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A blind decryption scheme enables a user to query decryptions from a decryption server without revealing information about the
plain-text message. Such schemes are useful, for example, for the implementation of privacy-preserving encrypted file storages and
payment systems. In terms of functionality, blind decryption is close to oblivious transfer. For noiseless channels, information-
theoretically secure oblivious transfer is impossible. However, in this paper, we show that this is not the case for blind decryption.
We formulate a definition of perfect secrecy of symmetric blind decryption for the following setting: at most one of the scheme
participants is a passive adversary (honest-but-curious). We also devise a symmetric blind decryption scheme based on modular
arithmetic on a ring Z𝑝2 , where 𝑝 is a prime, and show that it satisfies our notion of perfect secrecy.

1. Introduction

Over the past 15 years, data has moved from local storage to
centralized data warehouses in the cloud. The accessibility of
large amounts of personal data through a public network has
given rise tomany security and privacy issues [1]. Fortunately,
such issues have generally been taken seriously. For example,
in many countries, ethical and legal requirements have
been imposed on guaranteeing the confidentiality of medical
records [2, 3]. However, the implementation of privacy tech-
nologies is nontrivial, especially if the data storage has been
outsourced to a cloud operator. Sensitive information can
often be inferred from simple access patterns either by out-
siders or by the operator of the storage. For example, being
able to observe a medical doctor to access the medical
record of a patient can leak sensitive information. Therefore,
such access patterns should be kept hidden both from out-
siders and from the party that is administering the records.
Oblivious databases [4] and privacy-preserving encrypted
file systems [5] are examples of technologies that can be
used to hide the access information from the administra-
tor. For such systems, the decryption of data is typically
handled by a central decryption server. Such systems can
be conveniently implemented using blind decryption schemes
[6]. Blind decryption is a versatile primitive. It can be used
as a building block for many privacy-critical applications,

such as privacy-preserving payment systems [7], key escrow
systems, oblivious transfer protocols [8], privacy-preserving
systems for digital rights management [9, 10], and private
information retrieval [11]. A blind decryption scheme consists
of an encryption scheme together with a blind decryp-
tion protocol intended to decrypt messages in a privacy-
preserving fashion.Themeaning of “blind decryption” can be
easily described based on the following scenario depicted in
Figure 1. Suppose that Alice has obtained several encrypted
messages from an encryptor. Alice is entitled to choose and
decrypt exactly one of those messages. Suppose that the
decryption key 𝑘 is stored on a decryption server and Alice
wishes to have the server decrypt the message for her in such
a way that neither the encryptor nor the decryptor learns the
message chosen by Alice.

There are suggestions for practical blind decryption
based on public-key cryptography [5, 6, 12–14]. It is also
possible to implement the blind decryption functionalitywith
other protocols such as secure multiparty computation [15].
However, the resulting schemes would be computationally
demanding. For many applications, symmetric primitives are
sufficient and computationally more efficient. In addition,
they can provide secrecy that is not based on computational
assumptions. Oblivious transfer schemes [16, 17] deliver
the same functionality directly between the sender and the
receiver without the decryption server. However, for noiseless
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Figure 1: Blind decryption. Alice has obtained 𝐿 ciphertexts from an encryptor and is entitled to choose exactly one of those for decryption.
Alice interacts with a decryptor that shares a key 𝑘 with the encryptor to transform the ciphertext message 𝑐𝑖 into a plain-text message 𝑚𝑖.
Neither the encryptor nor the decryptor learns the plain-text message chosen by Alice.

channels, information-theoretically secure oblivious transfer
is impossible [18]. In addition, blind decryption schemes do
not seem to exist, such that the privacy of the user is based
on information-theoretic security. Our work aims to fill this
shortage. In this paper, we give ameaningful definition of per-
fect secrecy for the blind decryption scenario. In particular,
we formulate perfect secrecy of symmetric blind decryption
in a setting in which at most one of the participants is an
adversary but adhering to the protocol (at most one of the
participants is honest-but-curious). We also propose a sym-
metric key blind decryption scheme SymmetricBlind which
satisfies our definition. The scheme is based on modular
arithmetic on a ring Z𝑝2 , where 𝑝 is a prime. Our main
contribution is theoretical. Perfect secrecy requires the key
to be changed for each decryption. Therefore, many existing
applications of blind decryptionwhich are built on the public-
key case in the computational security model are not directly
applicable. However, for the first time, we are able to give
a meaningful definition of perfect secrecy of blind decryp-
tion and to show that blind decryption is possible in the
information-theoretic security model. Additional research is
needed to showwhich applications are possible in this model.

The paper is organized as follows. In Section 2, we
describe work that is related to ours. Section 3 discusses the
fundamental definitions and the preliminaries for the rest of
the paper. In Section 4, we formulate three perfect secrecy
properties that the blind decryption scheme needs to satisfy.
In Section 5, we give a description of a symmetric blind
decryption scheme SymmetricBlind. In Section 6, we show
that the devised scheme satisfies our definition of perfect
secrecy. Finally, Section 7 considers future work and Section 8
provides the conclusion.

2. Related Work

Chaum was the first to consider blindness in the context of
digital signatures and privacy-preserving payment systems
[7]. He described the first public-key blind signature scheme
[19] by utilizing the properties of RSA encryption [20].

The scheme can be also used for encryption and can be
therefore considered as the first blind decryption scheme. In
the early articles, blind decryption is referred to as “blind
decoding.” Discrete logarithm based blind signature schemes
were suggested in [21–24]. Sakurai and Yamane were the
first to consider public-key blind decryption based on the
discrete logarithm problem [6]. Their method was based on
ElGamal Cryptosystem [25] and related to the blind signature
of Camenisch et al. [24]. The method was later applied for
the implementation of a key escrow system [12]. Mambo et
al. were the first to consider blind decryption that is secure
against chosen plain-text attacks by signing the ciphertext
messages [26]. The resulting scheme is not capable of public-
key encryption, since a secret signing key is required. Green
described the first public-key blind decryption scheme [5]
that is secure against adaptive chosen ciphertext attacks
(IND-CCA2) using bilinear groups. The security of these
constructions has been considered computationally either
in the random oracle model [11] or using computational
indistinguishability and infeasibility assumptions [5].

Oblivious transfer protocols are symmetric primitives
that offer functionality similar to blind decryption. For
oblivious transfer, there are two participants: a sender and
a receiver. For the original definition of oblivious transfer,
the sender transmits a message which the receiver gets
with probability 1/2. The sender remains oblivious as to
whether the receiver actually got the message. This form of
oblivious transfer was introduced by Rabin [16]. The concept
was later extended by Even et al. [17]. For ( 21 )-oblivious
transfer, the receiver can choose one from two messages
without the sender knowing which of the messages was
chosen. A related concept that can be considered as a further
generalization is all-or-nothing disclosure of secrets [27] for
which Alice is willing to disclose at most one secret from a
set to Bob without Bob learning information about the rest
of the secrets. Alice must not learn which secret Bob chose.
Adaptive queries were considered by Naor and Pinkas [28].
They also considered active adversaries and provided security
definitions related to the simulatability of the receivers.
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Camenisch, Neven, and Shelat extended the work of Naor
and Pinkas by defining simulatable oblivious transfer [29]
and providing practical constructions for such a scheme.
There are other suggestions for oblivious transfer based on
problems in bilinear groups [30], groups of composite order
[31], and the Diffie-Hellman problem [32–37].These schemes
are based on computational assumptions. It is impossible
to achieve information-theoretic security for both of the
parties using noiseless channels [18]. However, it is possible
using noisy channels such as discrete memoryless channels
[38] or a trusted initializer (shown by Rivest in 1999; see
“unconditionally secure commitment and oblivious transfer
schemes using private channels and a trusted initializer”).
For the computational security setting, the functionality of
oblivious transfer can be also implemented with public-key
blind decryption using the method of Dodis et al. [39].

General multiparty computation protocols can be also
applied to implement blind decryption capabilities. Secure
multiparty computation was originally introduced by Yao
[40] for the two-party case. The general case for 𝑛 ≥ 2 is due
to Goldreich et al. [41]. However, secure multiparty compu-
tation protocols are computationally intensive in comparison
to blind decryption and oblivious transfer.

3. Preliminaries

3.1. Notation. For the set of integers modulo 𝑛, we denote
Z𝑛 = {[0], [1], . . . , [𝑛 − 1]} and equate a congruence class
with its least nonnegative representative. That is, we consider
Z𝑛 = {0, 1, . . . , 𝑛 − 1}. By the notation 𝑥 mod 𝑛 we mean
the unique 𝑖 ∈ {0, 1, . . . , 𝑛 − 1} such that 𝑖 ≡ 𝑥 (mod𝑛).
We denote the uniform distribution on a set 𝑋 by 𝑈(𝑋). If
a random variable 𝑍 is uniformly distributed on a set 𝑋, we
denote it by 𝑍 ∼ 𝑈(𝑋). When an element 𝑥 is sampled from𝑈(𝑋), we denote it by 𝑥 ← 𝑈(𝑋).
3.2. Symmetric Encryption. A symmetric encryption scheme
SE = (Gen,Enc,Dec) with key spaceK, plain-text spaceM,
and ciphertext spaceC consists of three algorithms:

(1) The key generation algorithm Gen(𝑠): on inputting a
security parameter 𝑠, Gen outputs a key 𝑘 ∈ K

(2) The encryption algorithm Enc(𝑘,𝑚): on inputting a
key 𝑘 ∈ K and a message 𝑚 ∈ M, Enc outputs a
ciphertext 𝑐 ∈ C

(3) The decryption algorithm Dec(𝑘,𝑚): on inputting a
key 𝑘 ∈ K and a ciphertext 𝑐 ∈ C, Dec outputs a
message𝑚 ∈ M such that𝑚 = Dec(𝑘,Enc(𝑘,𝑚))

3.3. Blind Decryption. Blind decryption has been considered
in the literature for the asymmetric case. However, in this
paper, we are interested in the symmetric case that is easily
adapted from the asymmetric one [5]. A symmetric blind
decryption scheme BlindDecyption consists of a symmetric
encryption scheme SE = (Gen,Enc,Dec) and a two-
party protocol BlindDec. The protocol BlindDec is conducted
between an honest user Alice and the decryption server
which we shall call the decryptor. The protocol enables Alice,
who is in possession of a ciphertext 𝑐, to finish the protocol

with the correct decryption of 𝑐. As a result of running
BlindDec, Alice on inputting a ciphertext 𝑐 = Enc(𝑘,𝑚) ∈ C
outputs either themessage𝑚 ∈ M or an errormessage⊥.The
decryptor, on inputting the key 𝑘 ∈ K, outputs nothing or an
error message ⊥. To be secure, the exchanged messages must
not leak information to malicious users (the leak-freeness
property [8]). The property can be formalized based on
computational indistinguishability. For every adversary, there
has to be a simulator so that the following two games are well
defined. For the first game, a probabilistic polynomial time
(PPT) adversary A can choose any number 𝐿 of ciphertexts𝑐𝑖 for 𝑖 ∈ {1, 2, . . . , 𝐿}. It is then given the correct decryptions
by executing BlindDec with the decryptor. Finally, A outputs
the plain-text message and ciphertext pairs (𝑚𝑖, 𝑐𝑖) for 𝑖 ∈{1, 2, . . . , 𝐿}. For the second game, a simulator S chooses any
number 𝐿 of ciphertexts 𝑐𝑖 for 𝑖 ∈ {1, 2, . . . , 𝐿}. In this game,
the plain-text messages are obtained by querying a trusted
party. BlindDecyption is leak-free if for every PPT adversary
A there is a simulator S such that for every PPT distinguisher
D the probability of distinguishing between these two games
is negligible [5].

Another important property for secure blind decryption
is the blindness property. It formalizes the idea that the
decryptor must not learn anything about the actual plain-
text message. This can be formalized by giving a PPT
algorithm D the possibility to choose two ciphertexts 𝑐1, 𝑐2
and giving it oracle access to two instances of BlindDec based
on these choices. If the probability of distinguishing these
two instances is negligible for every PPT algorithm D, then
BlindDecyption satisfies ciphertext blindness. For a formal and
rigorous definition, see, for example, [5].

3.4. Perfect Secrecy. The notion of perfect secrecy is due to
Shannon [42]. Let SE = (Gen,Enc,Dec) be an encryption
scheme with key spaceK, plain-text spaceM, and ciphertext
space C. Let 𝐾 denote a random variable on the key space
induced by Gen. SE satisfies perfect secrecy if, for every
random variable𝑀 on the plain-text space, every plain-text𝑚 ∈ M, and every ciphertext 𝑐 ∈ C,

Pr [𝑀 = 𝑚 | 𝑐 = Enc (𝐾,𝑀)] = Pr [𝑀 = 𝑚] . (1)

Equivalently, SE satisfies perfect secrecy if and only if, for
every randomvariable𝑀 on the plain-text space, every plain-
text messages𝑚1, 𝑚2 ∈ M, and every ciphertext 𝑐 ∈ C,

Pr [𝑐 = Enc (𝐾,𝑀) | 𝑀 = 𝑚1]
= Pr [𝑐 = Enc (𝐾,𝑀) | 𝑀 = 𝑚2] . (2)

4. Perfect Secrecy for Symmetric
Blind Decryption

In this section, we formulate a condition for the per-
fect secrecy of blind decryption. Instead of computational
indistinguishability, we consider secrecy of symmetric blind
decryption based on the information observed by the parties.
In the following, let SE = (Gen,Enc,Dec) together with
BlindDec be a symmetric blind decryption scheme with key
spaceK, plain-text spaceM, and ciphertext spaceC.
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Figure 2: The general blind decryption scenario. Alice chooses a ciphertext 𝑐𝑖 and derives a related ciphertext 𝑐󸀠𝑖 that she transmits to the
decryptor. The decryptor responds with the corresponding plain-text message𝑚󸀠𝑖 from which Alice can recover𝑚𝑖.

4.1. The Scenario. For the sake of clarity, we do not consider
active adversaries. We assume that the parties adhere to
the blind decryption protocol and only observe the flow
of messages (and possibly deduce information from those
messages). Active adversaries could, for example, induce
errors to the protocol messages. Such adversarial scenarios
are left for future work. In addition, we do not consider the
case where the decryptor is colluding with either Alice or
the encryptor against the other. Such a case is equivalent
to the oblivious transfer scenario and information-theoretic
security is impossible for noiseless channels [18].However, we
note that such collusion scenarios are important for certain
applications and need to be investigated in the future. We
do consider the case where the adversary is impersonating
one of the parties, which is a paramount requirement for
many applications. For clarity, we also restrict ourselves to the
case where Alice decrypts a single message 𝑚 ∈ M. Similar
to the one-time pad, we assume that a new key is derived
after every decryption. However, in our case, there could be
several ciphertexts 𝑐1, 𝑐2, . . . , 𝑐𝐿 encrypted under the same key.
Nevertheless, once Alice has decrypted one of the messages,
we consider that particular key used and a new key, and a new
set of ciphertexts is generated.

The scenario is the following.The encryptor chooses a set
of 𝐿 plain-text messages 𝑚𝑖 for 𝑖 ∈ {1, 2, . . . , 𝐿}. He encrypts
those messages under a key 𝑘 to obtain ciphertext messages𝑐𝑗 = Enc(𝑘,𝑚𝑗) for 𝑗 ∈ {1, 2, . . . , 𝐿} that he transmits to Alice.
Alice chooses one of those messages 𝑐𝑖. To hide the actual
ciphertext 𝑐𝑖, we assume that there is a ciphertext transforma-
tion spaceC󸀠 ⊆ C so that Alice can derive a related ciphertext
message 𝑐󸀠𝑖 ∈ C󸀠 that she transmits to the decryptor. The
decryptor responds with its decryption𝑚󸀠𝑖 ∈ M which Alice
transforms to the correct plain-text message 𝑚𝑖. The general
scenario has been depicted in Figure 2. The used variables
have been collected into Notations for easier reference.

4.2. Security Requirements. As described in Section 3.2, the
scheme has to satisfy the following property.

4.2.1. Leak-Freeness. Outsiders must not learn information
about the plain-text messages by observing the exchanges.

The easiest way to provide leak-freeness against outsiders
is to protect each exchange with an encryption scheme that
satisfies perfect secrecy. However, leakage also needs to be
addressed considering the protocol participants. Considering
each individual party, we can divide leak-freeness as follows.

(1) Leak-Freeness against the Encryptor. Honest-but-curious
encryptor must not learn information about the plain-text
message obtained by Alice at the end of the protocol by
observing the blind decryption messages. The situation is
depicted in Figure 3.

(2) Leak-Freeness against Alice. This property ensures that,
after obtaining 𝑚𝑖, Alice does not learn information about
the remaining 𝐿 − 1 plain texts 𝑚𝑗 for 𝑗 ̸= 𝑖. The situation
is depicted in Figure 4.

In contrast to computational security, we cannot define
leak-freeness as a distinguishing problem. Instead, we
shall consider the probability distributions regarding the
exchanged elements. We also want to prevent decryptor from
deducing information about the plain-text message𝑚𝑖.
4.2.2. Blindness against the Decryptor. This property ensures
that an honest-but-curious decryption server does not learn
the message Alice wants to decrypt. The situation is depicted
in Figure 5.

In the computational security setting, there can be mul-
tiple applications of the blind decryption protocol for a fixed
key. In our case, we want a fresh key for every decryption to
achieve perfect secrecy.Therefore, we formulate leak-freeness
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and blindness for a single decryption. However, as was
described before, we want to be able to encrypt multiple mes-
sages with the same key. For example, in privacy-preserving
payment systems, blind decryption is used to enable Alice
to choose one (only one) item from a selection of items.
This results in a scenario in which there are 𝐿 plain-text and
ciphertext pairs (𝑚𝑗, 𝑐𝑗) for 𝑗 ∈ {1, 2, . . . , 𝐿} but there is only
a single application of BlindDec.

In the following section, we formulate these conditions
based on information.Note that these conditions also provide
secrecy against observers that are not participants of the
scheme, since the information possessed by such observers
is a proper subset of that of any of the participants. The
following notation is used. Let𝐾 denote the random variable
of blind decryption keys on the key spaceK induced byGen.
Let 𝑀𝑗 for 𝑗 ∈ {1, 2, . . . , 𝐿} denote the random variables
corresponding to the choice of 𝑚𝑖 for 𝑗 ∈ {1, 2, . . . , 𝐿}
by the encryptor and let 𝑀 denote the random variable
corresponding to the plain-text 𝑚 Alice obtains at the end
of the scheme. Following the standard practice [43], we
assume that 𝐾 is independent of 𝑀 and 𝑀𝑗 for every𝑗 ∈ {1, 2, . . . , 𝐿}. Let 𝐶󸀠 denote the random variable on the
ciphertext transformation space C󸀠 for the ciphertext mes-
sage 𝑐󸀠 that Alice discloses to the decryptor. Finally, let 𝑀󸀠
denote the random variable corresponding to themessage𝑚󸀠
that the decryptor responds with. These variables have been
collected into Notations.

4.3. Perfect Leak-Freeness against the Encryptor. We shall
first formulate leak-freeness against the encryptor. The blind
decryption protocol messages 𝑐󸀠 and 𝑚󸀠 should not disclose
any information about 𝑚𝑖 to the encryptor. Equivalently, the
messages should not leak information about 𝑖 that was chosen
by Alice even if the encryptor knows the key 𝑘 and the right
plain-text messages𝑚𝑗 for 𝑗 ∈ {1, 2, . . . , 𝐿}.
Definition 1 (perfect leak-freeness against encryptor). A sym-
metric blind decryption scheme is perfectly leak-free against
the encryptor for a single decryption of a maximum of𝐿 messages if, for every random variable 𝑀,𝑀𝑗 for 𝑗 ∈{1, 2, . . . , 𝐿} on the plain-text space and every𝑚,𝑚󸀠, 𝑚𝑗 ∈ M

for 𝑗 ∈ {1, 2, . . . , 𝐿} and every 𝑐󸀠 ∈ C󸀠,

Pr [𝑀 = 𝑚 | 𝐶󸀠 = 𝑐󸀠,𝑀󸀠 = 𝑚󸀠,𝑀1 = 𝑚1, . . . ,𝑀𝐿 = 𝑚𝐿]
= Pr [𝑀 = 𝑚 | 𝑀1 = 𝑚1, . . . ,𝑀𝐿 = 𝑚𝐿] .

(3)

Our definition states that an honest-but-curious encryptor
can equally easily guess the plain-text message Alice wanted
to be decrypted with or without information provided by the
blind decryption protocol messages 𝑐󸀠 and 𝑚󸀠. Note that, in
the normal scenario, 𝑀 = 𝑀𝑖 for some 𝑖 ∈ {1, 2, . . . , 𝐿}.
However, we do not want to restrict the definition to such
a case. For example, there could be homomorphic blind
decryption schemes for which certain operations could be
permitted on the ciphertexts. Note also that the encryptor
inherently possesses more information about 𝑚 than an
outsider, since𝑚 is dependent on𝑚1, 𝑚2, . . . , 𝑚𝐿.

4.4. Perfect Leak-Freeness against Alice. In order to be prac-
tical, the scheme needs to ensure that Alice is not able to
decrypt messages. Therefore, we need to ensure that Alice
obtains neither the decryption key nor any information about
the decryptions of 𝑐1, 𝑐2, . . . , 𝑐𝐿 without interacting with the
decryptor. In addition, after a single application of BlindDec,
Alice must not have any information about the remaining𝐿 − 1messages. To make the requirement precise, we require
that the observation of a single plain-text and ciphertext pair(𝑚1, 𝑐1) does not leak any information about the decryption
of another ciphertext 𝑐2. The property is, in fact, a property of
the encryption scheme.

Definition 2 (perfect leak-freeness against Alice). A symmet-
ric encryption schemeSE satisfies perfect leak-freeness against
Alice for a single decryption if, for every random variable𝑀1,𝑀2 on the plain-text space, every 𝑚1, 𝑚2, 𝑚 ∈ M, and
every 𝑐1, 𝑐2 ∈ C, such that 𝑐1 ̸= 𝑐2,
Pr [𝑐1 = Enc (𝐾,𝑀1) , 𝑐2 = Enc (𝐾,𝑀2) | 𝑀1 = 𝑚1,𝑀2
= 𝑚2] = Pr [𝑐1 = Enc (𝐾,𝑀1) , 𝑐2
= Enc (𝐾,𝑀2) | 𝑀1 = 𝑚1,𝑀2 = 𝑚] .

(4)

The condition states that the probability of obtaining the
ciphertext pair (𝑐1, 𝑐2) is the same whether we encrypt(𝑚1, 𝑚2) or (𝑚1, 𝑚). That is, observation of the ciphertexts𝑐1, 𝑐2 does not yield information about the decryption of 𝑐2
even if we know the decryption of 𝑐1.
4.5. Perfect Blindness against the Decryptor. We still need to
consider privacy against an honest-but-curious decryptor. It
is reasonable to assume that 𝑐1, 𝑐2, . . . , 𝑐𝐿 have been delivered
to Alice using a private channel. If the decryptor can observe𝑐𝑗 for 𝑗 ∈ {1, 2, . . . , 𝐿}, it means that he knows the correspond-
ing plain-text messages, since he is in possession of the blind
decryption key. Therefore, it is natural to require that the
ciphertexts be protected by a separate secure channel between
Alice and the encryptor. For the blindness property, we want
the server to learn nothing of the actual message𝑚 that Alice
derives at the end of the blind decryption scheme. In this case,
the decryptor knows the correct key 𝑘 as well as the messages𝑐󸀠 and𝑚󸀠 exchanged with Alice.

Definition 3 (perfect ciphertext blindness against the decryp-
tor). A symmetric blind decryption scheme satisfies perfect
ciphertext blindness against the decryptor if, for every random
variable 𝑀 on the plain-text space, every 𝑚,𝑚󸀠 ∈ M, and
every 𝑐󸀠 ∈ C󸀠

Pr [𝑀 = 𝑚 | 𝐶󸀠 = 𝑐󸀠,𝑀󸀠 = 𝑚󸀠] = Pr [𝑀 = 𝑚] . (5)

The condition states that it is equally easy to guess the cor-
rect plain-text message with and without the information
possessed by the decryptor. Note that we have assumed that𝑐1, 𝑐1, . . . , 𝑐𝐿 have been delivered to Alice in perfect secrecy.

4.6. Perfect Secrecy for Symmetric Blind Decryption. Finally,
we can state our definition of perfect secrecy based on the
properties defined above.
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Definition 4 (perfect secrecy of blind decryption). A sym-
metric blind decryption scheme consisting of a symmetric
encryption scheme SE and a blind decryption protocol
BlindDec satisfies perfect secrecy for symmetric blind decryp-
tion for a single decryption of a maximum of 𝐿 messages
against a single honest-but-curious party if the scheme is
perfectly leak-free against the encryptor for a maximum of𝐿 messages, SE is leak-free against Alice, and the scheme
satisfies perfect ciphertext blindness against the decryptor.

5. A Concrete Blind Decryption Scheme

We shall now devise a blind decryption scheme Sym-
metricBlind that satisfies Definition 4. We shall implement
our scheme using two tiers of symmetric encryption. For
the outer tier, we apply a scheme that satisfies ordinary
perfect secrecy. Let that scheme be denoted by SE. The outer
encryption scheme will hide information about 𝑐1, 𝑐2, . . . , c𝐿
from the decryptor and also provide secrecy for 𝑐󸀠 and 𝑚󸀠
against the encryptor. To achieve perfect blindness and leak-
freeness against Alice, we design an inner tier encryption
scheme called 2PAD that satisfies a useful transformation
property which enables us to construct a blind decryption
protocol BlindDec. To sum up, our final construction will
consist of two tiers of encryption and a protocol for Alice
to query a single decryption from the decryptor. The general
overview of the scheme is depicted in Figure 6. It would
be possible to implement some of the required privacy
properties with multiple applications of the one-time pad.
For example, if 𝑐𝑖 = 𝑚𝑖 ⊕ 𝑘𝑖, Alice could hide the plain-text
message from the decryptor by querying for the decryption of𝑐󸀠𝑖 = 𝑐𝑖⊕𝑘󸀠, where 𝑘󸀠 is only known to Alice.The correct plain-
text message would be obtained from𝑚󸀠𝑖 = 𝑐󸀠𝑖 ⊕𝑘𝑖 = 𝑐𝑖⊕𝑘󸀠⊕𝑘𝑖
by computing𝑚󸀠𝑖 ⊕𝑘󸀠 = 𝑐𝑖⊕𝑘𝑖 = 𝑚𝑖. However, such a protocol
would leak 𝑖 to the decryptor, since 𝑖 would be needed for
decryption. In addition, for a single decryption, the decryptor
would have to maintain a set of 𝐿 keys which would quickly
grow to an unmanageable size as 𝐿 grows. In contrast, the
optimal key size for single decryption would be 2|𝑚𝑖|, where|𝑚𝑖| is the bit length of 𝑚𝑖, assuming that each plain-text
message is of the same bit length. Therefore, simply applying
the one-time pad is not sufficient.

In the following, we first describe our inner encryp-
tion scheme 2PAD that will provide perfect leak-freeness
against Alice, as well as the required message transformation
property. Then, we proceed to the description of a blind
decryption protocol utilizing this scheme. Finally, we com-
bine the inner encryption scheme with an outer encryption
scheme that satisfies ordinary perfect secrecy and describe
the complete blind decryption scheme.

5.1. The Inner Encryption Scheme. We shall first construct
an inner encryption scheme called 2PAD with some useful
properties. Our inner scheme is based onmodular arithmetic
on the ringZ𝑝2 , where 𝑝 ≥ 5 is a prime. Our plain-text space
is Z𝑝 and every 𝑚 ∈ Z𝑝 is mapped to the ciphertext space
Z𝑝2 . To satisfy Definition 2, we want to add an amount of
randomness that is at least twice the binary length of 𝑚 in

the encryption operation. Therefore, the keys of 2PAD will
consist of pairs (𝑥𝑘, 𝑦𝑘) ∈ Z𝑝 × Z𝑝. Let 𝑏 ∈ Z𝑝2 . Then,

𝑏 ≡ 𝑝𝑧󸀠 + 𝑧󸀠󸀠 (mod𝑝2) , (6)

where 𝑧󸀠, 𝑧󸀠󸀠 ∈ Z𝑝. Therefore, we can essentially represent𝑏 with two elements of Z𝑝. Using such a representation, we
encrypt a single message𝑚 ∈ Z𝑝 by first sampling a random
element 𝑧 ← 𝑈(Z𝑝 \ {0}) and setting 𝑏 fl (𝑝𝑚 + 𝑧) mod 𝑝2.
Then, we add the key (𝑥𝑘, 𝑦𝑘) by computing

𝑐 fl (𝑝𝑥𝑘𝑏2 + 𝑝𝑦𝑘𝑏 + 𝑏) mod 𝑝2
= 𝑝𝑥𝑘𝑧2 + 𝑝𝑦𝑘𝑧 + 𝑝𝑚 + 𝑧 (7)

which is the ciphertext message. To enable blinding, Alice
needs to be able to transform 𝑐 into another ciphertext 𝑐󸀠.The
encryption operation entails such a transformation property
that follows from the congruence

𝑝𝑥𝑘𝑏󸀠2 + 𝑝𝑦𝑘𝑏󸀠 + 𝑏󸀠 ≡ 𝑝𝑥𝑘𝑏2 + 𝑝𝑦𝑘𝑏 + 𝑏󸀠 (mod𝑝2) (8)

for every 𝑥𝑘, 𝑦𝑘 ∈ Z𝑝 and 𝑏, 𝑏󸀠 ∈ Z𝑝2 such that 𝑏 ≡ 𝑏󸀠 (mod𝑝). Let𝑚1 be a plain text and let 𝑐1 = 𝑝𝑥𝑘𝑏2 + 𝑝𝑦𝑘𝑏 + 𝑏 be its
encryption with 𝑏 = (𝑝𝑚1 + 𝑧) mod 𝑝2. Let 𝑐2 now be any
ciphertext under the same key (𝑥𝑘, 𝑦𝑘) such that 𝑐2 ≡ 𝑐1 ≡𝑧 (mod𝑝) and let 𝑚2 be the corresponding plain text. Since𝑐2 ≡ 𝑐1 ≡ 𝑧 (mod 𝑝), we have 𝑐2 = 𝑝𝑥𝑘𝑏󸀠2 + 𝑝𝑦𝑘𝑏󸀠 + 𝑏󸀠, where𝑏󸀠 = (𝑝𝑚2 + 𝑧) mod 𝑝2. Now, by (8),

𝑐2 ≡ 𝑝𝑥𝑘𝑏󸀠2 + 𝑝𝑦𝑘𝑏󸀠 + 𝑏󸀠 ≡ 𝑝𝑥𝑘𝑏2 + 𝑝𝑦𝑘𝑏 + 𝑏󸀠
≡ 𝑐1 − 𝑏 + 𝑏󸀠 (mod𝑝2) , (9)

from which

𝑐2 ≡ 𝑐1 − 𝑝𝑚1 + 𝑝𝑚2 (mod𝑝2) , (10)

which enables us to compute 𝑚2 using 𝑐2, 𝑚1, 𝑐1 without the
key (𝑥𝑘, 𝑦𝑘). Namely, if we know a plain text 𝑚1 and its
encryption 𝑐1 = 𝑝𝑥𝑘𝑧2 + 𝑝𝑦𝑘𝑧 + 𝑝𝑚1 + 𝑧, we know the
decryption 𝑚2 of 𝑐2 for every 𝑐2 ≡ 𝑐1 (mod𝑝). The plain text𝑚2 can be computed by the transformation algorithmMap in
Algorithm 1.

Let 𝑧 ≡ 𝑐1 ≡ 𝑐2 (mod𝑝). The algorithm works because

(𝑐2 − 𝑐1 + 𝑝𝑚1)𝑝
= (𝑝𝑥𝑘𝑧2 + 𝑝𝑦𝑘𝑧 + 𝑝𝑚2 + 𝑧 − 𝑝𝑥𝑘𝑧2 − 𝑝𝑦𝑘𝑧 − 𝑝𝑚1 − 𝑧 + 𝑝𝑚1)𝑝
= (𝑝𝑚2)𝑝 = 𝑚2.

(11)

In order to query the decryptor, Alice can transform a
ciphertext 𝑐 into any 𝑐󸀠 such that 𝑐󸀠 ≡ 𝑐 (mod𝑝). The Map

algorithm can transform the corresponding plain text 𝑚󸀠 to
the decryption𝑚 of 𝑐.

Decryption is straightforward knowing the key (𝑥𝑘, 𝑦𝑦).
Its operation, as well as the complete encryption scheme, is
described below.
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Figure 6: General overview of SymmetricBlind. Two tiers of encryption are applied. The outer tier (SE) satisfies ordinary perfect secrecy.
The inner tier (2PAD) provides perfect leak-freeness against Alice and has a transformation property enabling perfect blindness against the
decryptor.

(1) procedure Map(𝑐1, 𝑚1, 𝑐2)(2) If 𝑐1 ̸≡ 𝑐2 (mod𝑝) output ⊥(3) 𝑚2 fl ((𝑐2 − 𝑐1 + 𝑝𝑚1)/𝑝) mod 𝑝(4) output 𝑚2(5) end procedure

Algorithm 1

Definition 5 (2PAD). The symmetric encryption scheme

2PAD = (Gen2PAD,Enc2PAD,Dec2PAD) (12)

consists of Algorithms 2, 3, and 4.

The plain-text and ciphertext spaces of 2PAD depend on
the chosen prime 𝑝; the plain-text space is Z𝑝, while the
ciphertext space is Z𝑝2 . Let us show the correctness of the
scheme. That is,

Dec2PAD (𝑥𝑘, 𝑦𝑘,Enc2PAD (𝑥𝑘, 𝑦𝑘, 𝑚)) = 𝑚 (13)

for every key (𝑥𝑘, 𝑦𝑘) and plain text 𝑚. Let 𝑐 =
Enc2PAD(𝑥𝑘, 𝑦𝑘, 𝑚). Then one has

𝑐 = 𝑝𝑥𝑘𝑏2 + 𝑝𝑦𝑘𝑏 + 𝑏 ≡ 𝑝𝑥𝑘𝑧2 + 𝑝𝑦𝑘𝑧 + 𝑝𝑚 + 𝑧
(mod𝑝2) (14)

and 𝑐 mod 𝑝 = 𝑧, where 𝑧 ∈ Z𝑝. Now,

Dec2PAD (𝑥𝑘, 𝑦𝑘, 𝑐) = (𝑡 − 𝑧)𝑝
= (𝑝 (−𝑥𝑘) 𝑧2 + 𝑝 (−𝑦𝑘) 𝑧 + 𝑝𝑥𝑘𝑧2 + 𝑝𝑦𝑘𝑧 + 𝑝𝑚 + 𝑧 − 𝑧)

𝑝
= (𝑝𝑚 + 𝑧 − 𝑧)

𝑝 = 𝑚.

(15)

We shall later show that, given a single plain-text and
ciphertext pair (𝑚1, 𝑐1) and a ciphertext 𝑐2 such that 𝑐2 ̸≡𝑐1 (mod𝑝), we still have information-theoretic security for𝑐2. That is, 2PAD satisfies perfect leak-freeness against Alice
whenever 𝑐𝑖 ̸≡ 𝑐𝑗 (mod𝑝) for 𝑖 ̸= 𝑗. However, suppose that
we have two plain-text and ciphertext pairs (𝑚1, 𝑐1), (𝑚2, 𝑐2)
such that 𝑐1 ̸≡ 𝑐2 (mod𝑝). We can show that the key 𝑥𝑘, 𝑦𝑘
can be completely determined from such two pairs.

Proposition 6. For every plain-text and ciphertext pair(𝑚1, 𝑐1), (𝑚2, 𝑐2) such that 𝑐1 ̸≡ 𝑐2 (mod𝑝), there is a unique
key (𝑥𝑘, 𝑦𝑘) such that

𝑐1 = Enc2PAD (𝑥𝑘, 𝑦𝑘, 𝑚1) ,
𝑐2 = Enc2PAD (𝑥𝑘, 𝑦𝑘, 𝑚2) .

(16)
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(1) procedure Gen2PAD(𝑠) ⊳ 𝑠 determines the size for the plaintext space
(2) Choose a public prime 𝑝 such that 𝑝 ≥ 5 and 𝑝 ≥ 2𝑠
(3) 𝑥𝑘 ← 𝑈(Z𝑝)(4) 𝑦𝑘 ← 𝑈(Z𝑝)(5) output (𝑥𝑘, 𝑦𝑘)(6) end procedure

Algorithm 2

(1) procedure Enc2PAD(𝑥𝑘, 𝑦𝑘, 𝑚) ⊳ Input consists of a key (𝑥𝑘, 𝑦𝑘) and a message𝑚 ∈ Z𝑝(2) 𝑧 ← 𝑈(Z𝑝 \ {0})(3) 𝑏 fl (𝑝𝑚 + 𝑧) mod 𝑝2
(4) 𝑐 fl (𝑝𝑥𝑘𝑏2 + 𝑝𝑦𝑘𝑏 + 𝑏) mod 𝑝2
(5) output 𝑐
(6) end procedure

Algorithm 3

(1) procedure Dec2PAD(𝑥𝑘, 𝑦𝑘, 𝑐) ⊳ Input consists of a key (𝑥𝑘, 𝑦𝑘) and a ciphertext 𝑐 ∈ Z𝑝2(2) 𝑧 fl 𝑐 mod 𝑝(3) 𝑡 fl (𝑝(−𝑥𝑘)𝑧2 + 𝑝(−𝑦𝑘)𝑧 + 𝑐) mod 𝑝2(4) 𝑚 fl ((𝑡 − 𝑧)/𝑝) mod 𝑝(5) output 𝑚(6) end procedure

Algorithm 4

Proof. Let 𝑧1, 𝑧2 ∈ Z𝑝 such that 𝑧1 ≡ 𝑐1 (mod𝑝) and 𝑧2 ≡𝑐2 (mod𝑝). Let also V1 = (𝑐1 − 𝑝𝑚1 − 𝑧1)/𝑝 and V2 = (𝑐2 −𝑝𝑚2 − 𝑧2)/𝑝. Then, we have a system of two equations:

V1 = 𝑥𝑘𝑧21 + 𝑦𝑘𝑧1,
V2 = 𝑥𝑘𝑧22 + 𝑦𝑘𝑧2,

(17)

where V1, V2, 𝑧1, 𝑧2 are known. Now, let
𝑍 = (𝑧21 𝑧22𝑧1 𝑧2) . (18)

Note that since 𝑧1, 𝑧2 ̸≡ 0 (mod𝑝) and 𝑧1 ̸≡ 𝑧2 (mod𝑝),
we have 𝑧21𝑧2−𝑧1𝑧22 ̸≡ 0 (mod𝑝) and𝑍 is invertible modulo𝑝. Therefore, the equation pair has a unique solution:

(V1 V2) ⋅ 𝑍−1 = ( 𝑥𝑘𝑧21 + 𝑦𝑘𝑧1 𝑥𝑘𝑧22 + 𝑦𝑘𝑧2 ) ⋅ 𝑍−1
= (𝑥𝑘 𝑦𝑘)(𝑧

2
1 𝑧22𝑧1 𝑧2) ⋅ 𝑍−1 = (𝑥𝑘 𝑦𝑘) . (19)

Due to the transformation algorithm Map, we require
that if Bob sends 𝐿 ciphertext messages 𝑐1, 𝑐2, . . . , 𝑐𝐿 to Alice,
we have 𝑐𝑖 ̸≡ 𝑐𝑗 (mod𝑝) for every 𝑖 ̸= 𝑗. Otherwise, it
would be trivial for Alice to derive the decryptions of all
of the ciphertexts from a single plain-text and ciphertext
pair.Therefore, themaximumnumber of ciphertextmessages
under the same key is determined by 𝐿 ≤ 𝑝 − 1.
5.2. Blind Decryption Protocol. Next, we give a description
of a blind decryption protocol based on the transformation
algorithmMap.

Definition 7 (BlindDec). Suppose that the encryptor and the
decryptor share a key (𝑥𝑘, 𝑦𝑘) = Gen2PAD(𝑠) intended for
a single decryption by Alice. Furthermore, let Alice have
an encrypted message 𝑐 = Enc2PAD(𝑥𝑘, 𝑦𝑘, 𝑚) that is not
known to the decryptor. Finally, suppose that the prime 𝑝 is
public knowledge. Let the protocolBlindDec be defined by the
following exchange between Alice and the decryptor:

(1) Alice: compute 𝑐󸀠 fl 𝑐 mod 𝑝 and transmit it to the
decryptor

(2) Decryptor: reply with𝑚󸀠 = Dec2PAD(𝑥𝑘, 𝑦𝑘, 𝑐󸀠)
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(3) Alice: compute the plain-text message 𝑚 = Map(𝑐󸀠,𝑚󸀠, 𝑐)
Let us quickly check the correctness of BlindDec. Let 𝑧 ≡ 𝑐󸀠 ≡𝑐 (mod𝑝). Then, 𝑐 = 𝑝𝑥𝑘𝑧2 + 𝑝𝑦𝑘𝑧 + 𝑝𝑚 + 𝑧, where𝑚 is the
plain-text message. The decryptor replies with

𝑚󸀠 = (𝑝 (−𝑥𝑘) 𝑧2 + 𝑝 (−𝑦𝑘) 𝑧 + 𝑧 − 𝑧)𝑝
= (−𝑥𝑘) 𝑧2 + (−𝑦𝑘) 𝑧.

(20)

But now Alice can compute

Map (𝑐󸀠, 𝑚󸀠, 𝑐) = (𝑐 − 𝑧 + 𝑝𝑚󸀠)
𝑝

= (𝑝𝑥𝑘𝑧2 + 𝑝𝑦𝑘𝑧 + 𝑝𝑚 + 𝑧 − 𝑧 + 𝑝𝑚󸀠)
𝑝

= (𝑝𝑥𝑘𝑧2 + 𝑝𝑦𝑘𝑧 + 𝑝𝑚 − 𝑝𝑥𝑘𝑧2 − 𝑝𝑦𝑘𝑧)𝑝 = (𝑝𝑚)
𝑝

= 𝑚,

(21)

which is the correct plain-text message.

5.3. The Complete Blind Decryption Scheme. As was men-
tioned earlier, the communication between Alice and the
encryptor has to be protected in order to prevent the decryp-
tor from obtaining the plain-text messages corresponding to𝑐1, 𝑐2, . . . , 𝑐𝐿. If the decryptor can observe these ciphertext
messages, it can freely decrypt all of them, since it knows the
correct key. Therefore, we need to apply an outer encryption
scheme that hides the ciphertext messages.The same solution
is the easiest way to provide perfect leak-freeness against
the encryptor, since it enables us to simplify the secrecy
conditions. In our case, we want to protect both of these
exchanges with an outer tier of encryption which provides
perfect secrecy. Let SE𝑛 = (Gen𝑛,Enc𝑛,Dec𝑛) be any sym-
metric encryption scheme that satisfies perfect secrecy such
that the plain-text and ciphertext space is Z𝑛. We will be
applying SE𝑛 with both 𝑛 = 𝑝2 and 𝑛 = 𝑝 together with
2PAD to provide the required leak-freeness and blindness
properties. The outer tier is composed in the following way.
Alice and the encryptor share a set of keys 𝑘1, 𝑘2, . . . , 𝑘𝐿. The
encryptor protects each ciphertext message by computing𝑢𝑗 = Enc𝑝2(𝑘𝑗, 𝑐𝑗) for 𝑗 ∈ {1, 2, . . . , 𝐿}. It sends 𝑢1, 𝑢2, . . . , 𝑢𝐿
to Alice. Similarly, Alice and the decryptor share a pair of
keys 𝑘𝐶, 𝑘𝑃 that are used to protect 𝑐󸀠𝑖 and 𝑚󸀠𝑖 . Alice sends𝑤 = Enc𝑝(𝑘𝐶, 𝑐󸀠) to the decryptor that responds with𝑤󸀠 = Enc𝑝(𝑘𝑃, 𝑚󸀠). The resulting scheme SymmetricBlind is
defined as follows.

Definition 8 (SymmetricBlind). Let SE𝑛 = (Gen𝑛,Enc𝑛,Dec𝑛)
be a symmetric encryption scheme such that the plain-text
and ciphertext space is Z𝑛 and let SE𝑛 satisfy perfect secrecy.
Let Alice and the encryptor share a set of keys 𝑘1, 𝑘2, . . . , 𝑘𝐿.
Let Alice and the decryptor share a pair of keys 𝑘𝐶, 𝑘𝑃

Alice Encryptor
Choose𝑚1, 𝑚2, . . . , 𝑚𝐿∀𝑗 :
𝑐𝑗 = Enc2PAD(𝑥𝑘, 𝑦𝑘, 𝑚𝑗)
such that
𝑐𝑗 ̸≡ 𝑐𝑗󸀠 (mod𝑝) ∀𝑗 ̸= 𝑗󸀠
∀𝑗 : 𝑢𝑗 = Enc𝑝2 (𝑘𝑗, 𝑐𝑗)𝑢1, 𝑢2, . . . , 𝑢𝐿 ←󳨀 𝑢1, 𝑢2, . . . , 𝑢𝐿∀𝑗 𝑐𝑗 = Dec𝑝2 (𝑘𝑗, 𝑢𝑗)

Pick 𝑖
𝑐󸀠 = 𝑐𝑖 mod 𝑝
𝑤 = Enc𝑝(𝑘𝐶, 𝑐󸀠) Decryptor
𝑤 󳨀→ 𝑤

𝑐󸀠 = Dec𝑝(𝑘𝐶, 𝑤)𝑚󸀠 = Dec2PAD(𝑥𝑘, 𝑦𝑘, 𝑐󸀠)𝑤󸀠 = Enc𝑝(𝑘𝑃, 𝑚󸀠)𝑤󸀠 ←󳨀 𝑤󸀠
𝑚󸀠 = Dec𝑝(𝑘𝑃, 𝑤󸀠)𝑚𝑖 = Map(𝑐󸀠, 𝑚󸀠, 𝑐𝑖)

Box 1

intended for a single blind decryption by Alice. Also let
the encryptor and the decryptor share a blind decryption
key (𝑥𝑘, 𝑦𝑘) = Gen2PAD(𝑠), where 2𝑠 ≥ 𝐿 + 1, which is
intended for single blind decryption byAlice.SymmetricBlind

is determined by Box 1.

Note that we require that the parameter 𝑠 determining the
size of the plain-text space satisfy 2𝑠 ≥ 𝐿+1 to ensure that the
generated prime𝑝 satisfies 𝐿 ≤ 𝑝−1 and the scheme supports
at least the encryption of 𝐿messages.

6. Security of SymmetricBlind

We shall now consider the security of SymmetricBlind. We
proceed to show that the devised scheme satisfies the three
conditions formulated in Section 4: perfect leak-freeness
against the encryptor, perfect leak-freeness against Alice, and
perfect blindness against the decryptor.

6.1. Perfect Leak-Freeness against the Encryptor

Proposition 9. SymmetricBlind satisfies perfect leak-freeness
against the encryptor for a single decryption of a maximum of𝐿 ≤ 𝑝 − 1messages, where 𝑝 is determined by Gen2PAD(𝑠).
Proof. The claim follows directly from the observation that
the encryptor sees only 𝑤 and 𝑤󸀠. By the description of
SymmetricBlind, 𝑐󸀠 and 𝑚󸀠 are protected by encryption
satisfying perfect secrecy and thus do not leak information
to the encryptor.

It is easy to see that the outer tier of encryption is
necessary. Suppose that the outer encryption scheme was not
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applied. Then 𝑐󸀠 would leak 𝑐𝑖 mod 𝑝 which would betray 𝑖
to the encryptor.

6.2. Perfect Blindness against Decryptor. We shall now prove
that the decryptor does not get information about the plain-
text message.

Proposition 10. SymmetricBlind satisfies perfect blindness
against the decryptor for a single blind decryption.

Proof. Since 𝑐1, 𝑐2, . . . , 𝑐𝐿 are protected with perfect secrecy,
we only need to show that

Pr [𝑀 = 𝑚 | 𝐶󸀠 = 𝑐󸀠,𝑀󸀠 = 𝑚󸀠] = Pr [𝑀 = 𝑚] , (22)

where𝐶󸀠 and𝑀󸀠 are the randomvariables associatedwith the
messages 𝑐󸀠 and𝑚󸀠, respectively. Let𝑋,𝑌 denote the random
variables corresponding to the key elements (𝑥𝑘, 𝑦𝑘) ←
Gen(𝑠), respectively. The reply 𝑚󸀠 from the decryptor is
completely determined by the key (𝑥𝑘, 𝑦𝑘) and the element𝑐󸀠 = 𝑐𝑖 mod 𝑝, since𝑚󸀠 = (−𝑥𝑘)𝑐󸀠2 + (−𝑦𝑘)𝑐󸀠. Therefore,

Pr [M = 𝑚 | 𝐶󸀠 = 𝑐󸀠,𝑀󸀠 = 𝑚󸀠]
= Pr [𝑀 = 𝑚 | 𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘, 𝐶󸀠 = 𝑐󸀠] . (23)

Let us consider 𝐶󸀠. By the description of the scheme, we have𝐶󸀠 = 𝐶𝑖 mod 𝑝, where 𝑖 is the chosen index of Alice. But, for
every 𝑖, we have, by the description of Enc2PAD, that 𝐶𝑖 mod𝑝 ∼ 𝑈(Z𝑝 \ {0}). Therefore,𝐶󸀠 is independent of𝑋 and𝑌 and

Pr [𝑀 = 𝑚 | 𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘, 𝐶󸀠 = 𝑧]
= Pr [𝑀 = 𝑚 | 𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘, 𝐶󸀠 = 𝑧󸀠] (24)

for every 𝑧, 𝑧󸀠 ∈ Z𝑝 \ {0} and
Pr [𝑀 = 𝑚 | 𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘]
= ∑
𝑧∈Z𝑝\{0}

Pr [𝑀 = 𝑚 | 𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘,C󸀠 = 𝑧]

⋅ Pr [𝐶󸀠 = 𝑧 | 𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘] = 1𝑝 − 1
⋅ ∑
𝑧∈Z𝑝\{0}

Pr [𝑀 = 𝑚 | 𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘, 𝐶󸀠 = 𝑧]
= Pr [𝑀 = 𝑚 | 𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘, 𝐶󸀠 = 𝑧]

(25)

for any 𝑧 ∈ Z𝑝. By our assumption, 𝑀 is independent of 𝑋
and 𝑌 and therefore we have

Pr [𝑀 = 𝑚 | 𝑋 = 𝑥𝑘 ∩ 𝑌 = 𝑦𝑘] = Pr [𝑀 = 𝑚] , (26)

which shows our claim.

The proof shows that the decryptor (with the knowledge
of the key (𝑥𝑘, 𝑦𝑘) and 𝑐󸀠 and 𝑚󸀠) does not gain any
information about the plain-text message𝑚 assuming that 𝑐𝑗

for 𝑗 ∈ {1, 2, . . . , 𝐿} have been delivered to Alice in perfect
secrecy. Considering the secrecy against the decryptor, it
would suffice to send 𝑐󸀠 without the additional level of
encryption. However, the additional level is necessary to
achieve leak-freeness against the encryptor.

6.3. Perfect Leak-Freeness against Alice. We shall now con-
sider an honest-but-curious Alice and show that the obser-
vation of a single plain-text and ciphertext pair (𝑚1, 𝑐1) does
not yield information about the decryption of 𝑐2 for 𝑐2 ̸≡𝑐1 (mod𝑝).
Proposition 11. SymmetricBlind satisfies perfect leak-freeness
against Alice for a single decryption of a maximum of 𝐿 ≤ 𝑝−1
ciphertexts.

Proof. By the description of SymmetricBlind, the ciphertext
messages 𝑐1, 𝑐2, . . . , 𝑐𝐿 are of different congruence class mod-
ulo 𝑝. Let 𝑀1,𝑀2 be random variables over the plain-text
space Z𝑝. Let 𝑋,𝑌 denote the random variables correspond-
ing to the key elements (𝑥𝑘, 𝑦𝑘) = Gen2PAD(𝑠). We have to
show that

Pr [𝑐1 = Enc2PAD (𝑋, 𝑌,𝑀1) , 𝑐2
= Enc2PAD (𝑋, 𝑌,𝑀2) | 𝑀1 = 𝑚1,𝑀2 = 𝑚2, 𝑐1
̸≡ 𝑐2 (mod𝑝)] = Pr [𝑐1 = Enc2PAD (𝑋, 𝑌,𝑀1) , 𝑐2

= Enc2PAD (𝑋, 𝑌,𝑀2) | 𝑀1 = 𝑚1,𝑀2 = 𝑚, 𝑐1
̸≡ 𝑐2 (mod𝑝)]

(27)

for every𝑚1, 𝑚2, 𝑚 ∈ {0, 1, 2, . . . , 𝑝 − 1} and 𝑐1, 𝑐2 ∈ Z𝑝2 such
that 𝑐1 ̸≡ 𝑐2 (mod𝑝). Given a valid assignment for 𝑚1, 𝑐1
and 𝑐2, it suffices to show that

Pr [𝑐1 = Enc2PAD (𝑋, 𝑌,𝑀1) , 𝑐2
= Enc2PAD (𝑋, 𝑌,𝑀2) | 𝑀1 = 𝑚,𝑀2 = 𝑚2, 𝑐1
̸≡ 𝑐2 (mod𝑝)] = 1𝑝2

(28)

for every 𝑚 ∈ Z𝑝. By Proposition 6, for every plain-text and
ciphertext pair (𝑚1, 𝑐1), (𝑚, 𝑐2) such that 𝑐1 ̸≡ 𝑐2 (mod𝑝),
there is a unique key (𝑥𝑘, 𝑦𝑘). Therefore,

Pr [𝑐1 = Enc2PAD (𝑋, 𝑌,𝑀1) , 𝑐2
= Enc2PAD (𝑋, 𝑌,𝑀2) | 𝑀1 = 𝑚1,𝑀2 = 𝑚, 𝑐1
̸≡ 𝑐2 (mod𝑝)] = Pr [𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘] .

(29)

By the definition of Gen2PAD, 𝑋 and 𝑌 are independent and
we have

Pr [𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑘] = Pr [𝑋 = 𝑥𝑘] ⋅ Pr [𝑌 = 𝑦𝑘]
= 1𝑝2 .

(30)

We have now established the perfect secrecy of Sym-
metricBlind according to Definition 4.
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Table 1: Parameter examples for SymmetricBlind.

𝑝 Decryptor key
length [bits]

Plain text length
[bits]

Ciphertext length
[bits]

5 12 3 5
7 12 3 6
11 16 4 7
23 20 5 10
101 28 7 14
1009 40 10 20
5003 52 13 25
20011 60 15 29
231 − 1 124 31 62
261 − 1 244 61 122
2127 − 1 508 127 254

6.4. The Parameters. An optimal encryption scheme, with
plain-text spaceM, that satisfies perfect leak-freeness against
Alice for a single decryption needs 2log2|M| bits of random-
ness for a key. 2PAD achieves exactly this bound, since the
plain-text space isZ𝑝 and a single key (𝑥𝑘, 𝑦𝑘) contains 2log2𝑝
bits of randomness. Assuming that messages and keys are
represented by binary strings, we need 2⌈log2𝑝⌉ bits of key to
encrypt messages of length ⌊log2𝑝⌋. For a single decryption
with SymmetricBlind, the decryptor needs to store the key
elements 𝑥𝑘, 𝑦𝑘 ∈ Z𝑝, as well as the keys 𝑘𝐶, 𝑘𝑃. The keys𝑘𝐶, 𝑘𝑃 are used to encrypt messages ofZ𝑝. Therefore, ⌈log2𝑝⌉
bits for each of these keys suffice for perfect secrecy. In total,
the decryptor needs to store key material of 4⌈log2𝑝⌉ bits for
a single decryption of a message of bit length ⌊log2𝑝⌋. Since
the ciphertext space is Z𝑝2 , the ciphertext’s length in bits is
approximately twice the plain text’s length. Depending on the
length of the plain-text messages and the needed maximum
number of encryptions 𝐿 ≤ 𝑝−1, we should therefore choose
the smallest possible 𝑝, since its bit size has no effect on the
security of the scheme. Table 1 lists some possible choices
for 𝑝 and the resulting key, plain text, and ciphertext lengths
in bits. Note that for long plain-text messages the maximum
number of messages 𝐿 is practically unlimited.

7. Future Work

There are two main drawbacks of the construction presented
in this paper. First, we have not considered active adversaries.
Similar to the one-time pad, we have only considered such
adversaries that observe the flow of messages. For practical
scenarios, we need to consider adversaries that actively
induce errors into the protocol flow. However, such consid-
erations are most naturally conducted in the computational
infeasibility model which has been used, for instance, in [5].
In the active adversaries setting, it would also be natural to
consider the security of the devised scheme in the framework
of computational indistinguishability such that the truly
random keys are exchanged with pseudorandom bit strings.
In particular, the computationally hard version of our scheme

yields efficient practical implementation. The computational
security model is also more appealing considering applica-
tions due to the limitations induced by the information-
theoretic model. For example, in the information-theoretic
security model, private information retrieval requires an
amount of communication that is at least the size of the
database [44]. Similarly, in SymmetricBlind, a fresh key is
needed for each decryption resulting in limitations regarding
existing applications. For example, applications that require
adaptive queries cannot be instantiated with SymmetricBlind,
since a fresh key would be required for each query. We leave
it for future research to consider SymmetricBlind and its pos-
sible generalizations and applications in the computational
security model.

The second drawback is that we have only considered
the case of a single adversary. While it does not make
sense to consider a scenario where Alice is colluding with
the encryptor against the decryptor, the scenario where the
encryptor and the decryptor are colluding is an important
one. For many scenarios, Alice cannot be certain whether
the encryptor and the decryptor are in fact separate entities.
However, if they are a single entity, the scenario is identical to
oblivious transfer. We cannot achieve information-theoretic
security in such a case [18]. For example, it is easy to see that
our construction fails for colluding encryptor and decryptor.
If that is the case, we effectively remove the outer layer of
encryption, which means that 𝑐󸀠 = 𝑐𝑖 mod 𝑝 leaks 𝑖 to the
adversary. To provide security against colluding encryptor
and decryptor, we would need to detect such collusion or to
turn to computational assumptions. We leave the question
as an open problem for future research. Another interesting
question for future work is to consider the case where we do
not apply the outer layer of encryption from the encryptor
to Alice. Thus far, we have defined perfect blindness so
that the decryptor has absolutely no information about the
plain-text message. However, we could relax the requirement
so that, similar to leak-freeness against the encryptor, the
information is conditioned on the plain texts𝑚1, 𝑚2, . . . , 𝑚𝐿.
In other words, we could relax the requirement so that the
decryptor may observe the selection (and the corresponding
plain-text messages) given to Alice. Such relaxation is natural
in the oblivious transfer case where the encryptor and the
decryptor are the same entity.We could then define blindness
as a property requiring only that the selection 𝑖 be hidden. It
is again easy to see that our scheme without the outer layer
of encryption fails such a property. If 𝑐1, 𝑐2, . . . , 𝑐𝐿 are not
protected, then 𝑐󸀠 = 𝑐𝑖 mod 𝑝 leaks 𝑖. Similarly, attempt-
ing to convert SymmetricBlind into an oblivious transfer
scheme using the method of Dodis et al. is impossible, since
SymmetricBlind requires that the parties be truly separate.
The unification of encryptor and decryptor leaks 𝑖 even
in the computational security model [39]. We leave this
consideration also for future work.

8. Conclusion

In this paper, we give a definition of perfect secrecy for
symmetric blind decryption in the setting where one of the
parties may be malicious but adhering to the protocol of
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the scheme. We consider neither active adversaries nor the
setting where two of the participants are colluding against
the third.We construct a symmetric blind decryption scheme
SymmetricBlind and show that it satisfies our definition
of perfect secrecy. The scheme is based on two layers of
encryption, where the inner layer utilizes a novel encryption
scheme 2PAD given in this paper. 2PAD is based on modular
arithmetic with Z𝑝2 as the ciphertext space, Z𝑝 as the plain-
text space, and Z𝑝 × Z𝑝 as the key space, where 𝑝 ≥ 5 is a
prime.The security of SymmetricBlind is shown information-
theoretically and does not depend on the size of 𝑝. For a fixed
blind decryption key, SymmetricBlind supports a single blind
decryption from a selection of 𝐿 ≤ 𝑝−1messages. For a single
decryption of a message of bit length ⌊log2𝑝⌋, the decryption
server needs to store key material of 4⌈log2𝑝⌉ bits.
Notations

Variables

K: Key space
M: Plain-text space
C: Ciphertext space
C󸀠: Ciphertext transformation space𝑘: Blind encryption/decryption key𝐿: The number of messages encrypted under

a single blind decryption key𝑚1, 𝑚2, . . . , 𝑚𝐿: Plain-text messages chosen by the
encryptor𝑐1, 𝑐2, . . . , 𝑐𝐿: Ciphertext messages obtained by
encrypting with the blind encryption key𝑐 or 𝑐𝑖: Ciphertext message chosen by Alice𝑐󸀠 or 𝑐󸀠𝑖 : Transformed ciphertext message chosen
by Alice𝑚󸀠 or𝑚󸀠𝑖 : Decryption of 𝑐󸀠 under the blind
decryption key𝑚 or𝑚𝑖: The plain-text message Alice obtains at the
end of the scheme.

Random Variables

𝐾: Random variable onK induced by
Gen𝑀1,𝑀2, . . . ,𝑀𝐿: Random variables corresponding to
the choice of𝑚1, 𝑚2, . . . , 𝑚𝐿 by the
encryptor𝐶󸀠: Random variable onC󸀠 induced by
Alice using BlindDec𝑀󸀠: Random variable onM induced by
decryption of 𝐶󸀠 by the decryptor𝑀: Random variable corresponding to
the plain-text message𝑚 Alice
obtains at the end of the scheme.
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[18] I. Damgård, J. Kilian, and L. Salvail, “On the (im)possibility
of basing oblivious transfer and bit commitment on weakened
security assumptions,” in Proceedings of the 17th International
Conference on Theory and Application of Cryptographic Tech-
niques (EUROCRYPT ’99), vol. 1999, pp. 56–73, Springer, Berlin,
Germany.

[19] D. Chaum, “Securitywithout identification: transaction systems
tomake big brother obsolete,”Communications of the ACM, vol.
28, no. 10, pp. 1030–1044, 1985.

[20] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtain-
ing digital signatures and public-key cryptosystems,”Communi-
cations of the Association for Computing Machinery, vol. 21, no.
2, pp. 120–126, 1978.

[21] D. Chaum and T. Pedersen, “Wallet databases with observers,”
in Advances in Cryptology—CRYPTO’ 92, vol. 740 of Lecture
Notes in Computer Science, pp. 89–105, Springer, Berlin, Ger-
many, 1993.

[22] T. Okamoto, “Provable secure and practical identification
schemes and corresponding signature schemes,” in Advances in
Cryptology—CRYPTO ’92, E. Brickell, Ed., vol. 740 of Lecture
Notes in Computer Science, pp. 31–53, Springer, Berlin, Germany,
1992.

[23] P. Horster, M. Michels, and H. Petersen, “Meta-Message recov-
ery and Meta-Blind signature schemes based on the discrete
logarithm problem and their applications,” in Advances in
Cryptology—ASIACRYPT’94, J. Pieprzyk and R. Safavi-Naini,
Eds., vol. 917 of Lecture Notes in Computer Science, pp. 224–237,
Springer, Berlin, Germany, 1995.

[24] J. L. Camenisch, J.-M. Piveteau, and M. A. Stadler, “Blind sig-
natures based on the discrete logarithm problem,” in Advances
in Cryptology—EUROCRYPT ’94, A. De Santis, Ed., vol. 950
of Lecture Notes in Computer Science, pp. 428–432, Springer,
Berlin, Germany, 1995.

[25] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Transactions on Informa-
tion Theory, vol. 31, no. 4, pp. 469–472, 1985.

[26] M. Mambo, K. Sakurai, and E. Okamoto, “How to utilize the
transformability of digital signatures for solving the oracle

problem,” in Advances in Cryptology—ASIACRYPT ’96, K. Kim
and T. Matsumoto, Eds., vol. 1163 of Lecture Notes in Computer
Science, pp. 322–333, Springer, Berlin, Germany, 1996.
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