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A class of SIRS epidemic model with stochastic perturbation and distributed delays is proposed and discussed. Some sufficient
conditions on the stability of the zero solution are established. Finally, concluding that, the white noise is favorable for the stability
of zero solution and the distributed time delays have no impact on the stability of zero solution.

1. Introduction

As an important class of mathematical models, stochastic
differential equations have been widely used in automatic
control, biological, chemical reaction engineering, medicine,
economics, demography, and many other scientific fields.
For better application, people have done a lot of work in
the stochastic differential equations and various particular
equations proposed for the study of stochastic differential
equations. Subsequently, a lot of the literature related to
this topic was published and extensive research results were
obtained. However, many of the problems have not been fully
investigated and deserve further study. As it is well known, in
recent years, the stochastic epidemic systems are extensively
studied. Many important and influential results have been
established and can be found in many articles and books.
Particularly, the stability of zero solutions for various type
stochastic epidemic systems has been extensively studied in
[1–7] and the references are cited therein.

In [8], the authors studied the following classical SIRS
epidemiological model with distributed time delay:

̇

𝑆 (𝑡) = −𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝑠) 𝐼 (𝑡 − 𝑠) d𝑠 − 𝜇1𝑆 (𝑡) + 𝑏 + 𝑘𝑅 (𝑡) ,

̇

𝐼 (𝑡) = 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝑠) 𝐼 (𝑡 − 𝑠) d𝑠 − (𝜇2 + 𝜆) 𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 𝜆𝐼 (𝑡) − (𝜇3 + 𝑘) 𝑅 (𝑡) .

(1)

Individual are susceptible, then infectious, recovered with
temporary immunity, and then susceptible again when the
immunity is lost. Then parameter 𝑏 > 0 is the rate of
susceptible individuals recruited into the population (either
by birth or immigration) and 𝜇1 > 0 is the natural death rate.
The parameter𝜆 > 0 describes the rate at which the infectious
population becomes recovered, and 𝑘 > 0 denotes the rate at
which the recovered population loses immunity.The positive
constant 𝛽 > 0 is the average number of contacts per infective
per day. The nonnegative constant ℎ is the time delay. 𝑓(𝑠)
is the fraction of vector population for which the time taken
to become infectious, and it is assumed to be a nonnegative
function on [0, ℎ] as density function and satisfies∫ℎ

0
𝑓(𝑠)d𝑠 =

1. For detailed biological background, we refer to [8, 9].
In [8], the authors derived the disease-free equilib-

rium 𝑃

0
(𝑆

0
, 0, 0) and the basic reproductive number 𝑅0 =

(𝛽𝑏/𝜇1(𝜆+𝜇2)) of system (1), where 𝑆0 = (𝑏/𝜇1),𝛽 is the trans-
mission coefficient, and 1/(𝜆 + 𝜇2) is the average residence
time in the infectious individuals class. By straightforward
computations, it can be seen that, for 𝑅0 > 1, system (1)
has a unique endemic equilibrium state 𝑃∗(𝑆∗, 𝐼∗, 𝑅∗) in the
interior ofR3

+
, where

𝑆

∗
=

𝑆

0

𝑅0

=

𝜆 + 𝜇2

𝛽

,

𝐼

∗
=

𝑘 + 𝜇3

𝜇1 (𝑘 + 𝜆 + 𝜇2)

(𝑏 − 𝜇1𝑆
∗
) ,
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𝑅

∗
= 𝜆

𝐼

∗

𝑘 + 𝜇3

.

(2)

On the other hand, white noise stochastic perturbations
around the positive endemic equilibrium of epidemicmodels
were considered in [1, 3]. In [1], the authors studied the
following stochastic differential equation model:

̇

𝑆 (𝑡) = −𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝑠) 𝐼 (𝑡 − 𝑠) d𝑠 − 𝜇1𝑆 (𝑡)

+ 𝑏 + 𝜎1 (𝑆 (𝑡) − 𝑆
∗
) 𝑤̇1 (𝑡) ,

̇

𝐼 (𝑡) = 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝑠) 𝐼 (𝑡 − 𝑠) d𝑠 − (𝜇2 + 𝜆) 𝐼 (𝑡)

+ 𝜎2 (𝐼 (𝑡) − 𝐼
∗
) 𝑤̇2 (𝑡) ,

̇

𝑅 (𝑡) = 𝜆𝐼 (𝑡) − 𝜇3𝑅 (𝑡) + 𝜎3 (𝑅 (𝑡) − 𝑅
∗
) 𝑤̇3 (𝑡) ,

(3)

where 𝑆∗, 𝐼∗, and 𝑅∗ are the positive points of equilibrium
for the corresponding deterministic system (1), constants
𝜎𝑖 (𝑖 = 1, 2) are the intensity of white noise, and 𝑤𝑖(𝑡) (𝑖 =
1, 2, 3) are the standard Wiener processes. In [1], the authors
used the Lyapunov functionals method and the sufficient
conditions for the stability of the zero solution are obtained
for system (3).

Likewise, in [3], the authors studied the same type
of stochastic perturbations and extended the deterministic
model for the epidemics induced by virulent phages on bac-
teria in marine environment, allowing random fluctuations
around the positive equilibrium, and concluded that the
solution of the corresponding stochastic model for phage
bacteria interaction was asymptotically mean square stable
both analytically and numerically.

Motivated by the aforementioned works, in this paper,we
consider the following SIRS epidemic model with stochastic
perturbation and distributed delays:

̇

𝑆 (𝑡) = −𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝑠) 𝐼 (𝑡 − 𝑠) d𝑠 − 𝜇1𝑆 (𝑡) + 𝑏 + 𝑘𝑅 (𝑡)

+ 𝜎1 (𝑆 (𝑡) − 𝑆
∗
) 𝑤̇1 (𝑡) ,

̇

𝐼 (𝑡) = 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝑠) 𝐼 (𝑡 − 𝑠) d𝑠 − (𝜇2 + 𝜆) 𝐼 (𝑡)

+ 𝜎2 (𝐼 (𝑡) − 𝐼
∗
) 𝑤̇2 (𝑡) ,

̇

𝑅 (𝑡) = 𝜆𝐼 (𝑡) − (𝜇3 + 𝑘) 𝑅 (𝑡) + 𝜎3 (𝑅 (𝑡) − 𝑅
∗
) 𝑤̇3 (𝑡) ,

(4)

where the constants 𝜎1, 𝜎2, and 𝜎3 are the intensity of
white noise 𝑤̇1(𝑡), 𝑤̇2(𝑡), 𝑤̇3(𝑡) and 𝑤1(𝑡), 𝑤2(𝑡), 𝑤3(𝑡) are
standard Wiener process defined on a complete probability
space (Ω,F, {F𝑡}𝑡≥0, 𝑃). The detailed definition of Wiener
process can be found in [2].

Let 𝑢1 = 𝑆 − 𝑆
∗
, 𝑢2 = 𝐼 − 𝐼

∗
, 𝑢3 = 𝑅 − 𝑅

∗, where𝑁∗ =
𝑆

∗
+ 𝐼

∗
+ 𝑅

∗. Then, system (4) is rewritten in the following
form:

𝑢̇1 = − (𝛽𝐼
∗
+ 𝜇1) 𝑢1 − 𝛽𝑆

∗
∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠 − 𝛽𝑢1

× ∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠 + 𝑘𝑢3 + 𝜎1𝑢1𝑤̇1,

𝑢̇2 = 𝛽𝐼
∗
𝑢1 − 𝛽𝑆

∗
𝑢2 + 𝛽𝑆

∗
∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠 + 𝛽𝑢1

× ∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠 + 𝜎2𝑢2𝑤̇2,

𝑢̇3 = 𝜆𝑢2 − (𝜇3 + 𝑘) 𝑢3 + 𝜎3𝑢3𝑤̇3.

(5)

It is easy to see that the stability of zero solution in system
(4) is equivalent to the stability of zero solution in system (5).
In order to obtain the sufficient conditions for the stability
of zero solution in system (5), we will consider the following
linear part of system (5):

𝑧̇1 = − (𝛽𝐼
∗
+ 𝜇1) 𝑧1 − 𝛽𝑆

∗
∫

ℎ

0

𝑓 (𝑠) 𝑧2 (𝑡 − 𝑠) d𝑠

+ 𝑘𝑧3 + 𝜎1𝑧1𝑤̇1,

𝑧̇2 = 𝛽𝐼
∗
𝑧1 − 𝛽𝑆

∗
𝑧2 + 𝛽𝑆

∗
∫

ℎ

0

𝑓 (𝑠) 𝑧2 (𝑡 − 𝑠) d𝑠 + 𝜎2𝑧2𝑤̇2,

𝑧̇3 = 𝜆𝑧2 − (𝜇3 + 𝑘) 𝑧3 + 𝜎3𝑧3𝑤̇3,

(6)

and the auxiliary system without delays

̇𝑦1 = − (𝛽𝐼
∗
+ 𝜇1) 𝑦1 + 𝑘𝑦3 + 𝜎1𝑦1𝑤̇1,

̇𝑦2 = 𝛽𝐼
∗
𝑦1 − 𝛽𝑆

∗
𝑦2 + 𝜎2𝑦2𝑤̇2,

̇𝑦3 = 𝜆𝑦2 − (𝜇3 + 𝑘) 𝑦3 + 𝜎3𝑦3𝑤̇3.

(7)

2. Preliminaries

Consider the following stochastic differential equation [2]:

d𝑥 (𝑡) = 𝑎 (𝑡, 𝑥𝑡) d𝑡 + 𝑏 (𝑡, 𝑥𝑡) d𝑤 (𝑡) , 𝑥0 = 𝜑 ∈ 𝐻, (8)

where function 𝑎(𝑡, 𝑥𝑡) defined in [𝑡0,∞) × 𝑅
𝑛 and 𝑏(𝑡, 𝑥𝑡)

is an 𝑛 × 𝑚 matrix, 𝑥𝑡(𝑠) = 𝑥(𝑡 + 𝑠) with 𝑠 ≤ 0, 𝑤(𝑡) is 𝑚-
dimensionalWiener process.We assume that 𝑥 = 0 is a trivial
solution of system (8), that is, 𝑎(𝑡, 0) = 0, 𝑏(𝑡, 0) = 0 for all 𝑡 ≥
𝑡0. Denote with𝐻 the space of 𝑓0-adapted random variables
𝜑, with 𝜑(𝑠) ∈ R𝑛, 𝑠 ≤ 0 and ‖𝜑‖

0
= sup

𝑠≤0
|𝜑(𝑠)|, ‖𝜑‖2

1
=

sup
𝑠≤0

E|𝜑(𝑠)|
2 (E is the mathematical expectation). Let 𝑉 :

[0,∞) × 𝐻 → 𝑅 be a functional defined for 𝑡 ≥ 0, 𝜑 ∈ 𝐻.
Generating operator 𝐿 of (8) is defined [2] by formula

𝐿𝑉 (𝑡, 𝜑) = lim
Δ→0

E𝑡,𝜑𝑉 (𝑡 + Δ, 𝑦𝑡+Δ) − 𝑉 (𝑡, 𝜑)

Δ

,

(9)
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where a scalar functional 𝑉(𝑡, 𝜑) is defined by 𝑡 ≥ 0, 𝜑 ∈ 𝐻,
and 𝑥(𝑠) is the solution of (8) by 𝑠 ≥ 𝑡 with initial function
𝑥𝑡 = 𝜑 ∈ 𝐻. Let us describe one class of functionals 𝑉(𝑡, 𝜑)
for which the operator 𝐿 can be calculated in final form. We
reduce the arbitrary functional 𝑉(𝑡, 𝜑), 𝑡 ≥ 0, 𝜑 ∈ 𝐻, to the
form 𝑉(𝑡, 𝜑) = 𝑉(𝑡, 𝜑(0), 𝜑(𝑠)), 𝑠 < 0 and define the function

𝑉𝜑 (𝑡, 𝑥) = 𝑉 (𝑡, 𝜑) = 𝑉 (𝑡, 𝑥, 𝑥 (𝑡 + 𝑠)) ,

𝑠 < 0, 𝜑 = 𝑥𝑡, 𝑥 = 𝜑 (0) = 𝑥 (𝑡) .

(10)

Let 𝐷 be the class of functionals 𝑉(𝑡, 𝜑) for which
functional 𝑉𝜑(𝑡, 𝑥) has two continuous derivations with
respect to 𝑥 and one bounded derivative with respect to 𝑡
for almost all 𝑡 ≥ 0. For functionals from 𝐷 the generating
operator 𝐿 of (8) is defined and is equal to the following:

𝐿𝑉 (𝑡, 𝑥𝑡) =

𝜕𝑉𝜑 (𝑡, 𝑥)

𝜕𝑡

+ 𝑎

󸀠
(𝑡, 𝑥𝑡)

𝜕𝑉𝜑 (𝑡, 𝑥)

𝜕𝑥

+

1

2

Tr[𝑏󸀠 (𝑡, 𝑥𝑡)
𝜕

2
𝑉𝜑 (𝑡, 𝑥)

𝜕𝑥

2
𝑏 (𝑡, 𝑥𝑡)] .

(11)

Definition 1. The zero solution of (8) is called mean square
stable if for any 𝜖 > 0, there exists a 𝛿 > 0 such that E|𝑥(𝑡)|2 <
𝜖 for any 𝑡 ≥ 0 provided that ‖𝜑‖2

1
< 𝛿.

Definition 2. The zero solution of (8) is called asymptot-
ically mean square stable if it is mean square stable and
lim𝑡→∞E|𝑥(𝑡)|

2
= 0.

Definition 3. The zero solution of (8) is called stable in
probability if for any 𝜖1 > 0 and 𝜖2 > 0, there exists 𝛿 > 0
such that solution 𝑥(𝑡) = 𝑥(𝑡, 𝜑) of (8) satisfies

P {𝑥 (𝑡, 𝜑) > 𝜖1} < 𝜖2 (12)

for any initial function 𝜑 ∈ 𝐻 such that P{|𝜑| ≤ 𝛿} = 1. Here
P{⋅} is the probability of the event enclosed in braces.

Theorem4 (see [2]). Let there exist the functional𝑉(𝑡, 𝜑) ∈ 𝐷
such that

𝑐1E|𝑥 (𝑡)|
2
≤ E𝑉 (𝑡, 𝑥𝑡) ≤ 𝑐2

󵄩

󵄩

󵄩

󵄩

𝑥𝑡

󵄩

󵄩

󵄩

󵄩

2

1
,

E𝐿𝑉 (𝑡, 𝑥𝑡) ≤ −𝑐3E|𝑥 (𝑡)|
2
, 𝑐𝑖 > 0.

(13)

Then zero solution of (8) is asymptotically mean square stable.

Theorem5 (see [2]). Let there exist the functional𝑉(𝑡, 𝜑) ∈ 𝐷
such that

𝑐1|𝑥 (𝑡)|
2
≤ 𝑉 (𝑡, 𝑥𝑡) ≤ 𝑐2

󵄩

󵄩

󵄩

󵄩

𝑥𝑡

󵄩

󵄩

󵄩

󵄩

2

0
, 𝐿𝑉 (𝑡, 𝑥𝑡) ≤ 0, 𝑐𝑖 > 0

(14)

for any function 𝜑 ∈ 𝐻 such that 𝑃{|𝜑| ≤ 𝛿} = 1, where 𝛿 > 0
is sufficiently small. Then the zero solution of (8) is stable in
probability.

3. Main Results

Toprove the zero solution of system (5) is stable in probability,
firstly, we will consider the linear part of system (5) and

the auxiliary system without delays. Next, we will consider
the auxiliary system without delays of system (5) and we
will prove that the zero solution of auxiliary system (7) is
asymptotic mean square stable.

Theorem 6. Suppose that

𝜎

2

1
< 2𝜇1, 𝜎

2

2
< 2𝜇2, (1 +

𝑞

𝑝

2
)𝜎

2

3
< 2𝜇3; (15)

then zero solution of system (7) is asymptotic mean square
stable.

Proof. Consider the following Lyapunov function:

𝑉1 = 𝑝𝑦
2

1
+ 𝑦

2

2
+ 𝑝

2
𝑦

2

3
+ 𝑞(𝑦1 + 𝑦2 + 𝑦3)

2
,

(16)

where 𝑝, 𝑞 are real positive constants to be chosen in the
following. From the Itô formula (11), we have the following:

𝐿𝑉1

= 2𝑝𝑦1
̇𝑦1 + 2𝑝𝑦2

̇𝑦2 + 2𝑝
2
𝑦3
̇𝑦3 + 2𝑞 (𝑦1 + 𝑦2 + 𝑦3)

× ( ̇𝑦1 +
̇𝑦2 +

̇𝑦3) + (𝑝 + 𝑞) 𝜎
2

1
𝑦

2

1
+ 2 (1 + 𝑞) 𝜎

2

2
𝑦

2

2

+ 2 (𝑝

2
+ 𝑞) 𝜎

2

3
𝑦

2

3

= 2 (𝑝𝑦1 + 𝑞 (𝑦1 + 𝑦2 + 𝑦3))

× (− (𝛽𝐼

∗
+ 𝜇1) 𝑦1 + 𝑘𝑦3) + 2 (𝑦2 + 𝑞 (𝑦1 + 𝑦2 + 𝑦3))

× (𝛽𝐼

∗
𝑦1 − 𝛽𝑆

∗
𝑦2) + 2 (𝑝

2
𝑦3 + 𝑞 (𝑦1 + 𝑦2 + 𝑦3))

× (𝜆𝑦2 − 𝜇3𝑦3 − 𝑘𝑦3)

+ (𝑝 + 𝑞) 𝜎

2

1
𝑦

2

1
+ (1 + 𝑞) 𝜎

2

2
𝑦

2

2
+ (𝑝

2
+ 𝑞) 𝜎

2

3
𝑦

2

3

+ 2𝑞𝜎1𝜎2𝑦1𝑦2 + 2𝑞𝜎2𝜎3𝑦2𝑦3

≤ +2𝑞𝜎1𝜎3𝑦1𝑦3 − 2𝑝𝑦
2

1
(𝛽𝐼

∗
+ 𝜇1) − 2𝑞 (𝑦1 + 𝑦2 + 𝑦3)

× (𝜇1𝑦1 + 𝛽𝑆
∗
𝑦2 − 𝜆𝑦2 + 𝜇3𝑦3) + 2𝛽𝐼

∗
𝑦1𝑦2 − 2𝛽𝑆

∗
𝑦

2

2

− 2𝑝

2
𝜇3𝑦
2

3
+ (𝑝 + 𝑞) 𝜎

2

1
𝑦

2

1

+ (1 + 𝑞) 𝜎

2

2
𝑦

2

2
+ 𝑝

2
𝜆(

𝑦

2

2

𝑝

+ 𝑝𝑦

2

3
) + (𝑝

2
+ 𝑞) 𝜎

2

3
𝑦

2

3

+ 2𝑞𝜎1𝜎2𝑦1𝑦2 + 2𝑞𝜎2𝜎3𝑦2𝑦3 + 2𝑞𝜎1𝜎3𝑦1𝑦3

= [−2𝑝𝛽𝐼

∗
− 2𝑝𝜇1 − 2𝑞𝜇1 + (𝑝 + 𝑞) 𝜎

2

1
]

+ 𝑦

2

2
[−2𝑞𝛽𝑆

∗
− 2𝛽𝑆

∗
+ (1 + 𝑞) 𝜎

2

2
]

+ 𝑦

2

3
[−2𝑞𝜇3 − 2𝑝

2
𝜇3 + 𝑝

2
𝜆𝑝 − 2𝑝

2
𝑘 + 𝑝

2
𝜎

2

3
]

+ 2𝑦1𝑦2 [−𝑞𝜇1 − 𝑞𝛽𝑆
∗
+ 𝑞𝜆 + 𝛽𝐼

∗
+ 𝑞𝜎1𝜎2]

+ 2𝑦2𝑦3 [−𝑞𝜇3 − 𝑞𝛽𝑆
∗
+ 𝑞𝜆 + 𝑞𝜎2𝜎3]

+ 2𝑦1𝑦3 [−𝑞𝜇3 − 𝑞𝜇1 + 𝑝𝑘 + 𝑞𝜎1𝜎3] + 𝑞𝜎
2

3
𝑦

2

3
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≤ 𝑦

2

1
(𝑝 + 𝑞) (𝜎

2

1
− 2𝜇1)

+𝑦

2

2
[(1+𝑞) (𝜎

2

2
− 2𝛽𝑆

∗
)+𝑝𝜆+2𝑞𝜆]

+ 𝑝

2
𝑦

2

3
(𝑝𝜆 − 2𝜇3 + 𝜎

2

3
)

+ 2𝑦1𝑦2 [𝛽𝐼
∗
+ 𝑞 (𝜎1𝜎2 − 𝜇1 − 𝛽𝑆

∗
+ 𝜆)]

+ 2𝑦1𝑦3 [𝑞 (−𝜇3 − 𝜇1 + 𝜎1𝜎3) + 𝑝𝑘]

+ 𝑞𝜎

2

3
𝑦

2

3
+ 2𝑦2𝑦3 [𝑞 (−𝜇3 − 𝛽𝑆

∗
+ 𝜆 + 𝜎2𝜎3)] .

(17)

Set

𝑞 = min{
𝑝𝑘

𝜇1 + 𝜇3 − 𝜎1𝜎3

,

𝛽𝐼

∗

𝜇1 + 𝛽𝑆
∗
− 𝜆 − 𝜎1𝜎2

} , (18)

and 𝜎2
3
< (1 + (𝑞/𝑝

2
))𝜎

2

3
< 2𝜇3. From the condition (15), it

follows

󵄨

󵄨

󵄨

󵄨

𝜎1𝜎2

󵄨

󵄨

󵄨

󵄨

≤

𝜎

2

1
+ 𝜎

2

2

2

< 𝜇1 + 𝛽𝑆
∗
− 𝜆,

󵄨

󵄨

󵄨

󵄨

𝜎2𝜎3

󵄨

󵄨

󵄨

󵄨

≤

𝜎

2

2
+ 𝜎

2

3

2

< 𝜇3 + 𝛽𝑆
∗
− 𝜆,

󵄨

󵄨

󵄨

󵄨

𝜎1𝜎3

󵄨

󵄨

󵄨

󵄨

≤

𝜎

2

1
+ 𝜎

2

3

2

< 𝜇1 + 𝜇3.

(19)

By this way, we obtain the following:

𝐿𝑉1 ≤ −𝑦
2

1
(𝑝 + 𝑞) (2𝜇1 − 𝜎

2

1
)

− 𝑦

2

2
[(1 + 𝑞) (2𝛽𝑆

∗
− 𝜎

2

2
) − 𝑝𝜆 − 2𝑞𝜆]

− 𝑝

2
𝑦

2

3
(2𝜇3 − (1 +

𝑞

𝑝

2
)𝜎

2

3
− 𝑝𝜆) .

(20)

Choose constant 𝑝 such that

𝑝 =

1

𝜆

min{2𝜇3 − (1 +
𝑞

𝑝

2
)𝜎

2

3
,

(1 + 𝑞) (2𝛽𝑆

∗
− 𝜎

2

2
− 2𝑞𝜆) } .

(21)

From (15), it follows that there exists 𝑐 > 0 such that 𝐿𝑉1 ≤
−𝑐|𝑦|

2, where 𝑦 = (𝑦1, 𝑦2, 𝑦3). FromTheorem 4, we have that
the zero solution of system (7) is asymptotic mean square
stable. This completes the proof.

In the second place, we will consider the linear part of
system (5) and will prove that the zero solution of system (6)
is asymptotic mean square stable.

Theorem 7. Suppose that

𝜎

2

1
< 2𝜇1, 𝜎

2

2
<

2𝑞𝜇2

1 + 𝑞

, (1 +

𝑞

𝑝

2
)𝜎

2

3
< 2𝜇3, (22)

where 𝑞 is defined in (18); then the zero solution of the system
(6) is asymptotic mean square stable.

Proof. Consider the following Lyapunov function;

𝑉2 = 𝑝𝑧
2

1
+ 𝑧

2

2
+ 𝑝

2
𝑧

2

3
+ 𝑞(𝑧1 + 𝑧2 + 𝑧3)

2
.

(23)

Let 𝐿 be the generating operator [1] of the system (6). We
compute the following:

𝐿𝑉2

= 2 (𝑝𝑧1 + 𝑞 (𝑧1 + 𝑧2 + 𝑧3))

× (− (𝛽𝐼

∗
+ 𝜇1) 𝑧1 + 𝑘𝑧3 − 𝛽𝑆

∗
∫

ℎ

𝑜

𝑓 (𝑠) 𝑧2 (𝑡 − 𝑠) d𝑠)

+ 2 (𝑧2 + 𝑞 (𝑧1 + 𝑧2 + 𝑧3))

× (𝛽𝐼

∗
𝑧1 − 𝛽𝑆

∗
𝑧2 + 𝛽𝑆

∗
∫

ℎ

𝑜

𝑓 (𝑠) 𝑧2 (𝑡 − 𝑠) d𝑠)

+ 2 (𝑝

2
𝑧3 + 𝑞 (𝑧1 + 𝑧2 + 𝑧3)) (𝜆𝑧2 − 𝜇3𝑧3 − 𝑘𝑧3)

+ (𝑝 + 𝑞) 𝜎

2

1
𝑧

2

1

+ (1 + 𝑞) 𝜎

2

2
𝑧

2

2
+ (𝑝

2
+ 𝑞) 𝜎

2

3
𝑧

2

3
+ 2𝑞𝜎1𝜎2𝑧1𝑧2

+ 2𝑞𝜎2𝜎3𝑧2𝑧3 + 2𝑞𝜎1𝜎3𝑧1𝑧3

≤ −𝑧

2

1
(𝑝 + 𝑞) (2𝜇1 − 𝜎

2

1
)

− 𝑧

2

2
[(1 + 𝑞) (2𝛽𝑆

∗
− 𝜎

2

2
) − 𝑝𝜆 − 2𝑞𝜆]

− 𝑝

2
𝑧

2

3
(2𝜇3 − 𝜎

2

3
− 𝑝𝜆) + 𝑞𝜎

2

3
𝑧

2

3
+ 2𝑧1𝑧2

× [𝛽𝐼

∗
+ 𝑞 (𝜎1𝜎2 − 𝜇1 − 𝛽𝑆

∗
+ 𝜆)]

+ 2𝑧1𝑧3 [𝑞 (−𝜇3 − 𝜇1 + 𝜎1𝜎3) + 𝑝𝑘]

+ 2𝑧2𝑧3 [𝑞 (−𝜇3 − 𝛽𝑆
∗
+ 𝜆 + 𝜎2𝜎3)]

+ 2𝛽𝑆

∗
(𝑧2 − 𝑝𝑧1) ∫

ℎ

0

𝑓 (𝑠) 𝑧2 (𝑡 − 𝑠) d𝑠.

(24)

Using (18), we obtain the following:

𝐿𝑉2 ≤ −𝑧
2

1
𝑞 (2𝜇1 − 𝜎

2

1
)

− 𝑧

2

2
[(1 + 𝑞) (2𝛽𝑆

∗
− 𝜎

2

2
) − 𝑝𝜆 − 2𝑞𝜆]

− 𝑝

2
𝑧

2

3
(2𝜇3 − 𝜎

2

3
− 𝑝𝜆) + 𝑞𝜎

2

3
𝑧

2

3

+ 𝑝𝛽𝑆

∗
[𝑧

2

1
+ ∫

ℎ

0

𝑓 (𝑠) 𝑧

2

2
(𝑡 − 𝑠) d𝑠]

+ 𝛽𝑆

∗
[𝑧

2

2
+ ∫

ℎ

0

𝑓 (𝑠) 𝑧

2

2
(𝑡 − 𝑠) d𝑠]
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= −𝑧

2

1
[𝑞 (2𝜇1 − 𝜎

2

1
) − 𝑝𝛽𝑆

∗
]

− 𝑧

2

2
[(1 + 𝑞) (2𝛽𝑆

∗
− 𝜎

2

2
) − 𝑝𝜆 − 2𝑞𝜆 − 𝛽𝑆

∗
]

− 𝑝

2
𝑧

2

3
(2𝜇3 − 𝜎

2

3
− 𝑝𝜆) + 𝑞𝜎

2

3
𝑧

2

3
+ 𝛽𝑆

∗
(1 + 𝑝)

× ∫

ℎ

0

𝑓 (𝑠) 𝑧

2

2
(𝑡 − 𝑠) d𝑠,

(25)

and we define a Lyapunov function as follows:

𝑉3 = 𝛽𝑆
∗
(1 + 𝑝)∫

ℎ

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑧

2

2
(𝜏) d𝜏 d𝑠. (26)

With the application of the multidimensional Itô’s formula
[1], we obtain the following:

𝐿𝑉3 = 𝛽𝑆
∗
(1 + 𝑝) 𝑧

2

2
(𝑡) − 𝛽𝑆

∗
(1 + 𝑝)∫

ℎ

0

𝑓 (𝑠) 𝑧

2

2
(𝑡 − 𝑠) d𝑠.

(27)

Finally, we define a Lyapunov function

𝑉4 = 𝑉2 + 𝑉3. (28)

By (22), (25), and (27), we have the following:

𝐿𝑉4 ≤ − 𝑧
2

1
[𝑞 (2𝜇1 − 𝜎

2

1
) − 𝑝𝛽𝑆

∗
]

− 𝑧

2

2
[2𝑞 (𝛽𝑆

∗
− 𝜆) − (1 + 𝑞) 𝜎

2

2
− 𝑝 (𝜆 + 𝛽𝑆

∗
)]

− 𝑝

2
𝑧

2

3
(2𝜇3 − (1 +

𝑞

𝑝

2
)𝜎

2

3
− 𝑝𝜆) ,

(29)

where

𝑝 = min{
𝑞 (2𝜇1 − 𝜎

2

1
)

𝛽𝑆

∗
,

2𝑞 (𝛽𝑆

∗
− 𝜆) − (1 + 𝑞) 𝜎

2

2

𝜆 + 𝛽𝑆

∗
,

2𝜇3 − (1 + (𝑞/𝑝
2
)) 𝜎

2

3

𝜆

} .

(30)

Therefore, there exists a 𝑐 > 0 such that 𝐿𝑉4 ≤ −𝑐|𝑧|

2,
where 𝑧 = (𝑧1, 𝑧2, 𝑧3). FromTheorem 4, we have that the zero
solution of system (6) is asymptotic mean square stable. This
completes the proof.

Theorem 8. Suppose that the conditions of Theorem 7 hold;
then the zero solution of the system (5) is stable in probability.

Proof. Consider the following Lyapunov function:

𝑉 = 𝑝𝑢

2

1
+ 𝑢

2

2
+ 𝑝

2
𝑢

2

3
+ 𝑞(𝑢1 + 𝑢2 + 𝑢3)

2

+ 𝛽𝑆

∗
(1 + 𝑝)∫

ℎ

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢

2

2
(𝜏) d𝜏 d𝑠.

(31)

Then, we obtain the following:

𝐿𝑉

= 2 (𝑝𝑢1 + 𝑞 (𝑢1 + u2 + 𝑢3))

× (− (𝛽𝐼

∗
+ 𝜇1) 𝑢1 + 𝑘𝑢3 − 𝛽𝑆

∗
∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠

−𝛽𝑢1∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡−𝑠) d𝑠)+2 (𝑢2+𝑞 (𝑢1+𝑢2+𝑢3))

× (𝛽𝐼

∗
𝑢1 − 𝛽𝑆

∗
𝑢2 + 𝛽𝑆

∗
∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠

+𝛽𝑢1 ∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠)

+ 2 (𝑝

2
𝑢3 + 𝑞 (𝑢1 + 𝑢2 + 𝑢3))

× (𝜆𝑢2 − 𝜇3𝑢3 − 𝑘𝑢3) + (𝑝 + 𝑞) 𝜎
2

1
𝑢

2

1

+ (1 + 𝑞) 𝜎

2

2
𝑢

2

2
+ (𝑝

2
+ 𝑞) 𝜎

2

3
𝑢

2

3

+ 2𝑞𝜎1𝜎2𝑢1𝑢2 + 2𝑞𝜎2𝜎3𝑢2𝑢3 + 2𝑞𝜎1𝜎3𝑢1𝑢3

+ (1 + 𝑝) 𝛽𝑆

∗
𝑢

2

2
− (1 + 𝑝) 𝛽𝑆

∗
∫

ℎ

0

𝑓 (𝑠) 𝑢

2

2
(𝑡 − 𝑠) d𝑠

≤ −𝑢

2

1
[𝑞 (2𝜇1 − 𝜎

2

1
) − 𝑝𝛽𝑆

∗
]

− 𝑢

2

2
[2𝑞 (𝛽𝑆

∗
− 𝜆) − (1 + 𝑞) 𝜎

2

2
− 𝑝 (𝜆 + 𝛽𝑆

∗
)]

− 𝑝

2
𝑢

2

3
(2𝜇3 − 𝜎

2

3
− 𝑝𝜆) + 2𝛽𝑢1 (𝑢2 − 𝑝𝑢1)

× ∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠.

(32)

From Theorem 5, there exists a sufficiently small 𝛿 > 0 such
that P{|𝑢2(𝑠)| < 𝛿} = 1. Then

2𝛽

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢1 (𝑢2 − 𝑝𝑢1) ∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2𝛽𝑢1𝑢2 ∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2𝛽𝑝𝑢

2

1
∫

ℎ

0

𝑓 (𝑠) 𝑢2 (𝑡 − 𝑠) d𝑠
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 2𝛽𝑢1𝑢2𝛿 + 2𝛽𝑝𝑢
2

1
𝛿 = 𝛽𝛿 (2𝑢1𝑢2 + 2𝑝𝑢

2

1
)

≤ 𝛽𝛿 (𝑢

2

1
(1 + 2𝑞) + 𝑢

2

2
) .

(33)

Therefore,

𝐿𝑉 ≤ −𝑢

2

1
[𝑞 (2𝜇1 − 𝜎

2

1
) − 𝑝𝛽𝑆

∗
− 𝛽𝛿 (1 + 2𝑞)]
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− 𝑢

2

2
[2𝑞 (𝛽𝑆

∗
− 𝜆) − (1 + 𝑞) 𝜎

2

2
− 𝑝 (𝜆 + 𝛽𝑆

∗
) − 𝛽𝛿]

− 𝑝

2
𝑢

2

3
(2𝜇3 − 𝜎

2

3
− 𝑝𝜆) .

(34)

Hence, for sufficiently small 𝛿 > 0, we obtain 𝐿𝑉 ≤ 0. From
Theorem 5, we have that the zero solution of system (5) is
asymptoticmean square stable.This completes the proof.

4. Conclusion

In this paper, we considered the SIRS epidemic model with
stochastic perturbation and distributed delays and some
sufficient conditions on the stability of the zero solution are
established. Further, we obtain that the white noise 𝜎𝑖 (𝑖 =
1, 2, 3) is favorable for the stability of zero solution and the
distributed time delays have no impact on the stability of
zero solution. The results obtained in this paper indicate that
suitable stochastic perturbation can maintain the stability of
zero solution.
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