0

∗ ∗ ∗ Λ 44 0 0 2𝑍̃2 0
∗ ∗ ∗ ∗ −4𝑍1 0 0 0
∗ ∗ ∗ ∗ ∗ −4𝑍̃2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −4𝑍̃2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ 88

]]]]]]]]]]]]]]]]]]]]
]

, (30)

where Λ 18, Λ 28, Λ 88 are defined in (19) and

Λ󸀠
11 = 𝐴𝑇

𝑔 ( 𝑁∑
𝑗=1

𝜆𝑔𝑗𝑃𝑗)𝐴𝑔 − 𝑃𝑔

+ 𝐸𝑇 ((1 + 𝑑12) 𝑄1 + 𝑄2 + 𝑄3) 𝐸
+ 𝐴𝑇

𝑔 (𝑑2
1𝑍1 + 𝑑2

12𝑍2)𝐴𝑔 + 𝐶𝑇
𝑔𝐶𝑔,

Λ󸀠
12 = 𝐴𝑇

𝑔 ( 𝑁∑
𝑗=1

𝜆𝑔𝑗𝑃𝑗)𝐴𝑔 + 𝐴𝑇
𝑔 (𝑑2

1𝑍1 + 𝑑2
12𝑍2)𝐴𝑑𝑔

+ 𝐶𝑇
𝑔𝐶𝑑𝑔,

Λ󸀠
22 = 𝐴𝑇

𝑑𝑔 ( 𝑁∑
𝑗=1

𝜆𝑔𝑗𝑃𝑗)𝐴𝑑𝑔

+ 𝐴𝑇
𝑑𝑔 (𝑑2

1𝑍1 + 𝑑2
12𝑍2)𝐴𝑑𝑔 − 𝑄1 − 4𝑍̃2

+ 𝐶𝑇
𝑑𝑔𝐶𝑑𝑔.

(31)

When the polytopic uncertain transition rates are simul-
taneously considered, we can conclude that formulas (16)-(17)
hold for any nonzero condition. This proof of Theorem 7 is
completed.

3.2. Design of Reduced-Order FD Filter for Polytopic
Discrete-Time MJLSs with Time-Varying Delays

Theorem 8. Consider system (1) with polytopic uncertain
transition information and time-varying delays, for given 𝛾 >0, if there exist matrices 𝑋, 𝑀𝑔𝑗 fl [𝑀𝑔𝑗(1) 𝑊𝑀𝑔𝑗(2)

𝑀𝑔𝑗(3) 𝑀𝑔𝑗(2)
], ∀𝑔, 𝑗 ∈

𝐼, 𝑊 fl [𝐼𝑛𝑟 0𝑛𝑟×(𝑛𝑥−𝑛𝑟)
]𝑇, 𝑍̃2 ≥ 0 and positive-definite

symmetric matrices 𝑃𝑔,𝑄1,𝑄2,𝑄3,𝑍1,𝑍2 satisfy the following
LMIs,

Π̃𝑔 =
[[[[[[[[
[

Φ1 Φ2 Φ3 Φ4 Φ5∗ −𝑍1 0 0 0
∗ ∗ −𝑍2 0 0
∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ Φ6

]]]]]]]]
]

< 0, (32)

where

Φ1

=

[[[[[[[[[[[[[[[[[[[[
[

Λ̃ 11 0 0 0 2𝑍1 0 0 0
∗ Λ̃ 22 0 0 0 0 2𝑍̃2 0
∗ ∗ Λ 33 0 2𝑍1 0 0 0
∗ ∗ ∗ Λ 44 0 0 2𝑍̃2 0
∗ ∗ ∗ ∗ −4𝑍1 0 0 0
∗ ∗ ∗ ∗ ∗ −4𝑍̃2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −4𝑍̃2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]]]]]]]]]]
]

,

Φ2 = [𝑑1𝑍1𝐴𝑔 𝑑1𝑍1𝐴𝑑𝑔 0 0 0 0 0 0]𝑇 ,
Φ3 = [𝑑12𝑍2𝐴𝑔 𝑑12𝑍2𝐴𝑑𝑔 0 0 0 0 0 0]𝑇 ,
Φ4 = [𝐶𝑔 𝐶𝑑𝑔 0 0 0 0 0 𝐷𝑔]𝑇 ,
Φ5 = [Λ𝑇

112 Λ𝑇
212 0 0 0 0 0 0]𝑇 ,

Λ̃ 11 = 𝐸𝑇 ((1 + 𝑑12) 𝑄1 + 𝑄2 + 𝑄3) 𝐸 − 𝑍1 − 𝑃𝑔,
Λ̃ 22 = −𝑄1 − 4𝑍̃2,
Λ 112 = [√𝜆

𝑔𝑆
(𝑔)

𝑘(1)

𝐴𝑇

𝑔𝑆
(𝑔)

𝑘(1)

, . . . , √𝜆
𝑔𝑆
(𝑔)

𝑘(𝑠)

𝐴𝑇

𝑔𝑆
(𝑔)

𝑘(𝑠)

,
√𝜆̃(𝑔)

𝑔𝑆
(𝑔)

𝑢𝑐(1)

𝐴𝑇

𝑔𝑆
(𝑔)

𝑢𝑐(1)

, . . . , √𝜆̃(𝑔)

𝑔𝑆
(𝑔)

𝑢𝑐(V)

𝐴𝑇

𝑔𝑆
(𝑔)

𝑢𝑐(V)
, √𝜆̂(𝑔𝑙)

𝑢𝑘
𝐴𝑇

𝑔𝑆
(𝑔)

𝑢𝑘

] ,
Λ 212 = [√𝜆

𝑔𝑆
(𝑔)

𝑘(1)

𝐴𝑇

𝑑𝑔𝑆
(𝑔)

𝑘(1)

, . . . , √𝜆
𝑔𝑆
(𝑔)

𝑘(𝑠)

𝐴𝑇

𝑑𝑔𝑆
(𝑔)

𝑘(𝑠)

,
√𝜆̃(𝑔)

𝑔𝑆
(𝑔)

𝑢𝑐(1)

𝐴𝑇

𝑑𝑔𝑆
(𝑔)

𝑢𝑐(1)

, . . . , √𝜆̃(𝑔)

𝑔𝑆
(𝑔)

𝑢𝑐(V)

𝐴𝑇

𝑑𝑔𝑆
(𝑔)

𝑢𝑐(V)
, √𝜆̂(𝑔𝑙)

𝑢𝑘
𝐴𝑇

𝑑𝑔𝑆
(𝑔)

𝑢𝑘

] ,
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Φ6 = diag {𝐻
𝑔𝑆
(𝑔)

𝑘(1)

, . . . , 𝐻
𝑔𝑆
(𝑔)

𝑘(𝑠)

, . . . , 𝐻
𝑔𝑆
(𝑔)

𝑢𝑐(1)

, . . . , 𝐻
𝑔𝑆
(𝑔)

𝑢𝑐(V)
,

𝐻
𝑔𝑆
(𝑔)

𝑢𝑘

} ,
𝐻𝑔𝑗 = 𝑃𝑗 −𝑀𝑔𝑗 −𝑀𝑇

𝑔𝑗,
(33)

then the FDfilter (7)matrices (𝐴𝐹𝑔, 𝐵𝐹𝑔, 𝐶𝐹𝑔, 𝐷𝐹𝑔) are found
so that the filtering error system (9) is stochastically stable with
anH∞ performance index 𝛾. Moreover, the designed reduced-
order FD filter’s gain matrices can be obtained as follows:

𝐴𝐹𝑔 fl 𝑀𝑔𝑗(2)𝐴𝐹𝑔,
𝐵𝐹𝑔 fl 𝑀𝑔𝑗(2)𝐵𝐹𝑔,
𝐶𝐹𝑔 fl 𝐶𝐹𝑔,
𝐷𝐹𝑔 fl 𝐷𝐹𝑔.

(34)

Proof. According to Theorem 7, the filtering error systems
are randomly stable with a guaranteed H∞ performance 𝛾
if there exist positive-definite symmetric matrices 𝑃𝑔, 𝑔 ∈𝐼, 𝑄1, 𝑄2, 𝑄3, 𝑍1, 𝑍2, and a matrix 𝑋 satisfying the
inequalities in (16)-(17). We firstly apply Schur complements
to (16) and obtain

Π̃1𝑔 =
[[[[[[[[
[

Φ1 Φ2 Φ3 Φ4 Φ̃5∗ −𝑍1 0 0 0
∗ ∗ −𝑍2 0 0
∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ −Φ̃6

]]]]]]]]
]

< 0, (35)

where Φ1,Φ2,Φ3, and Φ4 are defined in (33) and

Φ̃5 = [Λ̃𝑇
112 Λ̃𝑇

212 0 0 0 0 0 0]𝑇 ,
Φ̃6 = diag {𝑃−1

𝑆
(𝑔)

𝑘(1)

, . . . , 𝑃−1

𝑆
(𝑔)

𝑘(𝑠)

, 𝑃−1

𝑆
(𝑔)

𝑢𝑐(1)

, . . . , 𝑃−1

𝑆
(𝑔)

𝑢𝑐(V)
, 𝑃−1

𝑆
(𝑔)

𝑢𝑘

} ,
Λ̃ 112 = 𝐴𝑇

𝑔 [√𝜆
𝑔𝑆
(𝑔)

𝑘(1)

𝐼, . . . , √𝜆
𝑔𝑆
(𝑔)

𝑘(𝑠)

𝐼, . . . , √𝜆̃(𝑔)

𝑔𝑆
(𝑔)

𝑢𝑐(1)

𝐼, . . . ,
√𝜆̃(𝑔)

𝑔𝑆
(𝑔)

𝑢𝑐(V)

𝐼, √𝜆̂(𝑔𝑙)

𝑢𝑘
𝐼] ,

Λ̃ 212 = 𝐴𝑇
𝑑𝑔 [√𝜆

𝑔𝑆
(𝑔)

𝑘(1)

𝐼, . . . , √𝜆
𝑔𝑆
(𝑔)

𝑘(𝑠)

𝐼, . . . , √𝜆̃(𝑔)

𝑔𝑆
(𝑔)

𝑢𝑐(1)

𝐼, . . . ,
√𝜆̃(𝑔)

𝑔𝑆
(𝑔)

𝑢𝑐(V)

𝐼, √𝜆̂(𝑔𝑙)

𝑢𝑘
𝐼] .

(36)

In order to eliminate the coupling between the
system matrices and the Lyapunov matrices in (35),

we perform a congruent transformation to (35) by
diag{𝐼(4𝑛+𝑚), 𝐼𝑛, 𝐼𝑛, 𝐼𝑞, Ω}, with

Ω fl diag {𝑀
𝑔𝑆
(𝑔)

𝑘(1)

, . . . ,𝑀
𝑔𝑆
(𝑔)

𝑘(𝑠)

,𝑀
𝑔𝑆
(𝑔)

𝑢𝑐(1)

, . . . ,𝑀
𝑔𝑆
(𝑔)

𝑢𝑐(V)
,

𝑀𝑔𝑆𝑢𝑘
} . (37)

For an discretionary matrix𝑀𝑔𝑗, ∀𝑔, 𝑗 ∈ 𝐼, the following
inequality with 𝑃𝑗 > 0 is established:

(𝑃𝑇
𝑗 −𝑀𝑇

𝑔𝑗) 𝑃−1
𝑗 (𝑃𝑗 −𝑀𝑔𝑗) ≥ 0. (38)

We expand (38) and, then, get the following bounding
inequality:

𝑃𝑇
𝑗 −𝑀𝑇

𝑔𝑗 −𝑀𝑔𝑗 ≥ −𝑀𝑔𝑗𝑃−1
𝑗 𝑀𝑇

𝑔𝑗. (39)

Then, based on (39), the following form can be easily
obtained:

Π̃2𝑔 =
[[[[[[[[
[

Φ1 Φ2 Φ3 Φ4 ΩΦ̃5∗ −𝑍1 0 0 0
∗ ∗ −𝑍2 0 0
∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ Φ6

]]]]]]]]
]

< 0. (40)

For reduced-order FD filter design purpose, we choose
the slack matrix𝑀𝑔𝑗 as follows:

𝑀𝑔𝑗 fl [𝑀𝑔𝑗(1) 𝑊𝑀𝑔𝑗(2)𝑀𝑔𝑗(3) 𝑀𝑔𝑗(4)

] , 𝑔, 𝑗 ∈ 𝐼, (41)

where

𝑊 fl [𝐼𝑛𝑟 𝑂𝑛𝑟×(𝑛𝑥−𝑛𝑟)
]𝑇 ,

𝑀𝑔𝑗(1) ∈ 𝑅𝑛𝑥×𝑛𝑥 ,
𝑀𝑔𝑗(3) ∈ 𝑅𝑛𝑟×𝑛𝑥 ,
𝑀𝑔𝑗(2) ∈ 𝑅𝑛𝑟×𝑛𝑟 ,
𝑀𝑔𝑗(4) ∈ 𝑅𝑛𝑟×𝑛𝑟 .

(42)

Then, performing the congruent transformation,

[𝑀𝑔𝑗 +𝑀𝑇
𝑔𝑗]

= [𝑀𝑔𝑗(1) +𝑀𝑇
𝑔𝑗(1) 𝑊𝑀𝑔𝑗(2) +𝑀𝑇

𝑔𝑗(3)∗ 𝑀𝑔𝑗(4) +𝑀𝑇
𝑔𝑗(4)

] , (43)

by [ 𝐼 0
∗ 𝑀𝑔𝑗(2)𝑀

−1
𝑔𝑗(4)

] yields
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[ 𝐼 0
∗ 𝑀𝑔𝑗(2)𝑀−1

𝑔𝑗(4)

][𝑀𝑔𝑗(1) +𝑀𝑇
𝑔𝑗(1) 𝑊𝑀𝑔𝑗(2) +𝑀𝑇

𝑔𝑗(3)∗ 𝑀𝑔𝑗(4) +𝑀𝑇
𝑔𝑗(4)

][ 𝐼 0
∗ 𝑀−𝑇

𝑔𝑗(4)𝑀𝑇
𝑔𝑗(2)

]

= [𝑀𝑔𝑗(1) +𝑀𝑇
𝑔𝑗(1) 𝑊𝑀𝑔𝑗(2)𝑀−𝑇

𝑔𝑗(4)𝑀𝑇
𝑔𝑗(2) +𝑀𝑇

𝑔𝑗(3)𝑀−𝑇
𝑔𝑗(4)𝑀𝑇

𝑔𝑗(2)∗ 𝑀𝑔𝑗(2)𝑀−𝑇
𝑔𝑗(4)𝑀𝑇

𝑔𝑗(2) +𝑀𝑔𝑗(2)𝑀−1
𝑔𝑗(4)𝑀𝑇

𝑔𝑗(2)

] = [𝑀𝑔𝑗(1) +𝑀𝑇
𝑔𝑗(1) 𝑊𝑀̃𝑔𝑗(2) + 𝑀̃𝑇

𝑔𝑗(3)∗ 𝑀̃𝑔𝑗(2) + 𝑀̃𝑇
𝑔𝑗(2)

] .
(44)

Thus, without loss of feasibility, matrix 𝑀𝑔𝑗 in (41) can
directly specify the following general form:

𝑀𝑔𝑗 fl [𝑀𝑔𝑗(1) 𝑊𝑀𝑔𝑗(2)𝑀𝑔𝑗(3) 𝑀𝑔𝑗(2)

] , ∀𝑔, 𝑗 ∈ 𝐼. (45)

It is shown that the matrix variables 𝑀𝑔𝑗(2) can be
absorbed directly by the full-order filter gain matrices 𝐴𝐹𝑔

and 𝐵𝐹𝑔; then the designed reduced-order FD filter’s gain
matrices can be obtained as follows (34).

Then we replace matrices 𝑀𝑔𝑗 given by (34) into (40);
finally we can get (32) exactly. This completes the proof.

Remark 9 (fault detection filter design algorithm).

Step 1. Obtain 𝛾min by solving (32) inTheorem 8.

Step 2. If, with 𝛾 replaced by 𝛾min, (32) is feasible for
Theorem 8, we can obtain the locally optimized parameters(𝐴𝐹𝑔, 𝐵𝐹𝑔, 𝐶𝐹𝑔, 𝐷𝐹𝑔) for the desired full order fault detec-
tion filter and (𝐴𝐹𝑔, 𝐵𝐹𝑔, 𝐶𝐹𝑔, 𝐷𝐹𝑔) for the desired reduced-
order fault detection filter and exit. Otherwise, go to Step 3.

Step 3. Increase 𝛾min by Δ𝛾 where Δ𝛾 is a sufficiently small
positive scalar and then solve (32) with the updated 𝛾min.
Repeat such a procedure until (32) are feasible and therefore
obtain the locally optimized filter parameters and the index𝛾min.

Step 4. Stop.

4. Simulated SRM System

We now use the proposed method to simulate a four-phase
switched reluctance motor (SRM) system investigated in [31]
to demonstrate the effectiveness and practicability of the
proposed method. The four-phase CSTR system structure is
depicted in Figure 1.

The plant state variable is selected as 𝑥 = [𝜃𝑚 𝑉𝑚]𝑇,
where 𝜃𝑚, 𝑉𝑚 denote the angular position and velocity of the
motors. Sampling time 𝑇 = 0.1 seconds, and the disturbance
variable is selected as 𝜔(𝑘) = [0 sin 𝜃𝑚]𝑇. The simplified
system model is expressed as follows:

̇𝜃𝑚 = 𝑉𝑚,
𝑉̇𝑚 = − 𝜅𝑒𝐽𝑚 sin 𝜃𝑚 − 𝑎𝑖𝐽𝑚𝑉𝑚 + 𝑏𝑖𝐽𝑚 𝑢𝑖, 𝑖 = 1, 2, 3, 4, (46)

where 𝐽𝑚 denotes the inertia of the motor. 𝜅𝑒 > 0 is the
elasticity. 𝑢𝑖 is the voltage applied to the motor of phase 𝑖. 𝑎𝑖

is the related viscous friction, and 𝑏𝑖 is the amplifier gain.
The above SRM system can be represented by MJS with

four operation modes and the following parameter matrices:

[ 𝐴1 𝐴𝑑1 𝐵1 𝐸1 𝐹1𝐶1 𝐶𝑑1 0 𝐷1 𝐻1
]

= [[
[

1 0.017 −0.201 −0.015 0.002 −0.001 0.019
0.012 0.434 0.036 −0.069 0.437 −0.005 0.9671.005 2.001 0.109 0.125 0 0.031 0

]]
]
,

[ 𝐴2 𝐴𝑑2 𝐵2 𝐸2 𝐹2𝐶2 𝐶𝑑2 0 𝐷2 𝐻2
]

= [[
[

1 0.023 −0.204 0.021 0.003 −0.001 0.019
0.016 0.411 −0.063 −0.071 0.327 −0.005 0.9671.002 2.003 0.121 0.123 0 0.029 0

]]
]
,

[ 𝐴3 𝐴𝑑3 𝐵3 𝐸3 𝐹3𝐶3 𝐶𝑑3 0 𝐷3 𝐻3
]

= [[
[

1 0.025 −0.183 −0.049 0.006 −0.001 0.019
0.023 0.512 0.051 −0.062 0.601 −0.005 0.9671.006 2.002 0.115 0.097 0 −0.113 0

]]
]
,

[ 𝐴4 𝐴𝑑4 𝐵4 𝐸4 𝐹4𝐶4 𝐶𝑑4 0 𝐷4 𝐻4
]

= [[
[

1 0.031 −0.210 0.027 0.001 −0.001 0.019
0.018 0.394 −0.062 −0.073 0.193 −0.005 0.9671.003 2.005 0.139 0.108 0 0.112 0

]]
]
,

(47)

Weighted transfer function matrix is 𝑊𝑓(𝑧) =0.5𝑧/(0.2𝑧 + 1), in which state space is realized as follows:

𝑥𝑓 (𝑘 + 1) = 𝑥𝑓 (𝑘) + 0.25𝑓 (𝑘) ,
𝑓 (𝑘) = 0.51𝑥𝑓 (𝑘) + 𝑓 (𝑘) . (48)

In order to make the simulation simplification, we con-
sider 1 ≤ 𝑑(𝑘) ≤ 10, 𝑘 = 0, 1, 2, . . . , 300. The known input𝑢(𝑘) is the sinusoidal signal with amplitude less than 0.1. The
exogenous disturbance input 𝜔(𝑘) is the uniform noise with
amplitude less than 0.6. The fault signal 𝑓(𝑘) is

𝑓 (𝑘) = {{{
−1, 140 ≤ 𝑘 ≤ 250,
0, others. (49)

Now, four cases for different transition ratematrix (TRM)
are shown in Table 1, and the simulation result of Markov
chain 𝜍(𝑘) is given in Figure 2.
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Table 1: Four different TRMs.

Case 1: completely known TRM Case 2: polytopic uncertain TRM Case 3: partly known TRM Case 4: completely unknown TRM

[[[[[[[
[

0.3 0.3 0.1 0.3
0.5 0.2 0.1 0.2
0.1 0.5 0.3 0.1
0.2 0.2 0.1 0.5

]]]]]]]
]

[[[[[[[
[

0.3 0.3 𝜆̂13 𝜆̂14

𝜆̂21 𝜆̂22 𝜆̂23 𝜆̂24

𝜆̃31 𝜆̂32 𝜆̃33 𝜆̂34

𝜆̂41 𝜆̂42 0.1 0.5

]]]]]]]
]

[[[[[[[
[

0.3 0.3 𝜆̂13 𝜆̂14

𝜆̂21 𝜆̂22 0.3 𝜆̂24

𝜆̂31 𝜆̂32 𝜆̂33 𝜆̂34

𝜆̂41 𝜆̂42 0.1 0.5

]]]]]]]
]

[[[[[[[
[

𝜆̂11 𝜆̂12 𝜆̂13 𝜆̂14

𝜆̂21 𝜆̂22 𝜆̂23 𝜆̂24

𝜆̂31 𝜆̂32 𝜆̂33 𝜆̂34

𝜆̂41 𝜆̂42 𝜆̂43 𝜆̂44

]]]]]]]
]

+

−
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Figure 1: Four-phase SRM system structure.
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Figure 2: Modes evolution of SRM system.

For case 2, the TRM includes two vertices Δ 𝜍, 𝜍 = 1, 2,
and their third rows Δ3

𝜍, 𝜍 = 1, 2, are given by

Δ3
1 = [0.6 𝜆̂32 0.2 𝜆̂34] ,

Δ3
2 = [0.42 𝜆̂32 0.13 𝜆̂34] . (50)

We can obtain the filter gains for four different FD
filters with time-varying time delays in Case 2 by applying
Theorem 8 and the Matlab LMI Toolbox. The full-order FD
filter gains are given as follows:

𝐴𝐹1 = [0.0538 −0.2743
0.5513 0.3146 ] ,

𝐵𝐹1 = [0.53720.2574] ,
𝐶𝐹1 = [0.1391 0.2793] ,
𝐷𝐹1 = [−0.2931] ,
𝐴𝐹2 = [0.1201 0.2815

0.5213 0.1801] ,
𝐵𝐹2 = [−0.83871.3149 ] ,
𝐶𝐹2 = [0.5768 0.3691] ,
𝐷𝐹2 = [−0.1492] ,
𝐴𝐹3 = [ 0.1579 −0.3801

−0.0513 −0.0496] ,
𝐵𝐹3 = [ 0.2103

−0.4689] ,
𝐶𝐹3 = [1.4592 1.5871] ,
𝐷𝐹3 = [−0.0051] ,
𝐴𝐹4 = [0.2413 −0.3869

0.3701 0.6578 ] ,
𝐵𝐹4 = [ 0.9136

−1.3497] ,
𝐶𝐹4 = [1.4103 0.2526] ,
𝐷𝐹4 = [0.4359] ,

(51)

and the reduced-order FD filter gains are given as follows:

𝐴𝐹1 = [0.1518] ,
𝐵𝐹1 = [0.6201] ,
𝐶𝐹1 = [0.1435] ,
𝐷𝐹1 = [−0.6879] ,
𝐴𝐹2 = [0.1179] ,
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Figure 3: Residual generation of full-order fault detection filter.

𝐵𝐹2 = [−0.8392] ,
𝐶𝐹2 = [0.3681] ,
𝐷𝐹2 = [−0.1493] ,
𝐴𝐹3 = [0.2094] ,
𝐵𝐹3 = [−0.4659] ,
𝐶𝐹3 = [1.5791] ,
𝐷𝐹3 = [−0.0052] ,
𝐴𝐹4 = [0.6512] ,
𝐵𝐹4 = [−1.3493] ,
𝐶𝐹4 = [−0.7702] ,
𝐷𝐹4 = [−0.4413] .

(52)

The feasible solutions for the other three TRM cases
shown in Table 1 are omitted for brevity.

Obviously, it is seen that the residual value estimated
by the full-order filter is closer to the weighting fault signal
than the estimated residual value of the reduced-order filter
from the comparison of Figures 3 and 5. The more the
known transition rates are, the more accurate the estimated
residual values are. The simulation results further indicate

that, whether the transition rates are known or not, the
designed fault detection filters are effective and feasible.

Figures 4 and 6 display the evolutions of 𝐽(𝑟(𝑘)) =√∑𝑘0+𝐿

𝑘=𝑘0
𝑟𝑇(𝑘)𝑟(𝑘) for both faulty case and fault-free case,

respectively. For different cases, the residuals are different,
the calculated residual evaluation functions are different, and
the corresponding thresholds 𝐽th ≜ sup𝑑∈𝑙2,𝑓=0𝐸[𝐽(𝑟(𝑘))] are
different. Weighting fault signal method can improve the
performance of the fault detection system.

In Tables 2 and 3, the characteristics of the full-order fault
detection filter and the reduced-order fault detection filter
are compared in the case of different delay differentials. As
the time-varying delay differential value decreases, the time
steps to detect the fault are shortened. From the comparison
results of the same-order FD filters, it is clear to show
that the performance of fault detection filter in polytopic
uncertain TRs is superior to those in incompletely known
and completely unknown TRs. In this example, we can see
that the fault detection time does not change much as the
order of fault detection filter is reduced. Thus, it declares
the effectiveness of the designed FD reduced-order filter for
MJLSs with deficient transition information.

5. Conclusion

In this paper, a fault detection filtering method has been
investigated for polytopic uncertain discrete-timeMJLSswith
time-varying delays.Themain contribution of our research is
the introduction of fault detection reduced-order filter design
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Figure 4: Evaluation function curve of full-order fault detection filter.

Table 2: Comparison results for four different full-order FD filters cases with time-varying delays.

Transition rate matrix Minimum𝐻∞ performance Threshold 𝐽th Time steps
TRM 𝑑12 = 2 𝑑12 = 2 𝑑12 = 2
Case 1 1.6715 0.4358 143
Case 2 1.9437 0.4167 145
Case 3 2.0791 0.3333 146
Case 4 2.1932 0.2291 148
Transition rate matrix
TRM

Minimum𝐻∞ performance𝑑12 = 6 Threshold 𝐽th𝑑12 = 6 Time steps𝑑12 = 6
Case 1 3.1742 0.4681 144
Case 2 3.4379 0.4462 146
Case 3 3.6153 0.3615 147
Case 4 3.8256 0.2549 149

for polytopic uncertain MJLSs with time-varying delays. It
should be emphasized that the above-mentioned approach
is used in the fault detection process of polytopic uncertain
discrete-timeMJLSs for the first time.Theunderlying systems
are more common. Based onWirtinger-based inequality and
Markovian Lyapunov functional, some sufficient conditions
for the existence of FD reduced-order filter for polytopic
uncertain discrete-time MJLSs with time-varying delays are

obtained, such that the filtering error system is randomly
stable. Finally, an effective example has been adopted to fully
illustrate the effectiveness of the proposed design approach,
which can improve the sensitivity of fault detection and
reduce the fault detection rate of false positives. Further
research is anticipated by extending to the fault tolerant con-
trol methods for time-varying delay and uncertain process in
the different Markov systems.
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Figure 5: Residual generation of reduced-order fault detection filter.
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Figure 6: Evaluation function curve of reduced-order fault detection filter.
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Table 3: Comparison results for four different reduced-order FD filters cases with time-varying delays.

Transition rate matrix Minimum𝐻∞ performance Threshold 𝐽th Time steps
TRM 𝑑12 = 2 𝑑12 = 2 𝑑12 = 2
case 1 1.7492 0.1125 144
case 2 2.0139 0.0875 146
case 3 2.1521 0.0667 147
case 4 2.2378 0.0375 149
Transition rate matrix
TRM

Minimum𝐻∞ performance𝑑12 = 6 Threshold 𝐽th𝑑12 = 6 Time steps𝑑12 = 6
case 1 3.5146 0.1276 145
case 2 3.7943 0.0913 147
case 3 3.9018 0.0741 148
case 4 4.0157 0.0489 150
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