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The paper presents a novel dual polarized dual fed Vivaldi antenna structure for 1.7–2.7GHz cellular bands. The radiating
element is designed for a base station antenna array with high antenna performance criteria. One radiating element contains
two parallel dual fed Vivaldi antennas for one polarization with 65mm separation. Both Vivaldi antennas for one polarization
are excited symmetrically. This means that the amplitudes for both antennas are equal, and the phase difference is zero. The
orthogonal polarization is implemented in the same way. The dual polarized dual fed Vivaldi is positioned 15mm ahead from
the reflector to improve directivity. The antenna is designed for −14 dB impedance bandwidth (1.7–2.7 GHz) with better than 25 dB
isolation between the antenna ports. The measured total efficiency is better than −0.625 dB (87%) and the antenna presents a flat,
approximately 8.5 dB, gain in the direction of boresight over the operating bandwidth whose characteristics promote it among the
best antennas in the field. Additionally, the measured cross polarization discrimination (XPD) is between 15 and 30 dB and the 3 dB
beamwidth varies between 68∘ and 75∘ depending on the studied frequency.

1. Introduction

Recently an active antenna system (AAS) has been proposed
as a technology concept for cellular base stations [1] and it has
received much attention from the industrial perspective [2–
4]. Traditionally, in base station antenna arrays, the radiating
elements are linearly oriented along a vertical line, and the
array is fed with the fixed power ratio and relative phase with
a limited number of beams in the elevation angle. In the AAS,
the radiation pattern is dynamically and electrically adjusted
in the elevation and azimuth angels. The AAS is interesting
from the mobile communications point of view as it offers
capacity enhancement, improved network availability, and
especially higher energy efficiency for the future wireless
communications demands with 3D beam forming capability
[5].

Active antennas can create and adjust beams inside the
mobile base station cell by changing the relative signal phase

and amplitude of every radiating element.The beam forming
can be based on either constructive interference that amplifies
the beam in a given direction or a destructive interference
that focuses the beam precisely. These can be applied for
both transmitted and received beams independently. Beam
forming enables a variety of operations according to the users,
different diversity techniques, carrier frequencies, radio sys-
tems and multiple cells, and even multiple operators [2–4].

The requirements and hence the technology of antennas
for AAS base stations largely depends on the application
considered. Outdoor mobile communications need well con-
trolled patterns and high power handling and environmental
demands like variable weather conditions. Single antenna
element performance plays an important role inAAS in terms
of properties such as good impedance matching, high isolation
between adjacent antenna elements, low mutual coupling
between orthogonal polarizations, and high total efficiency.
For commercial and competition reasons these technical
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properties should be designed and manufactured with low
costs.

Currently available vertical micro strip patch arrays [6]
or dipoles [7] can be used for interleaving different frequency
bands in the AAS usage. Other types of wideband antenna
elements for base stations can be found in [8–11]. Polarization
diversity is typically used with dual polarized antenna ele-
ments with high isolation between the polarizations [7–15].
Complete antenna arrays can be found in [16–19]. State-of-
the-art comparison of currently studied antenna radiators is
collected in Table 1, where the studied antenna structure can
be found in column one.

The most common way to implement two orthogonal
polarizations with Vivaldi antennas is to place them orthog-
onally along the outer edge of each element [20–22]. Another
way to implement a wideband dual polarized antenna is to
orientate twoVivaldi antennas into a cross-shapewith respect
to the antenna center where a galvanic contact is avoided by
a small longitudinal gap between antenna elements [23–25].
Dual fed Vivaldi antennas do not exist.

This letter presents a dual polarized dual fed Vivaldi
antenna for 1.7–2.7GHz frequency band keeping in mind
the AAS concept for mobile base stations. The antenna is
designed with two parallel dual fed radiating elements for
both polarizations to increase the overall aperture of the
antenna, and, thus, to increase the directivity. The antenna
presents the measured −14 dB impedance matching and
isolation between the antenna ports better than 25 dB over
the operating bandwidth with good radiating properties. The
performance is compared with the existing antenna types.
Section 2 describes the radiating element and the implemen-
tation, Section 3 describes simulation results, and Section 4
describes measurement results. Finally, the conclusions are
given in Section 5.

2. Radiating Element

Figure 1(a) presents a dual polarized antenna structure on
Rogers RO4003C laminate containing two pairs of orthog-
onally oriented dual fed Vivaldi radiators located on rectan-
gular form. The separation of radiators for one polarization
is 65mm (∼𝜆/2 wavelength) at 2.38GHz center frequency.
The tapered opening of Vivaldi is elliptical (𝑎 = 23mm, 𝑏
= 33mm) as can be seen in Figure 1. The idea of using
two symmetrical Vivaldi antennas for one polarization is to
increase the aperture of the radiating element.

The width of a radiator is 61mm and height is 46mm,
and the distance from the reflector is 15mm. The size of
the radiator is 125mm × 240mm and it is so called floating
structure fed by a symmetrical feeding network (Figure 1(b)).
The size of the reflector was optimized for low ground
currents and high antenna efficiency and, on the other hand,
not too high relative distance to adjacent subarray at 2.7 GHz
that would increase grating lopes in the antenna array.
The floating reflector here means that the antenna and the
reflector are not in the same ground potential. Symmetrical
feeding is implemented by using a strip line to separate the
feed from the reflector. As it can be noticed, from the back of

both Vivaldi antennas, an area with the radius of 𝑟 = 10mm
of conductingmaterial is taken out.This is done to reduce the
coupling of the radiated field to the reflector.

The connection between the symmetrical feed network
and Vivaldi radiator is done with a coaxial transmission line
maintaining a 50Ω characteristic impedance. The coaxial
feed line also neglects the effect of feedthrough in the reflector
by minimizing the coupling of the field. The measured pro-
totype antenna is presented in Figure 1(e) with the reflector
dimensions.

In the following sections, CSTMicrowave studiowas used
to perform the antenna simulations,HP 8510CVNAwas used
for impedance matching measurements, and Satimo Starlab
was used to measure the radiation properties of the antenna.

3. Simulation Results

Simulated impedancematching of the dual polarized dual fed
Vivaldi radiator is presented in Figure 2. Both polarizations
(Ports 1 and 2) were simulated from 1.5 to 3GHz and the
results exhibited better than−14 dB impedancematching over
the 1.7 GHz–2.7GHz band with the mutual coupling lower
than −27 dB between antennas of Ports 1 and 2. Port length
of 1 and 2 is different (two-layer feed) that causes different
matching response. Simulated total efficiency is shown in the
same figure and it presents better than −0.2 dB (95%) over the
1.7 GHz–2.7GHz band.This can be considered good for base
station application.

The simulated theta and phi polarization components of
the dual polarized dual fed Vivaldi are presented in Figure 4.
The XPD results calculated from the figure are 38 dB for theta
and 25 dB for phi polarization components at 1.7 GHz. At
2.7 GHz the XPD for the theta component is 18 dB and it is
28 dB for phi, respectively. The variation of XPD is 18–42 dB
over the frequency range.

4. Measurement Results

Measured impedance matching of the dual polarized dual
fed Vivaldi radiator is presented in Figure 3. Port 1 presents
better than −13 dB impedance matching, whereas Port 2
shows better than −17 dB impedance matching over the
1.7 GHz–2.7GHz band. The mutual coupling between the
Ports 1 and 2 is below −25 dB. Discrete ports were used in
simulation whereas realization was made by connectors and
thus the matching is different. Additionally, the measured
total efficiencywas better than−0.625 dB (87%) over the band
for both ports.

Measured total gain in the boresight direction (𝜃 = 0∘) is
presented in Figure 5. As it can be observed, the gain is rather
flat over the frequency range varying between 7.75 and 9.2 dBi.
Notice that the simulated main polarization in Figure 4 is
comparable to maximum gain as the antennas are linearly
polarized.

Themeasured XPD of the dual polarized dual fed Vivaldi
is presented in Figure 5. As it can be observed, the XPD varies
between 15 and 30 dB and correlates well with the simulated
ones.
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Figure 1: The simulation model of one radiator. (a) Dual polarized radiator structure with the coordinate system (b) and radiator structure
with dimensions. The figure is presented in𝑋𝑍-cut with respect to 𝜙 = 45∘ in𝑋𝑌-cut. (c) The symmetrical feed network to divide the signal
of one polarization.The figure is presented in𝑋𝑌-cut with respect to 𝜙 = 45∘. (d) Microstripline feed with the stub and the cavity dimensions
and (e) the prototype antenna. Dimensions are in mm and all the figures are not in the same scale.



4 International Journal of Antennas and Propagation

−10
−15
−20

0
−5

−25
−30
−35

−0.2
−0.3

0
−0.1

−0.4

Port 1

Port 2

Port 2

Port 1

Ports 1-2

1.5 1.7 1.9 2.5 2.7 2.9 3.02.32.1
−40

Frequency (GHz)
M

at
ch

in
g 

an
d 

m
ut

ua
l c

ou
pl

in
g 

(d
B)

To
ta

l e
�

ci
en

cy
 (d

B)

Figure 2: Simulated impedance matching, mutual coupling between the antenna ports, and total efficiency as a function of frequency.
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Figure 3: Measured impedance matching, mutual coupling between antenna feed ports, and total efficiency as a function of frequency.
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Figure 4: Simulated theta and phi polarization components as a function of frequency.

Figure 6 presents measured radiation patterns at 𝑌𝑍-cut
(𝜙 = 90∘, 𝜃 = 0∘) at 1700MHz, 2200MHz, and 2700MHz.
It can be observed that the 3 dB beamwidths are 70∘, 68∘,
and 75∘, respectively. Electrical results are comparable with
antennas [9, 13, 15] and the antenna complexity will decide
the choice order for economicmanufacturing. Antenna array
concepts at [16–19, 24, 25] can be straightforwardly applied
with the studied structure. Presented dual polarized dual fed
Vivaldi antenna has wideband, well matched, high isolated,

and high total efficiency structure with flat gain response
when compared to other antennas in Table 1. Antenna array
performance was simulated and presented in Figure 7 as
eight-element linear array such as [8]. As it can be observed,
the grating lobes are arising at 2.2 GHz in ± 90 deg and
at 2.7 GHz in ± 60 deg. The maximum gain in boresight is
around 18 dB as sidelobe levels are around 15 dB below the
maximum gain.
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Figure 5: Measured total gain and XPD in boresight as a function of frequency.
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Figure 6: Measured radiation patterns in 𝑌𝑍-cut at (a) 1700MHz, (b) 2200MHz, and (c) 2700MHz. The 3 dB beamwidths are 70∘, 68∘, and
75∘, respectively.
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Figure 7: Simulated radiation patterns of eight-element linear array
at 1.7, 2.2, and 2.7GHz with 128mm element spacing in 𝑦-axis. The
radiation is presented in phi = 90 deg as a function of theta.

5. Conclusions

The dual polarized dual fed Vivaldi antenna element for
1.7–2.7GHz frequency band was designed for AAS concept
utilized at mobile base stations. Simulated and measured
performance exhibited 45% relative impedance bandwidth
with return loss better than −14 dB and mutual coupling
between antenna ports was better than −25 dB. The antenna
gain in the boresight was 7.75–9.2 dBi and the variation
between the polarizations was observed to be very small. The
total efficiency was −0.625 dB (87%) over the band for both
ports. The half power or 3 dB beamwidth was approximately
70∘ over the antenna operating bandwidth. In conclusion, the
antenna performance is sufficient to be utilized in an active
antenna system in mobile base stations.
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