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Enumerating all subgraphs of an input graph is an important task for analyzing complex networks. Valuable information can be
extracted about the characteristics of the input graph using all-subgraph enumeration. Notwithstanding, the number of subgraphs
grows exponentially with growth of the input graph or by increasing the size of the subgraphs to be enumerated. Hence, all-subgraph
enumeration is very time consuming when the size of the subgraphs or the input graph is big. We propose a parallel solution named
Subenum which in contrast to available solutions can perform much faster. Subenum enumerates subgraphs using edges instead of
vertices, and this approach leads to a parallel and load-balanced enumeration algorithm that can have efficient execution on current
multicore and multiprocessor machines. Also, Subenum uses a fast heuristic which can effectively accelerate non-isomorphism
subgraph enumeration. Subenum can efficiently use external memory, and unlike other subgraph enumeration methods, it is not
associated with the main memory limits of the used machine. Hence, Subenum can handle large input graphs and subgraph sizes that
other solutions cannot handle. Several experiments are done using real-world input graphs. Compared to the available solutions,
Subenum can enumerate subgraphs several orders of magnitude faster and the experimental results show that the performance of
Subenum scales almost linearly by using additional processor cores.

1. Introduction

Enumerating subgraphs of a given size has been shown tobe a
very useful task in the area of complex network analysis. Sub-
graphs can be used to identify building blocks and functional
and nonfunctional characteristics in social, biological, chem-
ical, and technological graphs [1]. An interesting application
is subgraph mining which can be used to extract functional
properties. A good example is finding network motifs, which
are defined as connected subgraphs that occur significantly
more frequently than expected [2]. One of the best known
approaches for finding network motifs is to enumerate all
subgraphs and then extract significant motifs after omitting
frequent subgraphs that occur in random networks [3].
There are also many other applications in areas like data
mining, statistics, systems biology, chemoinformatics, social
networks, telecommunications, and web mining.

Although subgraph enumeration is a useful task, it is a
computational challenging problem [4]. Enumeration can be
classified into two distinct problems: enumerating all labeled

subgraphs and enumerating nonisomorphic subgraphs, that
is, subgraphs that have identical structure but different
vertex labels. In the first problem, all of the subgraphs of
a given size should be enumerated. On the other hand,
in the second problem which is much more important, all
of the nonisomorphic subgraphs of a given size must be
enumerated. Both problems are very time consuming because
the number of both labeled and nonisomorphic subgraphs
increases exponentially by giving a bigger subgraph size or
a larger input graph for subgraph enumeration.

As the size of the input graph increases, the number
of subgraphs of size k increases exponentially (in the worst
case C(n, k) for a complete graph) [5]. The number of
nonisomorphic subgraphs, which can be calculated using the
Polya enumeration theorem [6], also increases exponentially
as k increases. Therefore, by increasing the subgraphs size or
the input graph’s size, subgraph enumeration will take more
time. When nonisomorphic subgraphs are enumerated, the
problem becomes more complicated because an additional
mechanism must be used to identify isomorphic subgraphs.



There is no known polynomial algorithm for subgraph
isomorphism problem yet, and this overcomplicates the
subgraph enumeration problem [7].

Due to the complex nature of subgraph enumeration
problem, it is a very challenging and time-consuming prob-
lem. Available sequential algorithms tend to take a lot of time
to do the job [3]. Hence, a good solution is to use parallel
and distributed systems to accelerate subgraph enumeration
[8]. Several other recent works targeting parallel subgraph
enumeration have been proposed recently [8]. However,
most of the related works are based on message passing
interface (MPI) and hence are designed to work on cluster
computing systems [8, 9]. In contrast, our goal is to provide
a fast and easy to use tool for subgraph enumeration on
commodity multicore and multiprocessor machines and to
the best of our knowledge it has not yet been done. For
this reason, we present a parallel solution, named Subenum,
which is designed for faster and more scalable subgraph
enumeration on multicore and multiprocessor machines.
Subenum provides fast and efficient methods for counting
and dumping both all and just nonisomorphic subgraphs.

Subenum’s strength compared to other similar works can
be classified into three categories. First, we have presented
a new edge-based parallel subgraph enumeration algorithm
named PSE, which is an improved version of the well-known
sequential ESU algorithm. PSE provides a parallel and load-
balanced approach for subgraph enumeration. The second
strength is using a custom polynomial-time heuristic for
detecting isomorphic subgraphs. The last strength is using
a combination of external sorting and the nauty canonical
labeling algorithm which enables Subenum to enumerate
nonisomorphic subgraphs even when the number of sub-
graphs is so big that they cannot be stored in the main
memory.

For evaluating the performance of Subenum we have
performed several experiments on real-world graphs from
different areas like social network, biological networks,
software engineering, and electrical circuits. During the
experiments, we compared Subenum’s performance to state-
of-the-art algorithms and implementations. Experimental
results show that Subenum provides a parallel, load-balanced,
and effective solution for all-subgraph enumeration problem.
Compared to the fastest available tools for nonisomorphic
subgraph enumeration, Subenum enumerates subgraphs sev-
eral times faster and is able to reduce execution time from
days to hours. In addition, Subenum is able to handle large
graphs and also large subgraph sizes while other solutions fail
to handle them.

2. Related Work

Related works for subgraph enumeration can be categorized
into three main classes [8]: all-subgraph enumeration, single-
subgraph enumeration, and subgraph-set enumeration. In
all-subgraph enumeration (our problem), all of the subgraphs
of size k of the original graph must be enumerated [1, 3,
4, 10]. Nevertheless, other conditions can also be defined
for subgraphs for example, subgraphs of size k that have an
Eulerian path. In single-subgraph enumeration, all of the
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isomorphic subgraphs of a predefined individual subgraph
of size k must be enumerated [5]. Finally, in the subgraph-
set enumeration, isomorphic subgraphs of a given set of
subgraphs of size k must be enumerated [2]. As stated before,
our solution is for the first kind of enumeration, that is,
all-subgraph enumeration. Hence, we concentrate on related
works that enumerate all subgraphs of size k of a given input
graph. Interested reader can find deeper discussions in [8, 11-
15].

The most notable efforts for all-subgraph enumeration
problem are done in the network motif finding problem.
As stated before, one of the best known exact approaches
for finding network motifs is via all-subgraph enumera-
tion and then counting nonisomorphic subgraphs [3]. The
most notable works in this sector are mfinder [1], Kavosh
[3], ESU aka FANMOD [4, 14], FPF [10], gtriesScanner
[16], FaSe [17], NetMODE [18], and QuateXelero [19]. Note
that gtriesScanner and FaSe use the ESU algorithm for
subgraph enumeration, but in conjunction with ESU, they
use the G-Tries data structure to accelerate subgraph iso-
morphism detection. Also note that FANMOD is limited
to subgraphs smaller than 9 and NetMODE is limited to
subgraphs smaller than 7. Compared to this group of related
works, our solution has three strengths: parallel execution,
using a heuristic (ordered labeling) for subgraph isomor-
phism, and external memory based isomorphic subgraphs
counting.

Since subgraph enumeration is a time-consuming task,
some recent works have used cluster computing to tackle
the problem. Most of the available works for parallel all-
subgraph enumeration are based on MPI. The most notable
MPI-based solutions are discussed in [8, 20]. More works are
done for parallel single-subgraph enumeration [2, 9, 21, 22].
Some recent works have used the MapReduce programming
model [23] and Hadoop [24] for efficient single-subgraph
enumeration on cloud and cluster computing systems. The
most mentionable works are [25-29]. However, these works
are also based on cluster and cloud computing systems.
In contrast to available related work, Subenum presents a
parallel solution that can boost the speed of all-subgraph
enumeration problem using parallel processing capabilities
of current commodity multicore and multiprocessor systems
which are more accessible than expensive and complex
solutions like cluster and parallel computing. There are
some other similar but more complex problems like colored
subgraph enumeration and motif finding [30, 31], but in order
to keep this section short, we skip them. The interested reader
can refer to [32] for more information.

3. Preliminaries

In mathematics, a graph is a collection of points that are
connected by some links. The points of a graph are called
vertices and the links are called edges. In this paper, if we
use G to denote a graph, then V(G) is used to present the
vertices of G and E(G) is used to present the edges of G.
Vertices and edges of a graph can be assigned labels, weights,
or colors. However, we assume graphs to be directed, simple,
and unweighted. In other words, we assume that just the
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vertices take labels and the edges are directed and do not
have weights and also there is at most one edge between two
vertices.

For a vertex set V' C V its open neighborhood N(V')
is the set of all vertices, V — V', which are adjacent to at
least one vertex of V'. For a vertex v € V — V' its exclusive
neighborhood with respect to V' denoted by N, (v, V') is
the set of all vertices neighboring v that do not belong to
VI UNW).

The graph H is a subgraph of G, if V(H) < V(G) and
E(H) < E(G). An induced subgraph of G on the vertices set
N denoted by G[N] is a subgraph of G with N as the vertex set
containing all edges between vertices of N that are in E(G).
When we say that we are enumerating subgraphs of size k
of a graph like G we mean that we are enumerating induced
subgraphs of G. Two subgraphs G, and G, are isomorphic if
and only if there is a one to one correspondence between their
vertices, and there is an edge between two vertices of G, if and
only if there is an edge between the corresponding vertices in
G,. Actually, there is no polynomial time algorithm for graph
isomorphism problem yet [7].

ESU Enumeration Algorithm. The most well-known algo-
rithm for subgraph enumeration is the ESU algorithm [14].
ESU assumes that vertices are labeled by unique integer
values. The basic idea of ESU algorithm is to start from
each vertex v and enumerate all subgraphs of size k that
contain v and vertices that have a bigger label than v, that
is, the subgraphs that are v-rooted. ESU enumerates each
subgraph just once. Details of the ESU algorithm are given in
Algorithm 1.

4. Subenum: A Solution for
All-Subgraph Enumeration

The easiest approach for parallel subgraph enumeration is
to enumerate subgraphs rooted from each vertex in parallel
using the ESU algorithm. However, this approach results
unbalanced parallel tasks. Usually, there is a great variance
in the number of subgraphs rooted from each vertex because
vertices with higher degrees tend to participate in more
subgraphs. For example in one of our experiments, more than
20% of subgraphs were enumerated from an identical vertex.
Hence, this naive approach causes unbalanced parallel loads
and sometime this unbalanced load can cause ineflicient
parallelism.

Our idea for parallel enumeration is to enumerate sub-
graphs containing each edge in parallel. Enumerating sub-
graphs using edges causes more fine-grained parallel tasks
because each vertex will be decomposed into several edges.
Hence, the whole process is more load-balanced than vertex-
based enumeration. For this purpose we need an algorithm
for enumerating all subgraphs of size k that contain a specific
edge e(v, w). For this purpose, we have designed Edge-based
Subgraph Enumeration (ESE) algorithm. ESE itself is an
extended version of the ESU algorithm. However, in contrast
to ESU, ESE is nonrecursive. Details of ESE algorithm are
given in Algorithm 2.

Having defined the edge-based enumeration algorithm,
we can explain Parallel Subgraph Enumeration (PSE) algo-
rithm which uses the ESE algorithm as a building block. The
procedure of PSE is simple. First, we put all of the edges of the
input graph into a shared queue (for the case of bidirectional
edges we put just one of them). Then, we use p concurrent
threads to pick edges from the shared queue and enumerate
subgraphs of each edge using p instances of ESE algorithm in
parallel. The shared queue of edges between threads causes a
more load-balanced parallelism. A more formal description
of PSE is given in Algorithm 3.

Algorithm 3 enumerates all subgraphs of size k. However,
if we want to enumerate nonisomorphic subgraphs, we need
a mechanism to detect isomorphic subgraphs. One of the
most efficient methods for graph isomorphism detection is
graph canonization. Graph canonization produces a canonical
label for every graph. Canonical labeling is completely graph
invariant. Graph G is isomorphic to H if and only if canonical
label of G equals canonical label of H [33]. There are some
practical algorithms for canonical labeling like nauty [34],
bliss [35], and traces [36]. However, there is no known
polynomial-time algorithm for canonical labeling [36].

Most of the competing solutions use nauty for canonical
labeling. When they find a new subgraph, first they find its
canonical labeling using the nauty algorithm. Then, the new
canonical label is looked up against a set of visited canonical
labels. If the new canonical label is present in the set, then
this subgraph is omitted else and the new canonical label is
added to the label set. Some solutions, like FaSe, use a more
sophisticated solution like G-tries instead of a lookup table
for storing subgraphs, but the whole process is the same.
This approach has two shortcomings. First, for each found
subgraph, we need to generate its canonical labeling which
can take exponential time in the worst case [34]. The second
problem is the obligation to keep all of the unique canonical
labels that are seen before in the main memory. These two
shortcomings lead to unnecessary usage of processor and
memory resources. Specially, when the size of subgraphs
is big, for example, when k is more than 8, it would be
impractical to keep all canonical labels in the main memory
of a commodity workstation because there are millions of
canonical labels.

To overcome these shortcomings, we propose a two-
phase subgraph isomorphism solution that works with exter-
nal storage. In the first phase, we use a fast O (v*) heuristic
called ordered labeling to eliminate a considerable portion
of isomorphic subgraphs. Then in the second phase, we use
the nauty algorithm to eliminate all remaining isomorphic
subgraphs. Advantages of our two-phase solution are as
follows: (i) faster execution time and (ii) the ability to
handle situations where the number of nonisomorphism
subgraphs exceeds the main memory limits. A schematic of
our proposed two-phase subgraph isomorphism detection
solution is given in Figurel. A flowchart for the ordered
labeling step (first step of the first phase) is also given in
Figure 2.

As shown in Figure 2, we use an intermediate set resid-
ing in the main memory for early duplicate ordered label
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Output: All subgraphs of size k

(2) while Vg,0n # @ do

(b) V!

xtension

Input: A graph G and an integer k: 1 < k < [V(G)|

(1) for each vertex v € V(G) do:
(@) Vigtension — 1 € N({v}) 1 u > v}
(b) ExtendSubGraph({v}, Visensions V)
EXtendSUbGraph(VvSubgmph’ VExtension’ V)
(1) if [Vsupgrapn| = k then output G[Vs,p.,,,] and return

(a) remove a vertex w from V
A VExtension U {M € Nexcl(w’ VSubgmph) u> V}
(c) ExtendSubGraph(Vi,,apn U {w}, V

xtension

: )
Extension’ v

ALGoriTHM I: ESU subgraph enumeration algorithm.

(1) let Stack be a stack of tuples
(2) if v > w then swap vand w

(5) while Stack is not empty do:
(a) top « pop the tuple on top of the stack

(c) while top[1] + & do:
(i) remove a vertex x from top[1]
(i) V; —top[l]U{u e N,

Extension

Input: A graph G, and an integer k: 1 < k < [V(G)|, and an edge e(v, w)
Output: All subgraphs of size k that contain e(v, w)

(3) Vistension — {u € N({v})) :u > whU{u e N, 4w, {v}) : u > v} - {v,w}
(4) push new tuple({v, w}, Vi ension> V) into Stack

(b) if |top[0]| = k then output G[top[0]] and return

exct (% Vubgrapn) : 14 > top[2]}  //top[2] is the root
(iii) push new tuple(top[0] U {x}, VE'xte”sion, top[2]) into Stack

//to guarantee that v is smaller than w

//top[0] is the first item of the tuple
/Itop[1] is the extension set

ALGorITHM 2: ESE enumeration algorithm.

Output: All subgraphs of size k

(1) let Q be an empty list.
(2) for each edge e(v, w) € E(G) do:

(a) if e(w,v) is not in Q then insert e(v, w)into Q
(3) spawn p threads
(4) for each thread do in parallel:

(a) while Q is not empty do:

(i) pick an edge e(v, w) from Q

(5) wait until all threads are done

Input: A graph G, an integer k: 1 < k < |[V(G)] as the size of subgraphs, and an integer p as the number of concurrent threads

(ii) enumerate all subgraphs of size k containing e using ESE algorithm

ALGorITHM 3: PSE subgraph enumeration algorithm.

detection and when the size of the set exceeds the memory
limit, we spill ordered labels set to external memory, that is,
a file on disk. To generate an ordered labeling for a subgraph,
we reorder the adjacency matrix considering degree of each
vertex. Then, we concatenate rows of the reordered adjacency
matrix to generate the ordered label for that subgraph.
Algorithm 4 gives a more formal explanation of ordered
labeling algorithm. Actually, ordered labeling algorithm just
changes the labels of vertices and the graph structure is not
changed. Hence, ordered labeling algorithm preserves graph

isomorphism class and canonical labeling. Figure 3 shows an
example of ordered labeling.

According to Figure 1, after generating ordered labeling
for subgraphs and dumping them to a file on external
storage, we have a file containing pairs of ordered labels and
their frequencies. Afterwards, we use the nauty algorithm
to generate a canonical label of each ordered label. Having
a file containing canonical labels and frequencies for each
subgraph, first we sort the file by canonical labels using
parallel external merge sort algorithm and then, we traverse
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Input: A subgraph G represented with its adjacency matrix M
Output: A binary string of length [V(G)|” as the ordered labeling for G
(1) let L be alist of vertices, and initially L = &
(2) for each vertex v € V(G) do:
(a) insert vto L
(3) sort L by degree of each vertex
(4) let Lookup be a lookup table and Lookup[x] as the value associated to x.
(5) for each vertex v € L do:
(a) set Lookup[v] equal to rank of vin L
(6) let N be a binary matrix of size M filled with zeros
(7) for each M, ;in M do: //A,; ; denotes the element of matrix A in row i and column j
(@)if M;; = 1 then set N0 ookuplj) 10 1
(8) return concatenation of rows of N
ALGORITHM 4: Ordered labeling algorithm.
Ordered labeling phase Canonical labeling phase 5 1 3
After ordered labehng
Gecrllera(tie ] Eliminate Gener.ate1 Sort Eliminate
?arb eelri xe1 o duplicates Clzg(e)lril;f; labels ” duplicates
6

FIGURE 1: Two-phase isomorphism detection.

(A subgraph is found ) Yes

Add the generated label
to set of known labels

and update frequencies
if needed

Generate ordered|
labeling

Size of the set
exceeds memory
limit

There are more
subgraphs

Yes No
N +
Spill the labels set Spill the labels set to

to external memory external memory

FIGURE 2: Generating ordered labeling for subgraphs.

the sorted file and detect duplicate canonical labels and
merge frequencies of duplicate labels. At last, we have unique
canonical labels and their frequencies, that is, nonisomorphic
subgraphs and their frequencies.

4.1. Complexity Analysis. During the ordered labeling heuris-
tic we perform O (k*) lookups, assuming k as the size of the
subgraph. Hence, if we use a data structure like hash table that
provides O(1) expected lookups, then the time complexity
of the ordered labeling algorithm would be O (k*) which is
far better than traditional canonical labeling algorithms that
have time complexity of O(k!).

FIGURE 3: An example of ordered labeling.

For enumeration of subgraphs of size k, whether isomor-
phism detection is done or not, we need to enumerate all
subgraphs of size k. In the worst case, for a complete input
graph of size n, the number of induced subgraphs of size k
is C(n, k). On average, for a general input graph of size #,
the number of subgraphs of size k should be exponential [4].
Hence, if we assume « as the number of subgraphs of size k, 8
as the number of isomorphic classes for subgraphs, and p as
the number of processors, generating ordered labeling of all
subgraphs needs O(a-k*/ p) operations, eliminating duplicate
ordered labels needs execution of standard parallel merge
sort algorithm which has complexity of O(f - log 8/p), and
applying nauty on unique ordered labels needs O(f3 - k!/p).
Hence, the overall time complexity of Subenum is O(a-k*/ p+
B-log 3/ p + B.k!/p) which is far more better than other tools
that use nauty directly which have complexity of O(« - k!),
because f is smaller than « [3, 4].

5. Experimental Results

In order to evaluate the performance and effectiveness of
Subenum, we performed various experiments on different
real-world graphs. For this purpose, we selected some well-
known graphs from various fields like social networks, biol-
ogy, communication, web graphs, and peer-to-peer networks.
We have used eight different graphs: Elegans (neuronal
network of Caenorhabditis elegans [37]), Jazz (network of
jazz musicians [38]), School (face to face contact patterns
in a primary school [39]), Vidal (proteome-scale map of
human binary protein-protein interactions [40]), Gnutella
(structure of Gnutella p2p network from August 31, 2002
[41]), Slash (slashdot social network from February 2009
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TaBLE 1: The properties of graphs used in experiments.

Elegans Jazz School Vidal Gnutella Slash Tweet Notre
Number of vertices 297 198 238 3,133 62,586 82,168 81,306 325,729
Number of edges 2,345 2,742 5,539 6,726 147,892 948,464 1,768,149 1,497,134
avg (deg.) 14.46 27.69 46.54 4.10 4.72 48.77 38.21 6.77
o (deg.) 12.94 17.41 19.85 6.79 5.70 19.81 67.93 42.87
TaBLE 2: The effectiveness of ordered labeling heuristic for subgraph isomorphism detection.
Subgraph Size
3 4 5 6 7
Number of subgraphs 47,322 1,394,259 43,256,069 1,309,307,357 37,818,052,163
Elegans Number of ordered labels 20 552 24,745 961,476 31,104,089
Number of nonisomorphic subgraphs 13 197 7,072 286,376 9,584,962
Number of subgraphs 67,414 1,833,618 49,500,654 1,266,953,062 30,166,157,456
Jazz Number of ordered labels 5 45 862 32,493 2,291,205
Number of nonisomorphic subgraphs 4 24 267 5,647 237,008
Number of subgraphs 205,796 8,581,352 348,596,925 13,140,615,595 451,141,199,919
School Number of ordered labels 5 45 862 32,515 2,409,520
Number of nonisomorphic subgraphs 4 24 267 5,647 237,319
Number of subgraphs 86,715 2,161,170 62,607,036 1,901,854,904 58,919,388,890
Vidal Number of ordered labels 42 766 18,201 411,148 8,637,628
Number of nonisomorphic subgraphs 3 24 267 4,909 97,094
Number of subgraphs 1,564,126 23,646,400 449,446,489 9,806,726,769 234,415,296,091
Gnutella Number of ordered labels 7 70 933 12,787 170,594
Number of nonisomorphic subgraphs 5 32 291 2,714 25,230

[42]), Tweet (social circles from Twitter [43]), and Notre (web
graph of Notre Dame [44]). Main properties of these graphs
are tabulated in Table 1. The first four graphs are small; for
example, they have less than 10,000 vertices and edges. On
the other hand, the latter four graphs are larger, for example,
more than tens of thousands of vertices and up to one million
edges.

The main goal of our experiments is to evaluate the
overall speed of Subenum compared to available state-of-
the-art algorithms. We divide the experiments into three
sections. First, we evaluate effectiveness of ordered labeling
heuristic for subgraph isomorphism detection. Then, we eval-
uate scalability and parallelism performance of Subenum on
multicore and multiprocessor machines. Finally, we compare
ultimate speed of Subenum to some of the available tools
for subgraph enumeration (FANMOD, Kavosh, G-Tries, and
FaSe) considering different input graphs and subgraph sizes.

We used two machines during our experiments. The first
machine was a four-core Intel i7-2600 CPU having 8 GB of
RAM and running Windows 7 64-bit edition. The second
machine had two 6-core Intel Xeon-E5620 CPUs and 32 GB
of RAM running Ubuntu 12.04. The 4-core i7 machine is
mainly used for comparison with other tools, while the
12-core Xeon machine is mainly used for parallelism and
scalability experiments. For better scalability, we used Azul
Zing JVM on the Xeon machine. Subenum is coded in the
Java programming language and its source code is available
via GitHub at https://github.com/shahrivari/subenum.

5.1. Effectiveness of Ordered Labeling Heuristic. For testing the
effectiveness of ordered labeling heuristic, we applied ordered
labeling on some of the input graphs considering subgraphs
of various sizes. The details about the effectiveness of ordered
labeling heuristic are given in Table 2.

Three numbers are reported per subgraph size and input
graph in Table 2: the number of subgraphs, the number of
ordered labels, and the number of nonisomorphic subgraphs.
As the numbers show, the numbers of ordered labels are
much smaller than the numbers of subgraphs and close to
the number of nonisomorphic subgraphs. This shows that
Subenum calls the expensive nauty algorithm significantly
fewer times (in orders of the number of ordered labels)
while other solutions call nauty per each found subgraph.
For example, considering the subgraphs of size 6 for Gnutella
graph, Subenum calls nauty 12,787 times, while other tools
call nauty more than 9 billion times.

5.2. Parallelism and Scalability. Subenum is inherently de-
signed for running on multicore and multiprocessor ma-
chines. Hence, an important performance factor is the scala-
bility of Subenum. That is to say, we want to know how much
speedup is gained when additional processors are available
to Subenum. For this purpose, we calculated the speed-
up of Subenum running with different counts of threads.
We performed both all-subgraph enumeration and noniso-
morphic subgraph enumeration. For calculating the speed-
up value, we divided the execution time of multithreaded
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4-core i7: counting all subgraphs

EEOQ

12-core Xeon: counting all subgraphs
4-core i7: enumerating nonisomorphic subgraphs
12-core Xeon: enumerating nonisomorphic subgraphs

FIGURE 4: Overall speedup values considering different graphs.

version to the execution time of the single threaded version.
Figure 4 shows an overall view of Subenum’s scalability using
multithreads. For this experiment, we executed Subenum
using different number of threads on all of the input graphs
and enumerated subgraphs of sizes 5 and 6 for the first
four graphs and subgraphs of size 3 and size 4 for the latter
four graphs. As Figure 4 shows, Subenum can reach a near-
linear speedup when additional threads of execution are used
until threads count reaches the number of available processor
cores. Note that the small improvements after increasing the
number of threads to values greater than number of cores are
due to HyperThreading feature of Intel CPUs which allows
each core to run two logical threads simultaneously. More
details of speedup values for each input graph are given in
Figure 5 which shows the increase of speedup values for each
input graph by using more threads.

5.3. Comparison to Other Solutions. The main goal of Sube-
num is to provide a faster solution for all-subgraph enumer-
ation and nonisomorphic subgraph enumeration problems
compared to available solutions. In this part of the paper,
we compare the performance of Subenum to the best known
avaijlable software for all-subgraph enumeration problem.
The comparison is made to Kavosh, FANMOD, gtrieScanner,
and FaSe. During the experiments of this section, we used the
4-core i7 machine.

All of the other solutions are sequential and comparing
Subenum which is a parallel solution to sequential solutions
is not very fair because Subenum can use all of the available
cores, while others just use a single core. For this reason,
in this experiment we used the 4-core i7 machine that has
fewer cores compared to the 12-core Xeon machine. For better
comparison, for every graph and subgraph size, we reported
the performance of Subenum when using a single core, too.
Note that Subenum is programmed in Java, while all of the
other solutions are programmed in C/C++ which has proven
to produce faster executable programs because of producing

12
11
10
9
8
5 7
T 6
&5
4
3
2
1
1 2 3 4 5 6 7 8 9 10 11 12
Number of threads
—o— Elegans —x— Gnutella

—&— Jazz ~e— Slash

—4— School —+— Tweet

—x— Vidal —-— Notre

FIGURE 5: The speedup for each graph using different number of
threads on 12-core Xeon machine.

native machine code in contrast to Java that compiles to byte
code which executes in the Java Virtual Machine (JVM).

For more clarity, we divided the input graphs into two
groups. The first group consists of smaller graphs: Elegans,
Jazz, School, and Vidal. The second group consists of larger
graphs: Gnutella, Slash, Tweet, and Notre. Since the graphs
of first group are smaller, larger subgraph sizes can be
enumerated, while for the second group, enumerating large
subgraphs like 8 can take months and even years.

Figure 6 gives an overall performance comparison of
different solutions for the first group of graphs. For this
experiment, we enumerated nonisomorphic subgraphs of
sizes 5 and 6 for each input graph and reported the average
normalized times. As Figure 6 shows, for all of the input
graphs Subenum is the fastest solution. When Subenum is
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FIGURE 6: Average normalized execution times for smaller input graph (subgraphs of sizes 5 and 6).

executed in sequential mode, FaSe is faster, but it does not
reach performance of Subenum when all of the 4 cores of the
i7 CPU are used. We believe that the better performance of
FaSe in the sequential mode is due to better performance of
C++ compared to Java. Using Figure 6, we can also conclude
that there is a great performance gap between Subenum and
FaSe compared to other solutions. The main reason behind
this issue is the better methods that Subenum and FaSe use to
deal with subgraph isomorphism detection.

More details are given in Table 3. The execution times
for each input graph and different subgraph sizes are given
for each solution. For all input graphs and subgraph sizes,
Subenum delivers the fastest execution time. An interesting
point is the failure of other tools when larger subgraphs are
enumerated. When large subgraphs (e.g., 8) are enumerated,
other tools crash due to memory issues. These cases are
denoted by “Out of Mem.” in Table 3. The main reason behind
this is the large count of nonisomorphic subgraphs. Since
other tools keep all nonisomorphic subgraphs in the main
memory, the main memory fills up and the tools crash. For
the cases in which the execution of a solution took more than
a week, we did not proceed and reported these cases by an
estimation like “>1 week”.

We performed the same experiments for the larger input
graphs, too. Kavosh and gtrieScanner failed to load all of the
graphs. Inspecting their code shows that they use a Boolean
matrix for storing edges. Hence, they need O(v*) space,
considering v as the number of vertices. FaSe can just handle
the Gnutella and Slash graphs and fails due to insufficient
memory for the rest of the input graphs. FANMOD performs
better in handling large graphs. However, it is much slower
than Subenum and FaSe. The details of execution times are
given in Table 4.

6. Conclusion and Further Work

The number of both isomorphic and nonisomorphic sub-
graphs of a given graph grows exponentially when the
size of input graph or the subgraphs to be enumerated is
increased. Hence, the only available solution for accelerating
all-subgraph enumeration problem is to use parallel and
distributed systems. We presented a new parallel solution,
named Subenum, for the all-subgraph enumeration problem
on multicore and multiprocessor systems. In contrast to
available parallel solutions that are designed for execution
on cluster computing systems, Subenum is designed for
faster execution on commodity multicore and multiprocessor
desktop and workstation systems.

The novelties of Subenum can be summarized in three
points. First, we designed a new parallel subgraph enumer-
ation algorithm named PSE that provides a load-balanced
and parallel procedure suited for subgraph enumeration on
multicore and multiprocessor systems. Second, we offered
a new, simple, and polynomial heuristic for subgraph iso-
morphism detection problem and we showed that it is very
effective for pruning candidate subgraphs. And lastly, using
a parallel external sorting solution we enabled Subenum to
enumerate nonisomorphic subgraphs even when they are so
large that they do not fit in the main memory. Our practical
experiments on different real-world input graphs showed
that Subenum is a scalable parallel solution and can easily
outperform the fastest available tools like FANMOD and
Kavosh on commodity multicore machines.

For further work, we plan to develop a distributed
subgraph enumeration solution using the MapReduce pro-
gramming model and the Hadoop framework. We have done
most of the work and the preliminary results are encouraging.
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TaBLE 3: The execution times of different tools for small graphs in seconds.
Tool Subgraph size
5 6 7 8
Subenum 1.7 39 1,175 37,993
Serial Subenum 42 130 4,553 147,806
FANMOD 55.2 2,453 85,465 Out of Mem.
Elegans
Kavosh 53.1 3,285 119,286 Out of Mem.
gtrieScanner 52.7 3,233 Out of Mem. Out of Mem.
FaSe 2.2 81 Out of Mem. Out of Mem.
Subenum 1.7 40 1,051 29,216
Serial Subenum 5.3 145 4,059 111,876
Jazz FANMOD 46.3 1,578 49,660 Out of Mem.
Kavosh 45.6 1,611 50,310 Out of Mem.
gtrieScanner 43.7 1,649 Out of Mem. Out of Mem.
FaSe 2.7 84 2,663 Out of Mem.
Subenum 8.8 285 17,062 >1 month
Serial Subenum 325 1,157 68,326 >1 month
School FANMOD 604 27,230 >1 week Out of Mem.
Kavosh 405 21,085 >1 week Out of Mem.
gtrieScanner 399 19,554 >1 week Out of Mem.
FaSe 20 954 42,156 Out of Mem.
Subenum 1.9 52 1,756 61,374
Serial Subenum 5.7 181 6,851 238,449
Vidal FANMOD 76 3,239 147,369 >1 month
Kavosh 76 3,016 143,159 >1 month
gtrieScanner 82 3,720 197,432 >1 month
FaSe 3.2 124 3,780 Out of Mem.
TABLE 4: The execution times of different tools for large graphs in seconds.
Tool Subgraph size
4 5 6 7
Subenum 2.3 30 687 19,288
Serial Subenum 11.9 153 3,237 87,796
FANMOD 15 442 11,715 324,152
Gnutella
Kavosh Out of Mem. Out of Mem. Out of Mem. Out of Mem.
gtrieScanner Out of Mem. Out of Mem. Out of Mem. Out of Mem.
FaSe 3.0 49 1,108 29,423
Subenum 1,040 460,928 >1 year >1 year
Serial Subenum 3,963 >1 week >1year >1year
Slash FANMOD 67,047 >1 month >1 year >1 year
Kavosh Out of Mem. Out of Mem. Out of Mem. Out of Mem.
gtrieScanner Out of Mem. Out of Mem. Out of Mem. Out of Mem.
FaSe 2,373 >1 week >1 year >1 year
Subenum 3,791 >1 month >1 year >1 year
Serial Subenum 14,671 >1 month >1 year >1 year
Tweet FANMOD Out of Mem. Out of Mem. Out of Mem. Out of Mem.
Kavosh Out of Mem. Out of Mem. Out of Mem. Out of Mem.
gtrieScanner Out of Mem. Out of Mem. Out of Mem. Out of Mem.
FaSe Out of Mem. Out of Mem. Out of Mem. Out of Mem.
Subenum 23,273 >1 month >1year >1year
Serial Subenum 82,833 >1 month >1year >1year
Notre FANMOD 451,156 >1 year >1 year >1 year
Kavosh Out of Mem. Out of Mem. Out of Mem. Out of Mem.
gtrieScanner Out of Mem. Out of Mem. Out of Mem. Out of Mem.
FaSe Out of Mem. Out of Mem. Out of Mem. Out of Mem.
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Another opportunity is using available powerful and low cost
Graphical Processing Units (GPU). Due to the complexity of
the problem, using parallel GPU based solutions like CUDA
may also bring a huge performance boost.
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