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The hydrodynamic dispersion equation was generalized using the concept of variational order derivative. The modified equation
was numerically solved via the Crank-Nicholson scheme. The stability and convergence of the scheme in this case were presented.
The numerical simulations showed that, the modified equation is more reliable in predicting the movement of pollution in the

deformable aquifers, than the constant fractional and integer derivatives.

1. Introduction

Anomalous dispersion phenomena are systematically prag-
matic in physics, chemistry, and biology fields [1-4]. To dis-
tinguish irregular diffusion phenomena, constant-order frac-
tional diffusion equations were initiated and have received
breathtaking success. Nonetheless, it has been recognized
that the constant order fractional dispersion equations are
not competent of typifying some multifaceted dispersion
processes, for example, dispersion process in inhomogeneous
or heterogeneous medium [5]. In addition, when we think
about dispersion process in porous medium, if the medium
structure or external field changes with time, in these cir-
cumstances, the constant-order fractional diffusion equation
model cannot be used to well illustrate such phenomenon
[6, 7]. This is the case of the groundwater pollution problem;
the medium through which the pollution is dispersing is
heterogeneous and change with time. Motionless in some
environmental science dispersion processes, the concentra-
tion of particles will determine the dispersion pattern (8,
9]. To solve the above problems, the variable-order (VO)
fractional dispersion equation models have been suggested
for use [10].

The leading edge work of VO operator can be traced to
Samko et al. by introducing the variable order integration and

Riemann-Liouville derivative in [10]. It has been acknowl-
edged as a prevailing modelling approach in the fields of
viscoelasticity [10], viscoelastic deformation [11], viscous
fluid [12], and anomalous transmission [13]. The problem
encounter in groundwater is that the geometry of the aquifer
in which the flow or the pollution takes place is not well
known. In addition, the geological formation through which
the contamination takes place changes in time and space.
These phenomena cannot therefore accurately be described
neither via the classical hydrodynamic dispersion equation
nor via the fractional version of hydrodynamic dispersion
equation. In this paper, we generalize the hydrodynamic
dispersion equation using the concept of the variable order
derivative.

2. Definition and Problem Formulation

The fractional operators (fractional derivatives and integrals)
refer to the differential and integral operators of arbitrary
order, and fractional differential equations refer to those
containing fractional derivatives. The former are the general-
ization of integer-order differential and integral operators and
the latter are the generalization of differential equations of
integer order. The operators of variable-order, which fall into



a more complex category, are the derivatives and integrals
whose orders are the functions of certain variables.
2.1. Variational Order Operator

Definition 1. Left and right Riemann-Liouville integrals of
variable order: let 0 < «(x,t) < 1 for all (x,t) € [a,b] and
f € L,[a,b]; then,

(t >a)
ey

al“ f () = jt . (x = X597 £ () dix,

_
[ (x, )]

is called the left Riemann-Liouville integral of variable frac-
tional order «(-, ), while

b

) £ (1) = J (£ = )"0 £ (x) dx,

1
, Tla (0] (<)

)

is referred to as the right Riemann-Liouville integral of
variable fractional order «(-, -).

Definition 2. Left and right Riemann-Liouville derivatives
of variable fractional order: let 0 < «a(x,t) < 1 for all
(x,t) € [a,b]. Ifal} ") f € AC[a, b], then, the left Riemann-
Liouville derivative of variable fractional order «(-, -) which is
given as

aDf ) f ()= 4 [ -0 ()

dt Jo T[1-a(x,1t)]
(t > a)
3)

is called the left Riemann-Liouville derivative of variable
fractional order «(:, -), while in the same line of idea we have
the following expression:

.. d b —o(x,t
tDZ(’)f(t)=5L I 0 W

—a(x,t)]
(t <b)
(4)

which is referred to as the right Riemann-Liouville derivative
of variable fractional order «(-, -).

Definition 3. Left and right Caputo derivatives of variable
fractional order: let 0 < «a(x,t) < 1 for all (x,t) € [a,b].
If aItl_“("‘) f € AC[a,b], then, the left Riemann-Liouville
derivative of variable fractional order «(-, ) is given as

aDIf (1) = j -0 L f s,

o
a T[1—a(x,t)]

(t > a)
€
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which is called the left Caputo derivative of variable fractional
order «f(-,-), while in the same line of idea we have the
following expression:

b
D0 = | a0 el s

c T-axn]

(t<b)
(6)

which is referred to as the right Caputo derivative of variable
fractional order «(, ).

However, this work we will throughout use the following
definition.

2.2. Problem Formulation. The concern here is the general-
ization of advection dispersion equation by including a possi-
ble effect of heterogeneity or variability of the aquifer into the
mathematical formulation. A one-dimensional model con-
sisting of an infinitely long homogeneous isotropic porous
medium with a steady state uniform flow with a seepage
velocity v is considered here. A particular chemical is injected
from one end of the model for a period of time ¢, such that the
input concentration varies as an exponential function of time.
The value of that chemical concentration at any time ¢ and
at a distance x from the injection boundary, allowing for the
decay and adsorption, may be obtained from the solution of
the following set of equations [14]; more details for this model
can be found in [15-18]. Consider

¥C_ % _
ox?  ox
Subject to the initial and boundary conditions:

C(x,0) =0, C(0,t) = ¢yexp (—at), C, (co,t) =0,
(8)

where D is the dispersion coeflicient, v is the seepage velocity,
Ris the retardation factor, A is the radioactive decay constant,
¢, is the initial concentration, « is a positive constant, and
f(x,t) is any source and sink in the system. However, in
the case of the groundwater pollution, the function f(x,t) is
always neglected because we assume that there is no source
and sink in the system under investigation. Therefore, in
our case we will set the function to be zero. In order to
include explicitly the medium structure or external field
changes with time into the mathematical formulation, we
replace the standard derivative operator by the variational
order derivative operator as follows:
’C oC a(t.x)
f(t)+D =7 Vs ARC =RDg"™ (). (9

Subject to the initial and boundary conditions:

C(x,0) =0, C(0,1) = ¢y exp (—yt), C, (co,t) =0,
(10)

oC
ARC = RE + f(xt). (7)

where «(t, x) is a continuous function in (0, 1] that can be
approximated from the field observation. Note that there is no
analytical solution available for this new equation; therefore,
our next concern is to establish the existence and uniqueness
of such solution. This will be done in the next section.
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3. Numerical Solution

Numerical methods acquiesce estimated solutions to the
overriding equation all the way through the discretization
of space and time. Inside the discredited problem domain,
the variable internal properties, boundaries, and stresses
of the system are approximated. Deterministic, distributed-
parameter, and numerical models can relax the rigid ideal-
ized conditions of analytical models or lumped-parameter
models, and they can therefore be more realistic and flexible
for simulating fields” conditions [19-29]. The finite difference
schemes for constant-order time or space fractional diffusion
equations have been widely studied [19-29]. Before perform-
ing the numerical methods, we assume that (9) has a unique
and sufficiently smooth solution. To establish the numerical
schemes for the above equation, we let x; = [h,0 < I < M,
Mh=1L,t; =kt,0 <k <N,and N7 =T, and we let & be the
step and 7 be the time size, and M and N be grid points.

3.1. Crank-Nicolson Scheme [30]. We bring in the Crank-
Nicolson idea as follows. At the outset, the discretization of
first- and second-order space derivative is stated as

oC _ l((C(xl+1’tk+1)_C(xl—l’tkﬂ))

ox 2 2 (h)
(11)
N (C (%1115 tk; (—hf (11 te) )) +OM),
o’C _ 1 C ot tin) = 2C (3 tar) + C (X115t
ox? 2 (h)*
N C (X415 t5) = 2C (x5, t5) + C (%115 1) ))
(h)?
o(rn*),
(12)
C= % (C (s tr) + C (2 11)) - (13)

The Crank-Nicolson scheme for the VO time fractional
diffusion model can be stated as follows:

ale (%1 tiear)
k+1

ot

k+1
T

m <C (%1 trsr) = C (x5 1)

+ 2 [C(xtin-) - C (o 1))

Jj=1

1— (x;ﬁl

- ])+om.
(14)

x[(j+1)

Now replacing (11), (12), (13), and (14) in (9) we obtain the
following:

blkJr1 [(C;(:ll - ZC;(H * C;(—l) + (Cﬁl - ch + C;(—l)]
+q . [(Cﬁrll - C;(+11) (Cﬁl - C;{—l)]

+dt (o - )

(15)
k . .
_ C;c+1 _ C;C + Z (C;c+1—z _ C;c—z) elj,k+1
i=1
K+
g lr(z (x;ﬁ-l)flkﬂ.
Here
frl k+1
e D T (2- o)
' 2R (h)?
kel k+1
k1 _ v F(Z % ) (16)
Cl - - 1~
2hR
of k+1
e ATH F(Z o )
! 2

l]k+1 (j+ - —aftt (j)l—oc, ’pzku _ elk+1 _elj,k+1 i=12,
»Nyand! = 1,2,..., M - 1. It is 1mportant to point out

that the sum term on the right-hand side of (15) automatically

vanishes when k = 0. Then, (15) can be reformulated as:

bll [(Cllﬂ - 2Cll—l + C?—l) + (C?H - 2C?—1 + C?—l)]
+ Cll [(Cll+1 - Cll—l) + (C;)H - C?—l)]
+ d,1 (Cl1 - C?) = T“}F(Z - ocll)fll,

for k=0,

17)

blk+1 [(Cﬁrll - ZC;CH + C;{—1) + (Cﬁl - ZC;C + C;C—1)]
+ ClkJr1 [(C;:l - ijll) + (Cﬁl - C;il)]
+dt (S - )

k

k+1 k k+1—i k—i\ Lk+1
=G -Cr+ Y (T ) e
i=1

+ T“;MF(Z = (x;m)flk“, for k > 1.
(18)

The above discretization can be rewritten in the following
matrix form.

3.2. Stability Analysis of the Crank-Nicolson Scheme. In this
section, we will analyze the stability conditions of the Crank-
Nicolson scheme for the generalized advection dispersion
equation.



Let {f = ¢ -
the point (x;, 1), (k = 1,2.
in addition ¢ = (1,52,...,(§4_1]T
chosen to be

Cl ; here Cl is the approx1mate solution at
, 1 =1,2,. —1) and

and the function F(x) is

. & ifxl—ﬁ<x3xl+ﬁ, 1=1,2,...,M -1
" (x) = . 7 2
0 1fL—E<x§L.

(19)

Then, the function {*(x) can be expressed in Fourier series as
follows:

_ i 8 (m)exp [Zinmk] )

m=-co L
(20)
1 ("« 2immx
O (x) = I L p (x)exp[ i ]dx.
It was established by [25] that
(SN LA )

Observe that, for all k,I > 1,0 < 1 — af*! < 1; in addition,
according to the problem in point, the velocity seepage v,
the dispersion coeflicient D, the retardation factor R, and the
radioactive decay constant A are positive constants. Then the

following properties of the coefficients ¢!, di*', pik“, and
bf*! can be established as follows.

1 d;‘”, bIkJrl are positive forall/ = 1,2...,M - 1.

(2) clkJrl is negative forall = 1,2...,M — 1.

3)0< eé.’k < elk <lforalll=1,2...,M-1.

@0 < pif < 1L, P = 1- M foralll =

,2...,M-1.

The error committed while approximating the solution of
the generalized advection dispersion equation with Crank-
Nicolson scheme can be presented as follows:

blk+1 [( lk++11 —chﬂ k+1) (Cl+1 chk +C1k,1)]
o)+ (G - 05)]

k+1 k+1
TG [( I+1
k+1 [ #k+1
+d, ( - )
k

k+1 C Z( k+1—i k—i)el,k+1
51 51 j

i=1

(22)

k+1
+Tocl F(Z 06;<+1) lkH-

If we assume that ¢ lk in (22) can be putin the delta-exponential
form as follows:

¢ = 8 exp [iglk], (23)
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where ¢ is a real spatial wave number, replacing (23) in (22)
we obtain

[1+4bllsin2(%h> 2d,'sin” ( )]
—> 2d151

h
[1 + 4b ¥ sin® <%

= [1 —4bl”ksin2<%h) -2

+Zp§k“5k] s, fork=1,2...,N-1.

(24)
Equation (24) can be written in the following form:
[1 - 4b/sin® (ph/2) - 2d,sin* (ph/2)] &,
) [1 + 4b}sin® (ph/2) - 2d, sin® (goh/Z)] ’

Ops1 = <[1 —4bll+ksin2<%h>_2dll+ksin2(%h>_ell,k+1] 5,

I,k+1 Lk+1
+ij O tey 6)

-1
X [1 + 4bll+ksin2 (%h) - 2dll+ksin2 (%hﬂ .

(25)

Our next concern here is to show thatforallk = 1,2,...,N-1
the solution of (25) satisfies the following condition:

|0k] < 6] (26)

To achieve this, we make use of the recurrence technique on
the natural number k.

For k = 1 and remembering that df*!, bf*!
foralll =1,2..., M — 1, then we obtain

|5 | [1 - 4blsln2 (ph/2) - 2dllsin2 ((ph/Z)]

[6o] [1 + 4b}sin® (ph/2) - 2d, sin’ (goh/Z)]

are positive

<1. (27)

Assuming that for m = 2,3,...,
then

|6k+1| = ‘([1 - 4bll+ksin2 (%h) _ ZlekSinZ (‘P?h> _ ell,k+1:| 8,

+Zp‘l7k+18k i + lk+180>

1k, 2 [ Ph 1k 2 [ Ph -
X [1+4bl+sin (7)—201, sin <7>] .

(28)

k the property is verified,
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Making use of the triangular inequality, we obtain

= (1 () g ()

Lk+1
+ 'ek 80|>

1+ 44 sin’ (%h> — 2d; *sin’ <%h>

[0l

+

kLo

K1
E Pit Ok-j
j=0

-1
X

Using the recurrence hypothesis, we have

(29)
|8k+1|
h h
< (( ’1 - 4b}+"sin2<“’—> - 2dll+ksin2<(P—) )
2 2 Z
j=0
h AV
1+ 4 Fsin? <q’—> — 2dsin? ((P—>| > 160l
2 2
|1+ 4b/*sin” (ph/2) - 2d,*sin® (ph/2)|
61| < ) 86!

|1 +4b/**sin? (ph/2) - 2d}*sin? (ph |
|1 < 18|

k-1

1k+1
ijﬂ

+

X

(30)

and this completes the proof.

3.3. Convergence Analysis of the Crank-Nicolson Scheme. If we
assume that c(x;,t,) (I = 1,2,...,M, k = 1,2...,N - 1)
is the exact solution of our problem at the point (x;,t;), by
letting wf = c(x;, 1) — Cf and w* = (0,wh,wh, ... wh )
and substituting this in (18), we obtain

b [(wi —2wp,)] +¢ [(win —wCpy)] +dy (w) = F,

for k=0,
k+1 k+1 k+1 k+1
b [(wm —2w o+ wp )]
k+1 k+1 k+1 k+1 k+1
+q [(wm —w, )] +d; W
k £ k—i\ Lk
=F oy Z (wl_')ej’ 1 fork> 1.
i=1
(31)

Here

Flk“ = d;‘“ (=C(xpte1) + C(xpty))

k
+ 2 (Clantii) g
i=1

+ 5 (=C (x50, 1)+ 2C (0 t)—C (321, 1))

- Cszrl (C (X415 1) = C (o1 1)) -
(32)

From (11), (12), and (14),

0C (% teyr)
ox

_ l C (xl+1’ tk+1) -C (xH, tk+1)
2 2 (h)

N C (%415 1) = C (%1 1)
2(h) ’

+V;

0*C (%1 tisr)
Ox?

_1 ( (C (115 ter1) = 2C (xp tery) + C (X 15 i)
2 h?

2
+h°V,

N (C (x4 1) = 2C (x5 t5) + C (%1215 1)) >
h? ’

"'c (% ter1)

P +1V5

k+1
T %

T T(2- o)

(C (xptir) = C (x5

k

+ 2 [C(a ten ) = C (xti )]

j=1

x [(j w1 (j)l_“’kﬂ] >

(33)

From the above we have that

k+1 k k
F<v (TH‘X’ + WY + b ) , (34)

where V|, V,, V;, and V are constants. Taking into account
Caputo type fractional derivative, the detailed error analysis
on the above schemes can refer to the work by Diethelm et al.
[31] and further work by Li and Tao [32].

k+1 k k -1
Lemma 4. ||u)k“||(>O < VE'YT 4 BAY 4 hTocl)(elj,kJrl)

is true for (k = 0,1,2...,N — 1) where ||u)k||OO =
maxlslsM_l(wk) and V is a constant. In addition,

1<I<M-1
== 35
max a*l,if 7> 1. (35)

. k+1 .
min o if t<l1
k+1 { Lo f
(0.4 =
1<IsM-1

This can be achieved via the recurrence technique on the natural
number k.



When k = 0, one has the following:

1 1 1
(Cz +b ) |wz+1'

1 1 1 1 1
+ (cl - 2b, ) |u)H| +d, |wl|

IN

1
wy

(36)

I

IN

k+1 k k -1
% (Tl“"l + W1+ h™ ) (e;’k“) .

: i+1 i i : -1
Now suppose that |w'™ |, < V(" +h*r™ +h‘r“’)(elj’”1) ,
i=1,...,N -2 Then

1+k k+1 k+1 k+1 k+1
|wl | < |bl [(wH1 —2w; T +wp )]
k+1 k+1 k+1 k+1, k+1
+q [(wm W, )] +d; W |

k+1 k+1 k+1 k+1 k+1 k+1
(bz +q )|w1+1 ' + (bz —-q )|wH |

+ (dgﬁl _ 2b[k+1) 'w;ﬁ-l'

k
k+1 k—i\ Lk+1
F + Z (wl ) €;

k

k+1 k—i| Lk+1
[F ]+ ) w7

IN

IN

i=1

IA

k
k+1 k k i
V(Tlml + T+ ht ) + E “w;C '“ elj’kJr1

k+1 k k
<V (" y KA h-r"")

% (elj,k+1 + ei),k+1 _ el',k+1)

el’
j

J

T+aftt 2_af K\ [ Lk+1Y [ Lk+1\7!
< V(T T Y+ bt ) (eg*" )(ejk+ )

k+1 k k -1
|wll+k| <V (T“"" + W21+ he™ ) (ei.’k”) )
(37)

This completes the proof.

Theorem 5. The Crank-Nicolson scheme is convergent, and
there exists a positive constant V such that

|Cfc —c(x,,tk)| < V(T+h+h2),
(38)
I=1,2,....M-1, k=12,...,N.
An interested reader can find the solvability of the Crank-
Nicholson scheme in the work done by [33]. Therefore, the
details of the proof will not be presented in this paper.

4. Numerical Simulations

In this section, we present the numerical solutions of the
following three cases.
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TABLE 1: Theoretical parameters.

Parameters D v R y G A

Values 2 2 1 0.86 100 1

FIGURE 1: Approximate solution of the modified equation as func-
tion of time and space.

The case where we assume that the variation of the
geological formation in which the contamination is migrating
can be modelled as function of time and space as a(x,1).
To include explicitly this variability in the mathematical
formulation, we reformulate the hydrodynamic dispersion
equation as follows:

2
D?)T(Z: - V?)_S — ARC = RD{™ (C),
a(x,t) = 1 —sin (xt), (39)

C(x,0) =0, C(0,t) = ¢y exp (—yt).
The theoretical parameters used in this simulation are given
in Table 1.

Figure 1 shows the approximate solution of the main
problem as function of space and time. Figure2 shows
the density plot of the approximate solution of the main
problem. Figure 3 shows the variation of the concentration
as function of time for a fixed space. Figures 1 and 3 show
the solution of the variation order advection and advection
equation, respectively, and Figure 2 shows the contour map
of variational order advection equation.

5. Discussion and Conclusions

Natural geological deposits with highly contrasting perme-
ability may form mobile and relatively immobile zones, where
the potential mass exchange between mobile and immobile
zones results in a wide time distribution for solute “trapping”
The transport process, groundwater, is, by its very nature,
always in contact with the matrix of an aquifer. There is
thus a possibility that the solutes may interact with the rock
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FIGURE 2: Solution of the modified equation seing as contour map.

C (x,t)

FIGURE 3: Solution of the standard equation.

matrix and one another. A true mathematical model for
groundwater pollution must therefore be able to account for
interactions between the dissolved solids and matrix of the
aquifer. It will thus be advantageous to look at the nature
of the interactions between dissolved solids and a porous
medium that may be expected in groundwater pollution.
Experimental evidence indicates that when a dissolved solid
comes in contact with the matrix of a porous medium it may
(a) pass through the medium with no apparent effect, (b)
be absorbed by the porous matrix, and (c) react with the
porous matrix and other substances dissolved in the fluid.
The dissolved solids encountered in porous flow are, for this
reason, often classified as conservative, nonconservative, and
reactive tracers. This behaviour implies that the quantity of
dissolved solids in a porous medium depends not only on the
flow pattern but also on the nature of the porous matrix and

the solution. These situations (a), (b), and (c) can be char-
acterized efficiently by the time-nonlocal model, including
the time variational order advection dispersion equation. If
the high-permeable material tends to form preferential flow
paths, such as the interconnected paleochannels observed
in alluvial depositional systems, then the solute transport
may show a heavy leading edge, which can be described
by the Variational Order Advection Dispersion Equation
(VOADE). Development of partial differential equations such
as the advection-dispersion equation (ADE) begins with
assumptions about the random behaviour of a single particle:
possible velocities it may experience in a flow field and the
length of time it may be immobilized. When assumptions
underlying the ADE are relaxed, a fractional ADE (FADE)
can arise, with a non-integer-order derivative on time or
space terms. Fractional ADEs are nonlocal; they describe
transport affected by hydraulic conditions at a distance. Space
fractional ADEs arise when velocity variations are heavy
tailed and describe particle motion that accounts for variation
in the flow field over the entire system [34]. But when the
geological formation, under which this pollution moves, is
changing in time and space, the VOADE can be used. Many
other uses of the variable-order derivatives can be found in
the following works [35-40].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgement

This work was partially financially supported by the Leon
Claude Fellowships of 2014 of South Africa. Adem Kilic-
man gratefully acknowledges that this research was par-
tially supported by the University Putra Malaysia under
the Grant Scheme GB-IBT having the project number GB-
IBT/2013/9420100.

References

(1] T. H. Solomon, E. R. Weeks, and H. L. Swinney, “Observation
of anomalous diffusion and Lévy flights in a two-dimensional
rotating flow;” Physical Review Letters, vol. 71, no. 24, pp. 3975-
3978, 1993.

[2] S.Bhalekar, V. Daftardar-Gejji, D. Baleanu, and R. Magin, “Frac-
tional Bloch equation with delay;” Computers & Mathematics
with Applications, vol. 61, no. 5, pp. 1355-1365, 2011.

[3] R.L.Magin, Fractional Calculus in Bioengineering, Begell House
Publisher, Redding, Conn, USA, 2006.

[4] R. L. Magin, O. Abdullah, D. Baleanu, and X. J. Zhou, “Anoma-
lous diffusion expressed through fractional order differential
operators in the Bloch-Torrey equation,” Journal of Magnetic
Resonance, vol. 190, no. 2, pp- 255-270, 2008.

[5] A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, “Fractional
diffusion in inhomogeneous media,” Journal of Physics, vol. 38,
no. 42, pp. L679-L684, 2005.



(6]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

E Santamaria, S. Wils, E. de Schutter, and G. J. Augustine,
“Anomalous diffusion in Purkinje cell dendrites caused by
spines,” Neuron, vol. 52, no. 4, pp. 635-648, 2006.

H. Sun, W. Chen, and Y. Q. Chen, “Variable-order fractional dif-
ferential operators in anomalous diffusion modeling,” Physica
A, vol. 388, no. 21, pp- 4586-4592, 2009.

H. Sun, Y. Q. Chen, and W. Chen, “Random-order fractional
differential equation models;” Signal Processing, vol. 91, no. 3,
pp. 525-530, 2011.

Y. Q. Chen and K. L. Moore, “Discretization schemes for
fractional-order differentiators and integrators,” IEEE Transac-
tions on Circuits and Systems I, vol. 49, no. 3, pp. 363-367, 2002.

S. Umarov and S. Steinberg, “Variable order differential equa-
tions with piecewise constant order-function and diffusion with
changing modes,” Zeitschrift fiir Analysis und ihre Anwendun-
gen, vol. 28, no. 4, pp. 431-450, 2009.

B. Ross and S. Samko, “Fractional integration operator of
variable order in the Holder spaces H**))” International Journal
of Mathematics and Mathematical Sciences, vol. 18, no. 4, pp.
777-788,1995.

H. T. C. Pedro, M. H. Kobayashi, J. M. C. Pereira, and C. F.
M. Coimbra, “Variable order modeling of diffusive-convective
effects on the oscillatory flow past a sphere,” Journal of Vibration
and Control, vol. 14, no. 9-10, pp. 1659-1672, 2008.

D. Ingman and J. Suzdalnitsky, “Application of differential
operator with servo-order function in model of viscoelastic
deformation process,” Journal of Engineering Mechanics, vol. 131,
no. 7, pp. 763-767, 2005.

R. W. Cleary and M. J. Ungs, Groundwater Pollution and Hydrol-
ogy. Mathematical Models and Computer Programs, vol. 08540,
Water Resources Programs, Princeton University, Princeton,
NJ, USA, 1978.

M. T. van Genuchten and W. J. Alves, “Analytical solutions of
one dimensional convective-dispersive solute transport equa-
tions,” United States Department of Agriculture, no. 1661, 1982.

D. K. Jaiswal, A. Kumar, N. Kumar, and R. R. Yadav, “Analytical
solutions for temporally and spatially dependent solute dis-
persion of pulse type input concentration in one-dimensional
semi-infinite media,” Journal of Hydro-Environment Research,
vol. 2, no. 4, pp. 254-263, 2009.

D. K. Jaiswal, A. Kumar, N. Kumar, and M. K. Singh, “Solute
transport along temporally and spatially dependent flows
through horizontal semi-infinite media: dispersion propor-
tional to square of velocity,” Journal of Hydrologic Engineering,
vol. 16, no. 3, pp- 228-238, 2011.

R. R. Yadav, D. K. Jaiswal, and G. Gulrana, “Two-dimensional
solute transport for periodic flow in isotropic porous media: an
analytical solution,” Hydrological Processes, vol. 26, no. 22, pp.
3425-3433, 2012.

A. Atangana and S. C. Oukouomi Noutchie, “Stability and con-
vergence of a time-fractional variable order Hantush equation
for a deformable aquifer,” Abstract and Applied Analysis, vol.
2013, Article ID 691060, 8 pages, 2013.

Y. Zhang, “A finite difference method for fractional partial
differential equation,” Applied Mathematics and Computation,
vol. 215, no. 2, pp. 524-529, 2009.

C. Tadjeran, M. M. Meerschaert, and H. P. Scheffler, “A second-
order accurate numerical approximation for the fractional

diffusion equation,” Journal of Computational Physics, vol. 213,
no. 1, pp. 205-213, 2006.

(22]

(23]

[24

[26]

(27]

(30]

(31]

(32]

(33]

(34]

[37]

(38]

Mathematical Problems in Engineering

M. M. Meerschaert and C. Tadjeran, “Finite difference approx-
imations for fractional advection-dispersion flow equations,”
Journal of Computational and Applied Mathematics, vol. 172, no.
1, pp. 65-77,2004.

W. H. Deng, “Numerical algorithm for the time fractional
Fokker-Planck equation,” Journal of Computational Physics, vol.
227, no. 2, pp. 1510-1522, 2007.

C.P.Li, A. Chen, and J. Ye, “Numerical approaches to fractional
calculus and fractional ordinary differential equation,” Journal
of Computational Physics, vol. 230, no. 9, pp. 3352-3368, 2011.

C. M. Chen, F. Liu, I. Turner, and V. Anh, “A Fourier method
for the fractional diffusion equation describing sub-diffusion,”
Journal of Computational Physics, vol. 227, no. 2, pp. 886897,
2007

S. B. Yuste and L. Acedo, “An explicit finite difference method
and a new von Neumann-type stability analysis for fractional
diffusion equations,” SIAM Journal on Numerical Analysis, vol.
42, no. 5, pp. 1862-1874, 2005.

I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B. M.
Vinagre Jara, “Matrix approach to discrete fractional calculus.
I1. Partial fractional differential equations,” Journal of Compu-
tational Physics, vol. 228, no. 8, pp. 3137-3153, 2009.

A. Atangana, “On the solution of an acoustic wave equation with
variable-order derivative loss operator,” Advances in Difference
Equations, vol. 2013, article 167, 2013.

R. Lin, E Liu, V. Anh, and I. Turner, “Stability and conver-
gence of a new explicit finite-difference approximation for the
variable-order nonlinear fractional diffusion equation,” Applied
Mathematics and Computation, vol. 212, no. 2, pp. 435-445,
20009.

J. Crank and P. Nicolson, “A practical method for numerical
evaluation of solutions of partial differential equations of the
heat-conduction type,” vol. 43, pp. 50-67, 1947.

K. Diethelm, N.J. Ford, and A. D. Freed, “Detailed error analysis
for a fractional Adams method,” Numerical Algorithms, vol. 36,
no. 1, pp. 31-52, 2004.

C. P. Li and C. X. Tao, “On the fractional Adams method,”
Computers & Mathematics with Applications, vol. 58, no. 8, pp.
1573-1588, 20009.

M. Cui, “Compact finite difference method for the fractional
diffusion equation,” Journal of Computational Physics, vol. 228,
no. 20, pp. 7792-7804, 2009.

A. Atangana, A generic assessment of waste disposal at Douala
city: principle, practices and uncertainties [Ph.D. thesis], Univer-
sity of the Free State South Africa, Bloemfontein, South Africa,
2012.

D. Valério and J. S4& da Costa, “Variable-order fractional
derivatives and their numerical approximations,” Advances in
Fractional Signals and Systems, vol. 91, no. 3, pp. 470-483, 2011.

D. Valério, G. Vinagre, J. Domingues, and J. Sd da Costa,
“Variable-order fractional derivatives and their numerical
approximations I—real orders,” in Symposium on Fractional

Signals and Systems, Caparica, 2009.

D. Valério, G. Vinagre, J. Domingues, and J. Sa da Costa,
“Variable-order fractional derivatives and their numerical
approximations II—complex orders,” in Symposium on Frac-
tional Signals and Systems, Caparica, 2009.

A. Razminia, A. F. Dizaji, and V. J. Majd, “Solution existence for
non-autonomous variable-order fractional differential equa-
tions,” Mathematical and Computer Modelling, vol. 55, no. 3-4,
pp. 1106-1117, 2012.



Mathematical Problems in Engineering

[39] S. Ma, Y. Xu, and W. Yue, “Numerical solutions of a variable-
order fractional financial system,” Journal of Applied Mathemat-
ics, vol. 2012, Article ID 417942, 14 pages, 2012.

[40] H. Sheng, H. Sun, Y. Chen, and T. Qiu, “Synthesis of multi-
fractional Gaussian noises based on variable-order fractional
operators,” Signal Processing, vol. 91, no. 7, pp. 1645-1650, 2011.



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




