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A distributed storage system (DSS) is a fundamental building block in many distributed applications. It applies linear network
coding to achieve an optimal tradeoff between storage and repair bandwidth when node failures occur. Additively homomorphic
encryption is compatible with linear network coding. The homomorphic property ensures that a linear combination of ciphertext
messages decrypts to the same linear combination of the corresponding plaintext messages. In this paper, we construct a linearly
homomorphic symmetric encryption scheme that is designed for a DSS. Our proposal provides simultaneous encryption and error
correction by applying linear error correcting codes. We show its IND-CPA security for a limited number of messages based on
binary Goppa codes and the following assumption: when dividing a scrambled generator matrix Ĝ into two parts Ĝ1 and Ĝ2, it is
infeasible to distinguish Ĝ2 from random and to find a statistical connection between Ĝ1 and Ĝ2. Our infeasibility assumptions are
closely related to those underlying theMcEliece public key cryptosystem but are considerably weaker.We believe that the proposed
problem has independent cryptographic interest.

1. Introduction

Theworld’s ability to generate, process, and store information
is growing at an exponential rate [1]. The Internet of Things
(IoT) has enabled objects to collect and share a vast amount
of data enabling new applications and improving efficiency.
In distributed IoT, intelligence is pushed to the very edge
of the networks. Such decentralized approach has created
challenges regarding the security and privacy of the collected
data [2]. A distributed storage system (DSS) is a widely used
technology for storing data in a reliable way. It is one of the
essential building blocks for distributed applications. Such a
system consists of a collection of 𝑛 storage nodes that may
be individually unreliable but apply redundancy to make the
system reliable as a whole. Coding schemes are applied to
ensure its reliability and to reduce the bandwidth required for
repair. In particular, linear network coding has turned out to
offer good performance both in theory and in practice.

Complications arise if we cannot be certain that the stor-
age nodes are well-behaved. Encryption needs to be applied
to ensure the confidentiality of the data. However, traditional
cryptographic primitives are ill-suited for network coding

which requires that data packets from different nodes can be
combined according to the coding scheme. Secure network
coding [3–6] has been applied to ensure confidentiality in
the information-theoretic security model. However, secure
network coding incurs a cost on the storage capacity of
the system. It decreases exponentially with the number of
compromised nodes [7]. Furthermore, in many cases the
storage nodes are provided by a third party storage service
provider leading to systems with zero secrecy capacity [8].

In this paper, we consider the confidentiality of network
coding and, in particular, distributed storage systems in a
setting where the adversary has complete control of the nodes
but is computationally bounded. We devise a linear error
correcting code based symmetric additively homomorphic
encryption scheme that is compatible with linear network
coding.There are several advantages of our scheme compared
to ordinary encryption:

(1) Linear network coding can be applied as if working
directly with the plaintext messages. Linear opera-
tions on the ciphertext space transfer to the plaintext
space upon decryption.
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(2) The encrypted parts of the file do not disclose which
part is which. The part information can be kept in
the plaintext domain. It makes it impossible for the
storage nodes or the adversary to eavesdrop on which
subsets of the data the user requests.

(3) The plaintext data can be first authenticated and then
encrypted. For storage systems, this ordering is often
desirable to ensure plaintext integrity. Our scheme
can support this functionality with an additively
homomorphic message authentication code such as
[9] meaning that all linear combinations of the plain-
text messages are authenticated.

(4) Our scheme provides simultaneous encryption and
error correction.

There are encryption schemes possessing additively
homomorphic properties such as the Goldwasser-Micali
scheme [9] and the Paillier cryptosystem [10]. However,
to apply coding schemes for distributed storage we need
flexibility in choosing the ciphertext space field which, for
efficiency reasons, is often an extension field of the binary
field F2 when working with big data [11]. The required
flexibility is not provided by existing proposals.

We construct a symmetric encryption scheme
AddHomSE that is homomorphic from (F𝑛𝑞 , +) to (F𝑘𝑞 , +),
where 𝑘 < 𝑛 and F𝑞 is a finite field. In particular, our security
proofs are shown in the case where F𝑞 = F2 the binary field
resulting in a scheme that is homomorphic from the additive
group (F𝑛2 , ⊕) to (F𝑘2 , ⊕). We also show that our construction
is semantically (IND-CPA) secure in the standard model
(on F2) for a fixed number of messages showing that it
provides indistinguishability for each individual part of
the file. We apply problems that are closely related to the
McEliece cryptosystem [12]. In particular, we formulate an
assumption that is related to the pseudorandomness of the
McEliece generator matrix. However, our assumption is
much weaker. We believe that the corresponding problem
has cryptographic interest in its own right.

The paper is organized as follows. In Section 2 we present
work that is related to ours. Section 3 describes the prelim-
inaries for the rest of the paper. We formulate AddHomSE

in Section 4. We show that the scheme is IND-CPA secure
for a limited number of messages in Sections 5 and 6. In
Section 7we consider the infeasibility of the applied problems
and discuss how the scheme can be applied in practice with
compact keys. Finally, Section 8 provides the conclusion.

2. Related Work

The theory of confidentiality of distributed storage is related
to that of network coding. Cai andYeungwere the first to con-
sider secure network coding [3, 4]. In their security model, a
passive wiretapper is able to eavesdrop on a subset of the links
between nodes.The adversary is computationally unbounded
and privacy is considered information-theoretically. A simi-
lar model was considered in [13–16]. The security model of
eavesdropping nodes, which is more natural for distributed
storage, was suggested by Pawar et al. [8]. In their model,

a computationally unbounded eavesdropper can access data
on her selection of the nodes. The maximum file size that
can be stored with information-theoretic security in the DSS
using an optimal bandwidth MDS code (with exact repair)
is called the secrecy capacity of the DSS. Regenerating codes
achieving the secrecy capacity were suggested by Shah et al.
[5]. Regenerating codes and locally repairable secure codes
that achieve minimum storage requirements for a DSS were
suggested byRawat et al. [6].Multiple simultaneous node fail-
ures, cooperative regenerating codes, and their secrecy capac-
ity were considered in [17]. Kosut et al. considered networks
where a node behaves traitorously [18]. Multiple nodes con-
taining adversarial errors were considered by Dikaliotis et al.
[19]. Pawar et al. considered an active omniscient adversary
that has complete knowledge of the data on all nodes and can
corrupt 𝑏 nodes, where 2𝑏 < 𝑘 [20].

The concept of homomorphic encryption was introduced
by Rivest et al. [21]. While fully homomorphic encryption
enables arbitrary computations on ciphertexts, many pro-
posed schemes have homomorphic properties over specific
operations. For example, RSA [22] is homomorphic over
multiplication. Additively homomorphic schemes enable the
computation of linear combinations of the ciphertexts. For
the Goldwasser-Micali scheme [9] and the Paillier cryptosys-
tem [10] multiplication in the ciphertext space corresponds
to addition in the plaintext space. The scheme proposed
by Lyubashevsky et al. is additively homomorphic with a
polynomial ring as the ciphertext space [23]. Other asym-
metric schemes with additively homomorphic properties can
be found, for example, from [24–29]. The functionality of
public key encryption incurs a computational burden that
is not needed in certain situations. For many applications,
symmetric encryption suffices. Few symmetric schemes with
the additive homomorphic property have been proposed.
Some constructions, mostly concentrating on realizing fully
homomorphic encryption, can be found from [30–33]. In
addition, the ciphertext and plaintext spaces in these schemes
cannot be easily applied with linear network coding where we
want to work with extension fields of the binary field F2 for
efficiency reasons.

3. Preliminaries

3.1. Notation. Standard notation will be used for probabilistic
algorithms [34]. We denote by 𝑦 ← A(𝑥; 𝑟) the result
of running a probabilistic algorithm A on input 𝑥 with
randomness 𝑟 and setting 𝑦 to be equal to the output. We
denote the uniform probability distribution on a set 𝑋 by𝑈(𝑋). If 𝐴 is a random variable and F is a distribution,
we denote 𝐴 ∼ F when 𝐴 is distributed according to
F. A probability ensemble 𝑋 = {𝑋𝑘}𝑘∈N is a collection
of random variables indexed by the integers. The problem
of computationally distinguishing between two probability
ensembles 𝐴 and 𝐵 is denoted by𝐷(𝐴, 𝐵).

Whenever we refer to indistinguishability of probabil-
ity ensembles, we mean computational indistinguishability
unless stated otherwise. Security proofs are considered in the
standard model. That is, all algorithms are considered to be
probabilistic polynomial time (PPT) and time complexity is
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considered in the average case.The success probability (called
the advantage) of an adversaryA on a problem P is considered
asymptotically as a function of a security parameter 𝑠 and is
denoted byAdkPA(𝑠). A function 𝜖 : N → R is negligible if for
every 𝑛 ∈ N there is 𝑘󸀠 ∈ N such that 𝜖(𝑘) ≤ 1/𝑘𝑛 for every𝑘 ≥ 𝑘󸀠. A problem P is considered infeasible if for all PPT
algorithms A the advantage AdkPA(𝑠) is negligible.
3.2. Dynamic Distributed Storage. Let 𝐹 be a file consisting
of 𝑀 elements from a finite field F𝑞. A dynamic distributed
storage system (DSS) consists of 𝑛 live nodes each storing 𝛼
symbols over F𝑞. These nodes can be individually unreliable
but the system is designed to apply redundancy in a clever
way to achieve robust and efficient data recovery against
failures. The file 𝐹 = (𝐹1, 𝐹2, . . . , 𝐹𝑀) ∈ F𝑀𝑞 is encoded into
a codeword x consisting of 𝑛 blocks x = (x1, x2, . . . , x𝑛) ∈(F𝛼𝑞 )𝑛. Given such a codeword x, the part x𝑖 is stored into
node 𝑖. During operation, some of the nodes of the DSS may
fail. If node 𝑖 fails, a new node is added to the network. It
contacts 𝑑 live nodes and downloads 𝛽 symbols from each.
The total amount of downloaded data, 𝛾 = 𝛽𝑑, is called the
repair bandwidth. The new node processes these symbols to
reconstruct x𝑖. The repair process is conducted so that data
stored at 𝑘 < 𝑛 nodes allows 𝐹 to be completely constructed
(the “𝑘 out of 𝑛 property”). A DSS satisfying such a property
is often referred to as a (𝑛, 𝑘)-DSS.

There is a tradeoff between the repair bandwidth 𝛾 and the
amount of data that can be stored in each node [35]. Dimakis
et al. suggested network coding [36, 37] for distributed data
storage in order to reduce the bandwidth of node repair [35].
They introduced regenerating codes that achieve the optimal
tradeoff between storage and repair bandwidth. This tradeoff
can be achieved with linear network coding [20]. See Figure 1
for an example of a DSS and the repair process after node
failure.

3.3. Mutual Information. Mutual information of two random
variables𝑋 and 𝑌 is

𝐼 (𝑋; 𝑌) = ∑
𝑦∈𝑌

∑
𝑥∈𝑋

𝑝 (𝑥, 𝑦) log2 ( 𝑝 (𝑥, 𝑦)
𝑝 (𝑥) ⋅ 𝑝 (𝑦)) , (1)

where 𝑝(𝑥, 𝑦) is the joint probability distribution function of𝑋 and 𝑌, 𝑝(𝑥) is the marginal probability distribution func-
tion of 𝑋, and 𝑝(𝑦) is the marginal probability distribution
function of 𝑌. We say that𝑋 and 𝑌 are dependent if

𝐼 (𝑋; 𝑌) > 0. (2)

Generalizing this to probability ensembles 𝑋 = {𝑋𝑠 : 𝑠 ∈ N}
and 𝑌 = {𝑌𝑠 : 𝑠 ∈ N} we say that𝑋 and 𝑌 are dependent if

𝐼 (𝑋𝑠; 𝑌𝑠) > 0 (3)

for every 𝑠 ∈ N.

3.4. McEliece Cryptosystem and Related Problems. The
McEliece schemeMcEliece = (Gen,Enc,Dec) applies binary
Goppa codes [38] to enable asymmetric encryption. The key
generation algorithm Gen outputs a private/public key pair
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Figure 1: An example of a distributed storage system with linear
coding. A file 𝐹 = (𝐹1, 𝐹2, 𝐹3, 𝐹4) is distributed to 𝑛 = 4 nodes each
storing a vector of two parts of the file (𝛼 = 2). The file is safe if one
node fails. If Node 1 fails, it can be replaced by communicating only
three blocks (𝐹4, 𝐹2 ⊕ 𝐹4, 𝐹1 ⊕ 𝐹2 ⊕ 𝐹4) instead of all four.

such that the private key consists of three matrices (S,G,P)
with entries in F2, where P is an 𝑛 × 𝑛 permutation matrix,
S is a nonsingular 𝑘 × 𝑘 matrix, and G is the generator
matrix for a binary Goppa code that is able to correct
up to 𝑡 errors. The public key is the 𝑘 × 𝑛 composition
matrix SGP. A message m ∈ F𝑘2 is encrypted by Enc by
computing c = mSGP + e, where e is a randomly chosen
error vector of Hamming weight 𝑡. For the decryption, Dec
first computes cP−1 = mSG + eP−1 and then decodes the
corresponding Goppa codeword to obtain mS. Since S is
nonsingular, the message m is computed by multiplying
with S−1 from the right. A semantically secure version of the
scheme can be found in [39]. Here, semantic security refers
to indistinguishability of ciphertexts under chosen plaintext
attack. For details on semantic security, see, for example,
[40].

The security ofMcEliece is based on a certain assumption
on the generator matrix SGP. Let 𝑀𝑐𝑠 denote the random
variable determined by the probability distribution of sam-
pling a generator matrix SGP according to Gen(1𝑠), where 𝑠
is a security parameter. Let the probability ensemble 𝑀𝑐 ={𝑀𝑐𝑠 : 𝑠 ∈ N}. Let 𝑀𝑐𝑈 denote the probability ensemble
of random matrices with the same size as 𝑀𝑐. The following
hardness assumption was first formulated in [41].

Assumption 1 (pseudorandomness of McEliece generator
matrix). There exists a negligible function 𝜖𝑀 such that

Adk𝐷(𝑀𝑐,𝑀𝑐𝑈) (𝑠) ≤ 𝜖𝑀 (𝑠) (4)

for every 𝑠 ≥ 1.
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Gen: 1𝑠↓
Determine randomization length 𝑟 ∈ N↓

Generate
random non-singular matrix S ∈ F𝑘

∗×𝑘∗

2

Goppa generator matrix G ∈ F𝑛×𝑘
∗

2

random permutation matrix P ∈ F𝑛×𝑛2↓
Set cleartext length 𝑘 = 𝑘∗ − 𝑟↓

Output public parameters (𝑛, 𝑘)
Output secret key (S,G,P)

Algorithm 1: AddHomSE key generation.

In addition to this pseudorandomness assumption,
McEliece relies on the hardness of the learning parity with
noise problem. However, we do not need to apply it in our
scheme.

4. Additively Homomorphic Symmetric
Encryption Scheme

In this section, we give a construction of a symmetric
encryption scheme that is homomorphic from the additive
group (F𝑛2 , ⊕) to (F𝑘2 , ⊕), where 𝑘, 𝑛 ∈ N and 𝑘 < 𝑛. Due to lin-
earity, it will be compatible with linear network coding. Our
construction is inspired by the symmetric scheme suggested
in [42], the homomorphic scheme suggested in [43] and the
McEliece public key encryption scheme [12], and, especially,
its IND-CPA variant [39]. Similarly to the McEliece scheme,
our scheme is based on binary Goppa error correcting codes
[38]. However, contrary to the McEliece scheme, we do not
disclose the scrambled generator matrix. We also do not add
any errors while encrypting which means that the full error
correction capacity of the code can be utilized in applications.
It would also be easy to adapt our proposal to apply other
codes on an arbitrary finite field F𝑞. However, binary fields
and their extensions are useful for many applications since
they enable efficient data combination due to efficiency of
addition modulo 2 [11].

In general, the scheme operates as follows. Suppose
that our file is divided into 𝑟 parts constituting 𝑟 plaintext
messagesm1,m2, . . . ,m𝑟. Each of these messages are padded
with a random suffix z and encrypted by encoding with a
scrambled generator matrix Ĝ of a linear error correcting
code: c𝑖 = (m𝑖, z)Ĝ. Note that the resulting ciphertexts can
be linearly combined and the corresponding combination
translates back to the plaintext space upon decoding due to
linearity of the code. Furthermore, since the generatormatrix
is scrambled, an adversary is not able to determine the applied
code and thus not able to decrypt the ciphertexts. In the
following, we rigorously formulate this construction and the
related computational assumptions. Based on computational
indistinguishability, we then proceed to show its semantic
security.

Definition 2 (AddHomSE).The symmetric encryption scheme

AddHomSE = (Gen,Enc,Dec) (5)

consists of a three-tuple of algorithms given in the following:

(1) Gen(1𝑠): based on the security parameter 1𝑠, Gen
chooses a randomization length 𝑟, a linear [𝑛, 𝑘∗, 𝑑]-
error correcting Goppa code over F2 with a generator
matrix G such that 𝑘∗ > 𝑟. It also samples a random
nonsingular 𝑘∗ × 𝑘∗ matrix S and a random 𝑛 × 𝑛
permutationmatrix P. It then sets the cleartext length
to be 𝑘 such that 𝑘∗ = 𝑘 + 𝑟, where 𝑘 ≤ 𝑟 − 1 and sets𝑛, 𝑘 as public parameters and outputs (S,G,P) as the
secret key.

(2) Enc((S,G,P),m): the input consists of a key (S,G,P),
a plaintextm ∈ F𝑘2 . It then samples a random

z ←󳨀 𝑈(F 𝑟2) (6)

and encodes the concatenation (m, z) ∈ F𝑘
∗

using
SGP to obtain a ciphertext message

c = (m, z) SGP ∈ F
𝑛. (7)

(3) Dec((S,G,P), c): the input consists of a key (S,G,P)
and a ciphertext c ∈ F𝑛2 .The plaintextmessagem ∈ F𝑘2
is obtained by decoding cP−1 using the Goppa code,
mapping the decoded message by S−1 and discarding
the last 𝑟 bits.

The key generation, encryption, and decryption processes
are depicted in Algorithms 1, 2, and 3, respectively.

Note that contrary to the McEliece cryptosystem, the
matrix SGP is not public. Instead, it is kept as a secret key.
In addition, no error vectors are added in the encryption
process.

We shall now proceed to show the IND-CPA security of
our construction. Our plan is the following. We first show
thatAddHomSE can be divided into two parts,Enc1 andEnc2,
such that the output of Enc is the sum of the outputs of these
two algorithms.We then proceed to show that Enc2 produces
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Enc: m ∈ F𝑘2
Generate a random ↓

suffix z ∈ F 𝑟2↓
Add suffix (m, z) ∈ F𝑘

∗

2↓ SGP
Encode c ∈ F𝑛2

Algorithm 2: AddHomSE encryption.

Dec: c ∈ F𝑛2
Permute ↓ P−1

cP−1 ∈ F𝑛2
Decode ↓ G

z ∈ F𝑘
∗

2

Demix ↓ S−1

(m, z) ∈ F𝑘
∗

2

Discard suffix ↓
m ∈ F𝑘2

Algorithm 3: AddHomSE decryption.

a probability ensemble that is indistinguishable from random
under a certain (reasonable) assumption. We then consider
the sum of the outputs of these two algorithms and proceed
to show that (under another reasonable assumption) the
complete encryption algorithm produces ciphertexts that are
indistinguishable from random.

We start by showing that Enc can be expressed as a sum of
two algorithms. Let the scrambled generatormatrix Ĝ = SGP
be partitioned into 𝑘∗ × 𝑛 and 𝑟 × 𝑛 submatrices Ĝ1 and Ĝ2
such that (SGP)𝑇 = (Ĝ1𝑇, Ĝ2𝑇), where 𝑇 denotes transpose.
Then we have

Enc ((S,G,P) ,m; 𝑟󸀠) = mĜ1⏟⏟⏟⏟⏟⏟⏟
Enc1((S,G,P),m)

⊕ zĜ2⏟⏟⏟⏟⏟⏟⏟
Enc2((S,G,P);𝑟󸀠)

, (8)

where Enc1 is deterministic PT, Enc2 is PPT, and 𝑟󸀠 is the
internal randomness used by Enc.

Now,Enc2 adds a different element zĜ2 ∈ F𝑛2 to the output
of Enc1 determined by the randomness 𝑟󸀠. Suppose that we
are encrypting 𝑞 messages and that the output of Enc2 is a
truly random 𝑈(ℎ) ∼ 𝑈(F𝑛2 ) for every ℎ ≤ 𝑞. Then for everyℎ ≤ 𝑞 and every plaintext message mℎ the output of Enc
would be characterized by

Enc
1 ((S,G,P) ,mℎ) ⊕ 𝑈(ℎ) ∼ 𝑈 (F𝑛2 ) (9)

and AddHomSE would satisfy perfect secrecy for 𝑞 encryp-
tions. In reality, the output of Enc2 is not truly random.
However, in the following we show that it is indistinguishable
from random under a certain assumption. Then we consider
the connection between Enc1 and Enc2 and, finally, the

Table 1:The variables used inAddHomSE and in its proof of security
and their descriptions.

Variable Description
1𝑠 The security parameter

𝑟, 𝑟𝑠 A randomization length; determines the maximum
number of file parts

m,mℎ A plaintext message
c, cℎ A ciphertext message
z, zℎ A random binary suffix of length 𝑟
𝑛, 𝑛𝑠 The length of the used Goppa code
𝑘∗, 𝑘∗𝑠 The dimension of the used Goppa code
𝑑 The distance of the used Goppa code
G The generator matrix of the Goppa code
S A random non-singular binary 𝑘∗ × 𝑘∗ matrix
P A random 𝑛 × 𝑛 permutation matrix
𝑘, 𝑘𝑠 The cleartext length such that 𝑘∗ = 𝑘 + 𝑟 and 𝑘 ≤ 𝑟 − 1
Ĝ The scrambled generator matrix Ĝ = SGP
Ĝ1 𝑘∗ × 𝑛 submatrix of Ĝ; (Ĝ)𝑇 = (Ĝ1𝑇, Ĝ2𝑇)
Ĝ2 𝑟 × 𝑛 submatrix of Ĝ; (Ĝ)𝑇 = (Ĝ1𝑇, Ĝ2𝑇)𝑟󸀠 The internal randomness used by Enc
𝑞 The total number of encrypted messages
Z A uniformly random 𝑞 × 𝑟𝑠 matrix
G󸀠 A uniformly random 𝑟𝑠 × 𝑛𝑠 matrix
M Amessage matrixM = (m𝑇0 ,m𝑇1 , . . . ,m𝑇𝑞−1)𝑇

Table 2: The used random variables and their descriptions.

Random variable Description
𝑈(ℎ) Distributed uniformly on F𝑛2 for every ℎ ≤ 𝑞
𝐸2,(ℎ)𝑠 Induced by Enc2(S,G,P) = zℎĜ2 for ℎ ≤ 𝑞
𝐸2,𝑞𝑠 A 𝑞-tuple of random variables

(𝐸2,(0)𝑠 , 𝐸2,(1)𝑠 , . . . , 𝐸2,(𝑞−1)𝑠 )
𝑀𝑐𝑠 Corresponds to the choice of Ĝ
𝑀𝑐1𝑠 Corresponds to the choice of Ĝ1𝑀𝑐2𝑠 Corresponds to the choice of Ĝ2𝑀𝑐𝑈2𝑠 Distributed uniformly on F

𝑟𝑠×𝑛𝑠
2𝑉𝑞𝑠 Determined by ZG󸀠

𝑈𝑞𝑠 Distributed uniformly on F
𝑟𝑠×𝑛𝑠
2𝐾𝑠 Determined by key generation;𝐾𝑠 = Gen(1𝑠)

𝐸(ℎ)𝑠 Determined by encryption ofmℎ;𝐸(ℎ)𝑠 = Enc(𝐾𝑠,mℎ)
𝐸𝑞𝑠 Determined by encryption of 𝑞messages;

𝐸𝑞𝑠 = (𝐸(0)𝑠 , 𝐸(1)𝑠 , . . . , 𝐸(𝑞−1)𝑠 )

indistinguishability of encryptions from random. For easier
reference, variables used in the description of the scheme,
as well as in the following proofs, have been collected
into Table 1. Similarly, the used random variables have been
collected into Table 2.
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5. The Probability Ensemble Induced by Enc2

In the following, we consider the probability ensemble 𝐸2,𝑞 ={𝐸2,𝑞𝑠 }𝑠∈N induced by Enc2 for 𝑞 encryptions. That is, we have
a 𝑞-tuple

𝐸2,𝑞𝑠 = (𝐸2,(0)𝑠 , 𝐸2,(1)𝑠 , . . . , 𝐸2,(𝑞−1)𝑠 ) (10)

such that 𝐸2,(ℎ)𝑠 = Enc2(S,G,P) = zℎĜ2 for every ℎ ∈ {0, 1,. . . , 𝑞 − 1}, where (S,G,P) ← Gen(1𝑠) and zℎ ← 𝑈(F 𝑟2 ).
Note that 𝑛, 𝑘∗, 𝑘, and 𝑟 depend on the security parameter 𝑠.
In the following, we have made the dependence explicit. We
can consider 𝐸2,𝑞 as a random variable over F𝑞×𝑛𝑠2 by setting
𝐸2,𝑞 = ZĜ2, where Z is a 𝑞 × 𝑟𝑠 matrix chosen uniformly at
random. For convenience, we assume that 𝐸2,𝑞 is written in
such a matrix form.

5.1. Indistinguishability of Ĝ2 from Random. Our plan is to
show the indistinguishability of 𝐸2,𝑞 from random for all 𝑞 ≤
𝑟𝑠. In order to do that we want Ĝ2 to be also indistinguishable
from random. We could apply the McEliece assumption
(Assumption 1) that states that the complete generatormatrix
SGP satisfies this property. However, such an assumption is
too strong in our case. We derive a weaker assumption that
relates only to Ĝ2.

Definition 3. Let 𝑀𝑐 = {𝑀𝑐𝑠}𝑠∈N denote a probability
ensemble of McEliece generator matrices (chosen according
to some schema) such that 𝑀𝑐𝑠 is distributed over matrices
of size 𝑘∗𝑠 × 𝑛∗𝑠 for every 𝑠 ∈ N. Let 𝑀𝑐1 = {𝑀𝑐1𝑠 }𝑠∈N and
𝑀𝑐2 = {𝑀𝑐2𝑠 }𝑠∈N denote the probability ensembles such that
𝑀𝑐𝑇𝑠 = ((𝑀𝑐1𝑠 )𝑇, (𝑀𝑐2𝑠 )𝑇) for every 𝑠 ∈ N, where 𝑀𝑐1 is
distributed overmatrices of size 𝑘𝑠×𝑛𝑠 and𝑀𝑐2 is distributed
over matrices of size 𝑟𝑠 × 𝑛𝑠, where 𝑘𝑠 + 𝑟𝑠 = 𝑘∗𝑠 and 𝑘𝑠 and 𝑟𝑠
are chosen according to Gen(1𝑠).
Assumption 4 (Ĝ2 indistinguishable from random). Let𝑀𝑐𝑈2 = {𝑀𝑐𝑈2𝑠 }𝑠∈N denote the uniform probability ensem-
ble such that 𝑀𝑐𝑈2𝑠 ∼ 𝑈(F 𝑟𝑠×𝑛𝑠2 ) for every 𝑠 ∈ N. For every
PPT algorithm A, there is a negligible function 𝜖 such that

Adk𝐷(𝑀𝑐
2 ,𝑀𝑐𝑈2)

A (𝑠) ≤ 𝜖 (𝑠) (11)

for every 𝑠 ≥ 1.
If the generator matrix satisfies the formulated assump-

tion, then Ĝ2 cannot be distinguished from random. Suppose
that Ĝ2 is exchanged with truly random matrix. Let 𝑉𝑞 ={𝑉𝑞𝑠 }𝑠∈N be a probability ensemble such that𝑉𝑞𝑠 = ZG󸀠, where
Z ← 𝑈(F𝑞×𝑟𝑠2 ) and G󸀠 ← 𝑈(F 𝑟𝑠×𝑛𝑠2 ). Let 𝑈𝑞 = {𝑈𝑞𝑠 }𝑠∈N denote
the uniform probability ensemble such that 𝑈𝑞𝑠 ∼ 𝑈(F𝑞×𝑛𝑠2 ),
where 𝑛𝑠 is determined by Gen(1𝑠). Clearly, the statistical
distance

Δ (𝑉𝑞𝑠 , 𝑈𝑞𝑠 ) = 0 (12)

for every 𝑠 ∈ N and 𝑞 ≤ 𝑟𝑠 since all of the elements of ZG󸀠 are
uniformly random.

(1) procedure B(1𝑠,X) ⊳ X is a 𝑟𝑠 × 𝑛𝑠 matrix
(2) Z ← 𝑈(F𝑞×𝑟𝑠2 )
(3) 𝑏 ← A(1𝑠,ZX)
(4) return 𝑏
(5) end procedure

Algorithm 4

We shall now provide a connection between Assumption
4 and the indistinguishability of 𝐸2,𝑞 from 𝑉𝑞 for 𝑞 ≤ 𝑟𝑠.
Proposition 5. For every PPT algorithm A there is a PPT
algorithm B such that

Adk𝐷(𝑀𝑐
2,𝑀𝑐𝑈2)

B (𝑠) ≥ Adk𝐷(𝐸
2,𝑞 ,𝑉𝑞)

A (𝑠) (13)

for every 𝑞 ≤ 𝑟𝑠 and 𝑠 ∈ N.

Proof. The reduction is straightforward. Let 𝑠 ∈ N be given
and let A be a PPT algorithm considered as a distinguisher
for 𝐸2,𝑞 and𝑉𝑞. Let us define the distinguisher B for𝑀𝑐2 and𝑀𝑐𝑈2 that is shown in Algorithm 4.

IfX ← 𝑀𝑐2𝑠 , then B is invoked with 𝑟𝑠 rows of a McEliece
generator matrix. By the description of B, A is queried with a
matrix sampled according to 𝐸2,𝑞𝑠 . Let nowX ← 𝑀𝑐𝑈2𝑠 . Then
A is invoked with an element sampled according to 𝑉𝑞𝑠 and
since B outputs the same bit as A, we have

Adk𝐷(𝑀𝑐
2 ,𝑀𝑐𝑈2)

B (𝑠) = Adk𝐷(𝐸
2,𝑞,𝑉𝑞)

A (𝑠) . (14)

A direct consequence of Proposition 5 is the result we
aimed for: indistinguishability of 𝐸2,𝑞 from random under
Assumption 4.

Proposition 6. For every PPT algorithm A and 𝑞 ≤ 𝑟,
Adk𝐷(𝐸

2,𝑞 ,𝑈𝑞)
A (𝑠) = Adk𝐷(𝐸

2,𝑞,𝑉𝑞)
A (𝑠)

≤ Adk𝐷(𝑀𝑐
2 ,𝑀𝑐𝑈2) (𝑠)

(15)

for every 𝑠 ∈ N.

6. Semantic Security for 𝑟 Messages

Let us now turn to the probability ensemble induced by
the complete encryption algorithm Enc. We establish the
semantic security of AddHomSE by proving that it satisfies
ciphertext indistinguishability for up to 𝑟𝑠 messages under
two assumptions: Assumption 4 and a new one regarding
independence of Ĝ1 and Ĝ2. Let m0,m1, . . . ,m𝑞−1 ∈ F𝑘2 be
any plaintext messages. Let 𝐸𝑞 = {𝐸𝑞𝑠 }𝑠∈N such that 𝐸𝑞𝑠 =
(𝐸(0)𝑠 , 𝐸(1)𝑠 , . . . , 𝐸(𝑞−1)𝑠 ), where 𝐸(ℎ)𝑠 = Enc(𝐾𝑠,mℎ) and 𝐾𝑠 =
Gen(1𝑠). As before, let us consider 𝐸𝑞𝑠 in the matrix form. Set
alsoM = (m𝑇0 ,m𝑇1 , . . . ,m𝑇𝑞−1)𝑇. That is, the rows ofM consist
of the plaintext messages. We call M the message matrix of
m0,m1, . . . ,m𝑞−1 ∈ F𝑘2 .
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(1) procedure DepExp(A, 𝐴, 𝐵,𝑋)(𝑠) ⊳ Dependability experiment
(2) 𝑏 ← 𝑈({0, 1})
(3) if 𝑏 = 1 then
(4) 𝑏󸀠 ← A(1𝑠, 𝐴 𝑠, 𝐵𝑠)
(5) else
(6) 𝑏󸀠 ← A(1𝑠, 𝐴 𝑠, 𝑋𝑠)
(7) end if
(8) if 𝑏 = 𝑏󸀠 then
(9) output 1
(10) else
(11) output 0
(12) end if
(13) end procedure

Algorithm 5

6.1. Computational Independence. Assumption 4 concerns
the last part Ĝ2 of the generator matrix G. However, we
need to also make an assumption regarding Ĝ1. For example,
suppose that it was possible that Ĝ1 = Ĝ2. Then 𝐸𝑞 would
be easily distinguishable with high probability by choosing
M = I, the identity matrix. To foil such attempts, we want Ĝ1
and Ĝ2 to be sufficiently independent of each other. We shall
formulate an assumption concerning the mutual information
of𝑀𝑐1𝑠 and𝑀𝑐2𝑠 .

Let us define the following experiment in which we
attempt to determine whether two probability ensembles are
dependent. Suppose that we have three probability ensembles𝐴, 𝐵, and𝑋. Suppose also that 𝐵 is indistinguishable from𝑋.
Furthermore, suppose that 𝐼(𝐴 𝑠; 𝐵𝑠) > 0 while 𝐼(𝐴 𝑠; 𝑋𝑠) = 0
for every 𝑠 ∈ N. We define the experiment that is shown in
Algorithm 5.

In the experiment, A is either given an element from𝐵𝑠 such that 𝐼(𝐴 𝑠; 𝐵𝑠) > 0 or an element from 𝑋𝑠 that is
indistinguishable from 𝐵𝑠 such that 𝐼(𝐴 𝑠; 𝑋𝑠) = 0. Since 𝐵
and 𝑋 are indistinguishable, A succeeds in this experiment
with nonnegligible probability only if it is able to find the
dependability of 𝐵𝑠 from 𝐴 𝑠.
Definition 7. Let 𝐴 = {𝐴 𝑠 : 𝑠 ∈ N}, 𝐵 = {𝐵𝑠 :𝑠 ∈ N} be probability ensembles. We say that 𝐴 and 𝐵 are
computationally independent if for every PPT algorithm A

and every probability ensemble𝑋 = {𝑋𝑠 : 𝑠 ∈ N} such that𝑋
is computationally indistinguishable from 𝐵 and 𝐼(𝐵𝑠; 𝑋𝑠) =0 for every 𝑠 ∈ N there is a negligible function 𝜖 such that

AdkDep(𝐴,𝐵,𝑋)
A (𝑠)
= |2 ⋅ Pr [DepExp (A, 𝐴, 𝐵,𝑋) = 1] − 1| ≤ 𝜖 (𝑠) (16)

for every 𝑠 ∈ N. If this does not hold, then we say that 𝐴 and𝐵 are noticeably dependent.

Note that it follows from the definition of Dep(𝐴, 𝐵,𝑋)
that

AdkDep(𝐴,𝐵,𝑋) (𝑠) ≥ Adk𝐷(𝐵,𝑋) (𝑠) (17)

for every 𝑠 ∈ N. We formulate the following assumption
concerning the relationship between Ĝ1 and Ĝ2.

Assumption 8 (Ĝ1 and Ĝ2 computationally independent).
For every probability ensemble 𝑋 indistinguishable and
independent from 𝑀𝑐2 and every PPT algorithm A there is
a negligible function 𝜖 such that

AdkDep(𝑀𝑐
1 ,𝑀𝑐2 ,𝑋)

A (𝑠) ≤ 𝜖 (𝑠) (18)

for every 𝑠 ≥ 1.
The assumption states that it is not feasible to find any

information that links Ĝ1 and Ĝ2. The assumption is still
weaker than the McEliece assumption that states that the
whole Ĝ = SGP is indistinguishable from random. (If they
are, then necessarily Ĝ1 and Ĝ2 are computationally inde-
pendent.) However, Assumption 8 does not require Ĝ1 to be
indistinguishable from random. In fact, our proofs do not
depend at all on the structure of Ĝ1 as long as Ĝ1 and Ĝ2 are
computationally independent. To make the scheme faster, we
could, for instance, omit S andP fromaffecting the first 𝑘 rows
of the generator matrix G.

We are now ready to show the semantic security of
AddHomSE by showing the indistinguishability of 𝐸𝑞 from
random.

Proposition 9. AddHomSE has indistinguishable encryptions
for 𝑟𝑠 messages under Assumptions 4 and 8.

Proof. Suppose that Assumption 4 holds. We establish the
claim by showing that for every set of 𝑞 ≤ 𝑟𝑠 plaintext
messages m0,m1, . . . ,m𝑞−1 ∈ F

𝑘𝑠
2 and every PPT algorithm

A there is a PPT algorithm B such that

Adk𝐷(𝐸
𝑞,𝑈𝑞)

A (𝑠) ≤ AdkDep(𝑀𝑐
1 ,𝑀𝑐2 ,𝑀𝑐𝑈2)

B (𝑠) (19)

for 𝑠 ∈ N, where 𝐸𝑞 is induced by m0,m1, . . . ,m𝑞−1. Then,
under Assumption 8, the advantage of A is negligible.

Since 𝑀𝑐𝑈2 is truly random, we have 𝐼(𝑀𝑐2;𝑀𝑐𝑈2) =0. In addition, by Assumption 4, 𝑀𝑐2 is computationally
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(1) procedure B(1𝑠, Ĝ1,X) ⊳ X is either Ĝ2 or a random matrix
(2) Z ← 𝑈(F𝑞×𝑟𝑠2 )
(3) Y ← MĜ1 ⊕ ZX
(4) 𝑏 ← A(1𝑠,Y)
(5) output 𝑏
(6) end procedure

Algorithm 6

indistinguishable from 𝑀𝑐𝑈2 and therefore Dep(𝑀𝑐1,𝑀𝑐2,𝑀𝑐𝑈2) is well defined. Let the security parameter 𝑠 be fixed
and letm0,m1, . . . ,m𝑞−1 ∈ F𝑘2 be any messages. LetM be the
message matrix of m0,m1, . . . ,m𝑞−1. Written in the matrix
form, we have 𝐸𝑞𝑠 = M𝑀𝑐1𝑠 ⊕ 𝐸2,𝑞𝑠 and the elements are of
the form

MĜ1 ⊕ ZĜ2, (20)

where G = (Ĝ1𝑇, Ĝ2𝑇)𝑇 ← 𝑀𝑐𝑠 and Z ← 𝑈(F𝑞×𝑟𝑠2 ).
Let A be any PPT algorithm considered as a distin-

guisher for 𝐷(𝐸𝑞, 𝑈𝑞). Using A, we construct an algorithm
B that determines the dependability of 𝑀𝑐1 and 𝑀𝑐2 (see
Algorithm 6).

Suppose that the input X is random matrix. Then

Y = MĜ1 ⊕ ZX⏟⏟⏟⏟⏟⏟⏟
←𝑈(F

𝑞×𝑛𝑠
2 )

(21)

is a truly random matrix. Therefore, A was invoked with a
matrix sampled according to 𝑈𝑞𝑠 . Suppose now that X = Ĝ2.
Then

Y = MĜ1 ⊕ ZĜ2⏟⏟⏟⏟⏟⏟⏟
←𝐸
2,𝑞
𝑠

(22)

andYwas sampled according to 𝐸𝑞𝑠 . Since B outputs the same
bit as A, we have

AdkDep(𝑀𝑐
1 ,𝑀𝑐2 ,𝑀𝑐𝑈2)

B (𝑠) ≥ Adk𝐷(𝐸
𝑞,𝑈𝑞)

A (𝑠) . (23)

AdHomSE is IND-CPA secure under Assumptions 4 and
8 whenever the adversary is restricted to at most 𝑟𝑠 queries to
the encryption oracle (the test query included). Considering
a DSS, whenever the dataset is divided into at most 𝑟𝑠 parts,
each of those parts remains secret even under a chosen
ciphertext attack where the adversary is able to choose each
of those parts separately and adaptively.

7. Infeasibility, Key Size, and Error
Correction Capacity

7.1. Infeasibility of the Problems. Let us briefly consider
the infeasibility of the underlying problems related to
AddHomSE. The IND-CPA security is based on assumptions
that are weaker but closely related to the ones underlying
the McEliece scheme. The selection of parameters for the

McEliece scheme has been considered in [44] and the best
performing attacks are based on information set decoding.
In addition, due to algebraic attacks against Goppa codes
[45, 46] the rate 𝑅∗ = 𝑘∗/𝑛 cannot be close to one and the
degree 𝑡 of the Goppa polynomial has to satisfy 𝑡 ≥ 𝑧min,
where 𝑧min is the smallest integer satisfying𝛼𝑧(𝛼𝑧−(2𝛽+1)𝑧+
2𝛽)/2 ≥ 𝑛 − 𝛼𝑧, where 𝛼 = ⌈log2 𝑛⌉ and 𝛽 = ⌈log2 𝑧⌉ + 1 [47].
Choosing 𝑅∗ ≈ 0.8maximizes the complexity of information
set decoding attacks [44].

For AddHomSE, the attacker is not given the generator
matrix. Instead, the attacker gets at most 𝑟 scrambled mes-
sages under an adaptive chosen plaintext attack. Therefore,𝑛 can be drastically lower for AddHomSE. We suggest 𝑘 =⌊𝑘∗/2⌋ − 1 and 𝑟 = 𝑛∗ − 𝑘 so that randomization length is
slightly more than half of the input. The rate 𝑅∗ should be
kept close to a constant. We suggest choosing a rate 𝑅∗ that is
close to 0.8 due to information set decoding attacks [44].

7.2. Key Size. Thekey size ofAddHomSE is big if truly random
matrices are used. In a practical setting, we want to use pseu-
dorandom matrices for S and P. The key size is dramatically
decreased by exchanging these matrices with a short seed𝑐 and generating S and P using a pseudorandom generator
G. The generating matrix G of the Goppa code can be
derived from theGoppa polynomial𝑔(𝑥) and pseudorandom
elements generated byG.Therefore, in practice, the key can be
compactly presented by the seed 𝑐 and the polynomial 𝑔(𝑥).

Typically, in a distributed storage systems we want to
encrypt files or file systems that are huge. If a large file is
divided into few parts, we do not want to consider each part
as a single plaintext message since such an approach would
require 𝑘∗ and 𝑛 to be at least as large as the length of the
file part. In such a case, we can further divide the part into
smaller blocks and encrypt those block independently. Such
an approach enables us to select small and efficient values
for 𝑘∗ and 𝑛. Note that such a division does not affect the
homomorphic property of the scheme provided that each of
the file parts are processed similarly and encrypted with the
same keys. It also does not have an effect on the key size since
the keys of those individual blocks can be derived from the
same seed 𝑐 and the polynomial 𝑔(𝑥).
7.3. Error Correction. Due to requirements of semantic secu-
rity and error correction, ciphertexts contain overhead com-
pared to plaintext messages. For example, with (𝑛, 𝑘∗, 𝑟) =(256, 200, 100), where the rate 𝑅∗ ≈ 0.78, plaintexts of length100 will be encrypted into ciphertexts of length 256. The
scheme can correct up to 𝑡 errors, where 𝑡 is the degree of
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the Goppa generator polynomial. With these parameters, we
should choose 𝑡 ≥ 𝑧min = 5 [47]. Choosing the smallest 𝑡,
which results in the most efficient implementation, enables
us to correct up to 5 errors in each 256 bits meaning that
the plaintext messages are correctly decrypted with high
probability whenever the error rate is less than 2%. If more
error correction capacity is needed, then a higher degree
Goppa generator polynomial needs to be selected and/or the
rate 𝑅∗ should be lowered. As a final remark, we note that
the binary Goppa code can be exchanged with another linear
code on a finite field F𝑞. However, we have only shown the
security of AddHomSE based on the indistinguishability of a
scrambledGoppa generatormatrices.The applied linear code
has to satisfy a similar infeasibility result.

8. Conclusion

We propose an additively homomorphic symmetric encryp-
tion scheme AddHomSE that is compatible with linear net-
work coding: a linear combination of ciphertext messages
decrypts to the same linear combination of corresponding
plaintext messages. The scheme can be used for the encryp-
tion of data stored in a distributed storage system (DSS), for
example, in the distributed Internet of Things. We show that
the scheme is semantically secure (IND-CPA) and provides
computational indistinguishability for each individual part
of the file stored in the DSS. In combination with an
additively homomorphic MAC our scheme supports the
authenticate- then-encrypt paradigm that ensures plaintext
integrity. Finally, based on Goppa codes, our scheme offers
simultaneous error correction. Our proofs are shown for the
binary field F2 which is commonly used for the implemen-
tation of a DSS due to computational efficiency reasons. We
also discuss the selection of secure parameters for the scheme
and explain how it can be applied with compact keys.
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