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The aim of this work was to convert the Thiem and the Theis groundwater flow equation to the time-fractional groundwater flow
model. We first derived the analytical solution of theTheim time-fractional groundwater flow equation in terms of the generalized
Wright function. We presented some properties of the Laplace-Carson transform. We derived the analytical solution of the Theis-
time-fractional groundwater flow equation (TFGFE) via the Laplace-Carson transform method. We introduced the generalized
exponential integral, as solution of the TFGFE.This solution is in perfect agreement with the data observed from the pumping test
performed by the Institute for Groundwater Study on one of its borehole settled on the test site of the University of the Free State.
The test consisted of the pumping of the borehole at the constant discharge rate Q and monitoring the piezometric head for 350
minutes.

1. Introduction

Groundwater problem is perhaps one of the most difficult
real-world problems to be modelled into mathematical for-
mulation. To model this problem accurately, one must know
precisely the behavior of the medium through which the
water is moving. However, this medium through which the
flow occurs can change from one point to another, also
from one period to another. For example, the hydraulic
conductivity of an aquifer can differ from one direction to
another. Several scholars have intensively tried to propose
a better model that can be used to predict the movement
of water through the aquifer. However, their results still
present some lacks. Recently, It was revealed that real prob-
lems modelled via fractional order derivative present better
results when matching their mathematical representation
with experimental data. To test this, Botha and Cloot [1]
presented some good results by generalizing the groundwater
flow equation to the concept of fractional order derivatives. In
the same line of ideas, Atangana [2] examined an approximate
solution of the generalized groundwater flow equation via

the Frobenius method. The results obtained from his inves-
tigation showed better prediction. Recently, Atangana and
Botha further extended the fractional groundwater equation
to the concept of the fractional-variation order groundwater
[3]. They presented the stability and the convergence of the
numerical scheme via Crank-Nicolson method. Up to now,
there is no approximate or exact analytical mathematical
expression that can be used to describe the solution of
the fractional groundwater flow equation. Therefore, one
of the purposes of this work is to present some analytical
mathematical expression than can be used as approximate
solution of the time-fractional groundwater flow equation.

An aquifer test (or a pumping test) is conducted to eval-
uate an aquifer by “stimulating” the aquifer through constant
pumping and observing the aquifer’s “response” (drawdown)
in observation wells. Aquifer testing is a common tool that
hydrogeologists use to characterize a system of aquifers,
aquitards, and flow system boundaries. Aquifer tests are
typically interpreted by using an analytical model of aquifer
flow (the most fundamental being the Theis solution) to
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match the data observed in the real-world then assuming that
the parameters from the idealized model apply to the real-
world aquifer. In more complex cases, a numerical model
may be used to analyze the results of an aquifer test, but
adding complexity does not ensure better results. For the
most part frequently, an aquifer assessment is carried out by
propelling water out from one borehole at a fixed speed and
for as a minimum of 24 hours at the same time as cautiously
evaluating the water levels in the observed borehole. When
water is pumped from the pumping well, the pressure in the
aquifer that feeds that well declines. This decline in pressure
will show up as drawdown (change in hydraulic head) in an
observation well. Drawdown decreases with radial distance
from the pumping well and drawdown increases with the
length of time that the pumping continues. The aquifer
characteristics which are evaluated by most aquifer tests are
[4, 5] as follows.

(i) The hydraulic conductivity is the rate of flow of water
through a unit crosses sectional area of an aquifer at
a unit hydraulic gradient. In English units the rate
of flow is in gallons per day per square foot of cross
sectional area.

(ii) Specific storage or storativity being a measure of the
amount of water a confined aquifer will give up for a
certain change in head.

(iii) The transmissivity is the rate at which water is trans-
mitted through a unit thickness of an aquifer under
a unit hydraulic gradient. It is equal to the hydraulic
conductivity times the thickness of an aquifer.

The rest of this paper has been presented as follows. In
Section 1, we presented the background of the fractional
order derivative. We derived the analytical solution of the
Theim fractional groundwater flow equation in Section 3.
In Section 4, we presented the derivation of the Theis frac-
tional groundwater flow via the Laplace-Carson transform
method. We presented an alternative analytical solution of
the Theis fractional groundwater flow equation in terms
of the generalized exponential integral in Section 5. The
numerical comparisons with experimental data are presented
in Section 6 and the conclusion is in Section 7. We will start
with the background of the fractional derivative.

2. Background of the Fractional
Order Derivative

There exists the vast literature on different definitions of frac-
tional derivatives. The most popular ones are the Riemann–
Liouville and the Caputo derivatives [6–11]. Caputo’s defini-
tion has the form of
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(1)

For the case of the Caputo fractional order derivative, we have
the following definition:
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1

Γ (𝑛 − 𝛼)

× ∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑑
𝑛

𝑑𝑥𝑛
𝑓 (𝑡) 𝑑𝑡, 𝑛 − 1 ≤ 𝛼 ≤ 𝑛.

(2)
Each of the pervious fractional order derivatives presents
some advantages and disadvantages [6–10]. The Riemann-
Liouville derivative of a constant is not zero while Caputo
derivative of a constant is zero but demands higher conditions
of regularity for differentiability [6–10]: to compute the
fractional derivative of a function in the Caputo sense, we
must first calculate its derivative [11]. Caputo derivatives
are defined only for differentiable functions while functions
that have no first-order derivative might have fractional
derivatives of all orders less than one in the Riemann-
Liouville sense [12, 13]. Guy Jumarie has recentlymodified the
Riemann-Liouville derivative (see [14])
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(3)
The Caputo fractional derivative will be considered in this
work due to the applicability of the Caputo derivative in real-
world problems [15].

3. Thiem’ Groundwater Flow Equation

The Theim fractional groundwater flow equation is an
ordinary differential equation given in the following. The
equation describes the change in level of water as function
of distance during the pumping test [5]:

𝐷
𝛼

𝑟𝑟
Φ (𝑟) +

1

𝑟
Φ (𝑟) = 0, 1 < 𝛼 ≤ 2. (4)

Subject to the initial condition, 𝑄 = 2𝜋𝑇𝐷
𝑟
(Φ(𝑟
𝑏
)).

We will make use of the Laplace transform to derive
analytical solution of (4). Thus, multiplying on both sides
of (4) by 𝑟 and secondly applying the Laplace transform, we
obtain the following expression:

𝑑 [𝐿 (Φ) (𝑠)]

𝑑𝑠
+ (

𝛼

𝑠
+

1

𝑠𝛼
) (𝐿 (Φ) (𝑠))

=

𝑙

∑

𝑚=2

𝑑
𝑚
(𝑚 − 1) 𝑠

𝑚−2−𝛼

,

(5)

where 𝑑
𝑚
= 𝐷
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0
+ Φ(0

+

) (𝑚 = 2, . . . , 𝑙). Now, one can derive
the solution of the ordinary order differential equation with
respect to the Laplace transform of Θ(𝑠) = 𝐿(Φ(𝑟)):
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(6)
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with 𝑎
1
an arbitrary real constant that will be obtained via the

initial condition.We next expand the exponential function in
the integrand in a series, and using term-by-term integration,
we arrive at the following expression:
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(8)

Now, applying the inverse Laplace transform on Θ
1
(𝑠) and

using the fact that

𝑠
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we obtain
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with 𝑜Ψ
1
[⋅] the generalized Wright function [16] for 𝑝 =

1 and 𝑞 = 2. We next expand the exponential function
exp[−𝑠1−𝛼/(1 − 𝛼)] in power series; multiplying the resulting
two series; in addition of this if we consider the number
𝑏
𝑘
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The previous family of number possesses satisfies the follow-
ing recursive formula:
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which produces the explicit expression for 𝑏
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form of
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Now, having the previous expression on hand, we can derive
that
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However, remembering (9) with 𝛽 = (𝛼 − 1)𝑘 + 𝛼 + 1 −𝑚, we
can further derive the following expression forΦ∗
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or in the simplified version we have
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It follows that the solution of the fractional-Thiem ground-
water flow equation is in the form of
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In our case 𝑙 = 2.

4. Time-Fractional Theis Groundwater
Flow Equation

The easiest sweeping statement of subsurface water flow
equation, which while we are on the subject is in addition
in harmony in the midst of the real physics of the observed
fact, is to presume that water level is not in a balanced
state but momentary state. Theis (1935) [17] was the first to
develop a formula for unsteady-state flow that introduces
the time factor and the storativity. He noted that when a
well-penetrating extensive confined aquifer is pumped at a
constant rate, the influence of the discharge extends outward
with time. The rate of decline of head, multiplied by the
storativity and summed over the area of influence, equals the
discharge. The unsteady-state (orTheis) equation, which was
derived from the analogy between the flow of groundwater
and the conduction of heat, is perhaps the most widely used
partial differential equation in groundwater investigations:

𝑆𝐷
𝑡
Φ (𝑟, 𝑡) = 𝑇𝐷

𝑟𝑟
Φ (𝑟, 𝑡) +

1

𝑟
𝐷
𝑟
Φ (𝑟, 𝑡) . (19)
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The aforementioned equation is classified under parabolic
equation. To include explicitly the variability of the medium
through which the flow takes place, the standard version of
the partial derivative respect to time is replaced here with
time-fractional order derivative to obtain

𝑆𝐷
𝛼

𝑡
Φ (𝑟, 𝑡) = 𝑇𝐷

𝑟𝑟
Φ (𝑟, 𝑡) +

1

𝑟
𝐷
𝑟
Φ (𝑟, 𝑡) , 0 < 𝛼 ≤ 1

(20)

with initial condition Φ(𝑟, 0) = 0 and boundary condition
lim
𝑟→∞

Φ(𝑟, 𝑡) = 0, 𝑄 = 2𝜋𝑇𝜕𝑟Φ(𝑟
𝑏
, 𝑡), here 𝑇 is the

transmissivity of the aquifer, 𝑟
𝑏
is the ratio of the borehole,

and 𝑄 is the discharge rate, or the rate at which the water is
being taken out of the aquifer.

Some few integral transform operators have been inten-
sively used to solve some kind of ordinary and partial dif-
ferential equations. See, for instance, the Fourier transform,
the Laplace transform, the Mellin transform [18], and the
Sumudu transform [19–22]. Beside these integral operators,
there exists a similar operators called the Laplace-Carson
transform [23]; this operator has been neglected. However,
this operator has some properties that can be used to solve a
kind of ODE, PDE, FODE, and FPDE.The aim of this section
is therefore devoted to the discussion underpinning the
definition, properties of the Laplace-Carson transform, and
its application to the fractional groundwater flow equation.
We shall start with the definition and properties.

Definition 1. Let 𝑓(𝑥) be a continuous function over an
open interval (0,∞) such that its Laplace transform is 𝑛

time differentiable; then the Laplace-Carson transform 𝑓 is
defined as follows:

𝐿
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and the inverse Laplace-Carson transform is defined as
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(22)

where 𝐹(𝑠) is the Laplace transform of 𝑓(𝑥). Before we
continue, we shall prove that the previous definition is
indeed the inverse inverse Laplace-Carson. In fact, from the
definition of inverse Laplace-Carson of a function 𝑓(𝑥), we
have that

𝐿
𝑐
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𝑐
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It follows that
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𝐿
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𝑐
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(25)

Therefore, the inverse inverse Laplace-Carson is well defined.

5. Some Properties of
Laplace-Carson Transform

In this part of the section, we consider some of the properties
of the inverse Laplace-Carson that will enable us to find fur-
ther transform pairs {𝑓(𝑥), 𝐿

𝑐
(𝑠)}without having to compute

and consider the following:

(I) 𝐿
𝑐
[𝑠 + 𝑐] = 𝑀

𝑛
[𝑒
−𝑐𝑥

𝑓 (𝑥)] (26)

(II) 𝐿
𝑐
[𝑓 (𝑎𝑥)] (𝑠) =

1

𝑎
𝐿
𝑐
[
𝑠

𝑎
] (27)

(III) ∫
𝛼+𝑖∞
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𝑒
𝑠𝑥

𝐿
𝑐
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(IV) 𝐿
𝑐
[𝑎𝑓 (𝑥) + 𝑏𝑔 (𝑥)] (𝑠)

= [𝑎𝐿
𝑐
(𝑓 (𝑥)) + 𝑏𝐿

𝑐
(𝑔 (𝑥))] (𝑠)

(29)

(V) 𝐿
𝑐
[
𝑓 (𝑥)

𝑥
] (𝑠) = 𝐿 [𝑓 (𝑥)] (𝑠) (30)

(VI) 𝐿
𝑐
[𝑓 (𝑥) ∗ ℎ (𝑥)] (𝑠)

= − [
𝑑𝐹 (𝑠)

𝑑𝑠
𝐺 (𝑠) +

𝑑𝐺 (𝑠)

𝑑𝑠
𝐹 (𝑠)]

(31)

(VII) 𝐿
𝑐
[
𝑑
𝑛
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𝑑𝑥𝑛
] (𝑠)
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𝑛
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−
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𝑑
𝑘
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] .

(32)

Let us verify the previous properties. We shall start with (I),
by definition, we have the following:

𝐿
𝑐
[𝑒
−𝑐𝑥

𝑓 (𝑥)] = ∫

∞

0

[𝑥𝑒
−𝑐𝑥

𝑒
−𝑠𝑥

𝑓 (𝑥)] 𝑑𝑥

= ∫

∞
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[𝑥𝑒
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𝑐
[𝑠 + 𝑐]

(33)

and then the first property is verified.
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For (II) we have the following by definition:

𝐿
𝑐
[𝑓 (𝑎𝑥)] (𝑠)

= ∫

∞

0

[𝑥𝑒
−𝑥𝑠

𝑓 (𝑎𝑥)] 𝑑𝑥 = −
𝑑

𝑑𝑠
[𝐿 [𝑓 (𝑎𝑥)] (𝑠)] .

(34)

Now, using the property of the Laplace transform
𝐿[𝑓(𝑎𝑥)](𝑠) = (1/𝑎)𝐹(𝑠/𝑎), we can further obtain

𝐿
𝑐
[𝑓 (𝑎𝑥)] (𝑠) = −

𝑑

𝑑𝑠
[
1

𝑎
𝐹 (

𝑠

𝑎
)]

=
1

𝑎
(−1)

𝑑

𝑑𝑠
[𝐹 (

𝑠

𝑎
)] =

1

𝑎
𝐿
𝑐
[
𝑠

𝑎
]

(35)

and then, the property number (II) is verified.
For number (III), we have the following: Let 𝑔(𝑥) =

𝑥𝑓(𝑥); then

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

𝐿
𝑐
(𝑠) 𝑑𝑠 = ∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

[∫

∞

0

𝑒
−𝑥𝑠

𝑥𝑓 (𝑥) 𝑑𝑥] 𝑑𝑠

= ∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

[∫

∞

0

𝑒
−𝑥𝑠

𝑔 (𝑥) 𝑑𝑥] 𝑑𝑠.

(36)

By the theorem of inverse Laplace transform, we obtain

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

𝑀
𝑛
(𝑠) 𝑑𝑠 = 𝑔 (𝑥) = 𝑥𝑓 (𝑥) . (37)

Number (IV) and (V) are obvious to be verified. For number
(VI), we have the following by definition:

𝐿
𝑐
[𝑓 (𝑥) ∗ ℎ (𝑥)] (𝑠)

= ∫

∞

0

[𝑥𝑒
−𝑠𝑥

𝑓 (𝑥) ∗ ℎ (𝑥)]

= −
𝑑

𝑑𝑠
[𝐿 (𝑓 (𝑥) ∗ ℎ (𝑥)) (𝑠)] .

(38)

Now, using the property of Laplace transform of the convo-
lution, we obtain the following:

𝐿 (𝑓 (𝑥) ∗ ℎ (𝑥)) (𝑠) = 𝐹 (𝑠) ⋅ 𝐺 (𝑠) (39)

and then, using the property of the derivative for the product
of two functions, we obtain

𝐿
𝑐
[𝑓 (𝑥) ∗ ℎ (𝑥)] (𝑠) = −

𝑑

𝑑𝑠
[𝐹 (𝑠) ⋅ 𝐺 (𝑠)]

= − [
𝑑𝐹 (𝑠)

𝑑𝑠
𝐺 (𝑠) +

𝑑𝐺 (𝑠)

𝑑𝑠
𝐹 (𝑠)] .

(40)

And then, the property number (VI) is verified.
For number (VII), by definition, we have the following:

𝐿
𝑐
[
𝑑
𝑛

𝑓 (𝑥)

𝑑𝑥𝑛
] (𝑠) = ∫

∞

0

[𝑥𝑒
−𝑠𝑥

𝑑
𝑛

𝑓 (𝑥)

𝑑𝑥𝑛
] 𝑑𝑥

= −
𝑑

𝑑𝑠
[𝐿(

𝑑
𝑛

𝑓 (𝑥)

𝑑𝑥𝑛
) (𝑠)] .

(41)

Now, using the property of the Laplace transform,

𝐿(
𝑑
𝑛

𝑓 (𝑥)

𝑑𝑥𝑛
) (𝑠) = 𝑠

𝑛

𝐹 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝑛−𝑘−1

𝑑
𝑘

𝑓 (0)

𝑑𝑥𝑘
. (42)

Now, deriving the previous expression n-time, we obtain the
following expression:

−
𝑑

𝑑𝑠
[𝑠
𝑛

𝐹 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝑛−𝑘−1

𝑑
𝑘

𝑓 (0)

𝑑𝑥𝑘
]

= −[𝑛𝑠
𝑛−1

𝐹 (𝑠) + 𝑠
𝑛
𝑑𝐹 (𝑠)

𝑑𝑠

−

𝑛−2

∑

𝑘=0

(𝑛 − 𝑘 − 1) 𝑠
𝑛−𝑘−2

𝑑
𝑘

𝑓 (0)

𝑑𝑥𝑘
] .

(43)

This completes the proof of number (VI). We shall now use
some properties of the Laplace-Carson transform to solve
the fractional groundwater flow equation. To achieve this, we
shall start by assuming that the solution of the main equation
can be separated as follows:

Φ (𝑟, 𝑡) = Φ
1
(𝑡) Φ
2
(𝑟) ; (44)

then, the separated equations become
𝐶

𝑜
𝐷
𝛼

𝑡
Φ
1
(𝑡) + 𝜆

2

Φ
1
(𝑡) = 0, (45)

𝐷
𝑟𝑟
Φ
2
(𝑟) +

1

𝑟
𝐷
𝑟
Φ
2
(𝑟) + 𝜆

2

Φ
2
(𝑟) = 0, (46)

where 𝜆 is the separation constant.
The first equation (45) can be solve directly by applying

on both sides the Laplace transform to obtain

𝐿 (Φ
1
(𝑡)) = Θ

1
(𝑠) =

𝑠
𝛼−1

𝑠𝛼 + 𝜆2
. (47)

Using the inverse formula of Laplace transform of two-
parameter Mittag-Leffler function, we get

Φ
1
(𝑡) = 𝑐𝐸

𝛼,1
(−

𝑆

𝑇
𝜆
2

𝑡
𝛼

) , (48)

where the Mittag-Leffler function is defined as follows:

𝐸
𝛼,1

(𝑡) =

∞

∑

𝑛=0

𝑡
𝛼𝑛

Γ [𝛼𝑛 + 1]
. (49)

To solve the second equation, we make use of the Laplace-
Carson presented earlier, to obtain

− 𝐷
𝑠
[𝑠
2

Θ
2
(𝑠) − 𝑠Φ

2
(0) −

𝑑Φ
2
(0)

𝑑𝑟
]

+ 𝑠Θ
2
(𝑠) − Φ

2
(0) − 𝐷

𝑠
Θ
2
(𝑠) = 0.

(50)

Deriving, we obtain the following ordinary differential equa-
tion:

𝐷
𝑠
Θ
2
(𝑠) [𝑠
2

+ 𝜆
2

] = −𝑠Θ
2
(𝑠) (51)
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for which the exact solution is given as

Θ
2
(𝑠) =

1

√𝑠2 + 𝜆2
. (52)

Now applying the inverse Laplace transformoperator on both
sides in the previous equation, we obtain the following in
terms of the Bessel function first kind [24]:

Φ
1
(𝑟) = 𝐽

0
(𝜆𝑟) , (53)

where the Bessel function first kind is defined as

𝐽
0
(𝑟) =

∞

∑

𝑘=0

(−1)
𝑘

𝑘!

1

Γ (𝑘 + 1)
(
𝑟

2
)

2𝑘

. (54)

Therefore, the solution of the fractional groundwater flow
equation is given as

Φ (𝑟, 𝑡) = 𝑐

∞

∑

𝑛=0

𝐸
𝛼,1

(−
𝑆

𝑇
𝜆
2

𝑛
𝑡
𝛼

) 𝐽
0
(𝜆
𝑛
𝑟) . (55)

Making use of the initial and boundary conditions, we obtain
the constant 𝑐 to be

𝑐 =
𝑄

4𝜋𝑇
. (56)

Then,

Φ (𝑟, 𝑡) =
𝑄

4𝜋𝑇

∞

∑

𝑛=0

𝐸
𝛼,1

(−
𝑆

𝑇
𝜆
2

𝑛
𝑡
𝛼

) 𝐽
0
(𝜆
𝑛
𝑟) . (57)

We shall present an alternative solution in the next section
via the Boltzmann variable method. By using the boundary
condition, we can determine the Eigen value of (55).

6. An Alternative Derivation of the
Time-Fractional Groundwater Equation

In this section, we present an alternative approximate solu-
tion of the groundwater flow equation. A method frequently
used to derive some kind of parabolic partial differential
equations is the so-called Boltzmann transformation [5],
defined for an arbitrary 𝑡

0
< 𝑡 by equation.

𝑢
0
=

𝑆𝑟
2

4𝑇 (𝑡 − 𝑡
0
)
. (58)

Let us consider now the following function:

Φ (𝑟, 𝑡) =
𝑐

(𝑡 − 𝑡
0
)
𝐸
𝛼,1

[−𝑢
0
] (59)

with 𝑐 an arbitrary constant. If we assume that 𝑟
𝑏
is the ratio of

the borehole from which the water is taken out of the aquifer,
then the total volume of thewaterwithdrawn from the aquifer
is given by

𝑄
0
Δ𝑡
0
= 4𝜋𝑐𝑇. (60)

Hence,

Φ (𝑟, 𝑡) =
𝑄
0
Δ𝑡
0

4𝜋𝑇 (𝑡 − 𝑡
0
)
𝐸
𝛼,1

[−𝑢
0
] (61)

is the drawdown that will be observed at a distance, 𝑟, from
the pumped borehole after the period Δ𝑡

0
.

Now suppose that the a previous procedure is repeated 𝑛

times; that is, water is withdrawn for a short period of time,
Δ𝑡
𝑘
, at a consecutive times, 𝑡

𝑘+1
= 𝑡
𝑘
+ Δ𝑡
𝑘
, (𝑘 = 0, 1, . . . , 𝑛).

Now, since the fractional groundwater flow equation is linear
differential equation, the total drawdown at any time 𝑡 > 𝑡

𝑛

will be given by

Φ (𝑟, 𝑡) =
1

4𝜋𝑇

𝑛

∑

𝑘=0

𝑄
𝑘
Δ𝑡
𝑘

4𝜋𝑇 (𝑡 − 𝑡
𝑘
)
𝐸
𝛼,1

[−𝑢
𝑘
] . (62)

Therefore, if Δ𝑡 → 0, the definition of the defined integral
can be invoked to write

Φ (𝑟, 𝑡) =
1

4𝜋𝑇
∫

𝑡

𝑡
0

𝑄 (𝜏) 𝑑𝜏

(𝑡 − 𝜏)
𝐸
𝛼,1

[−
𝑆𝑟
2

4𝑇 (𝑡 − 𝜏)
] 𝑑𝜏. (63)

However, using the Boltzman variable, we arrive at the
following expression:

𝑦 =
𝑆𝑟
2

4𝑇 (𝑡 − 𝜏)
,

Φ (𝑟, 𝑡) =
1

4𝜋𝑇
∫

∞

𝑡
0

𝑄 (𝑦)

𝑦
𝐸
𝛼,1

[−𝑦] 𝑑𝑦.

(64)

The previous solution will be called the most generalized
general solution of fractional groundwater equation. How-
ever, this solution can be simplified somewhat under certain
conditions. A particularly important solution which arises
when 𝑡

0
is taken at zero and𝑄(𝑡) is a constant independent of

time, and then we arrive at

Φ (𝑟, 𝑡) =
𝑄

4𝜋𝑇
∫

∞

𝑢

1

𝑦
𝐸
𝛼,1

[−𝑦] 𝑑𝑦 =
𝑄

4𝜋𝑇
𝑊
𝛼
(𝑢) . (65)

Here

𝑊
𝛼
(𝑢) = ∫

∞

𝑢

1

𝑦
𝐸
𝛼,1

[−𝑦] 𝑑𝑦 (66)

will be called the generalized exponential integral. It is worth
pointing out that if alpha is equal to 1, we recover the
exact analytical solution of the groundwater flow equation
proposed by Theis. Alternative iterations method [8, 11,
20] can be used to derive approximate solutions of these
problems.

7. Numerical Simulations

In this section, we investigate the behavior of the analytical
solutions of the Theim fractional and the Theis fractional
groundwater flow equation. We compare the analytical
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Figure 1: Numerical simulation of the Theim-time-fractional order groundwater flow equation, ((a) showing the surface for 𝛼 = 0.95); ((b)
𝛼 = 0.75); ((c) 𝛼 = 0.65) and ((d) 𝛼 = 0.55).

solution with the experimental data from the pumping
test obtained from the experimental site of the Institute
for Groundwater Studies, the University of the Free State,
Bloemfontein Campus, South Africa. We shall start with the
simulation of Theim fractional groundwater flow equation.
The analytical solution of the main problem was depicted in
Figures 1(a), 1(b), 1(c), and 1(d). It is worth to mention from
the figures that the order of the derivative plays an important
role in the simulation.

We shall present the numerical solution for the Theis-
time-fractional groundwater flow equation for a fixed dis-
tance. The analytical solution of the main problem was
depicted in Figures 2(a), 2(b), 2(c), and 2(d).

We shall present in Figure 3 the comparison of the
analytical solution of theTheis-time-fractional ground water
flow equation, with the experimental data from the pumping
test performed by the Institute for Groundwater Study on one
of its borehole settled on the test site of the University of the
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Figure 2: Numerical representation of (66) for different values of alpha.

Free State. The test consisted of the pumping of the borehole
at the constant discharge rate 𝑄 = 4.5 and monitoring the
piezometric head for 350 minutes, at the distance of 𝑟 =

31.54m.
A Chinese proverb says, I quote “An image is equivalent

to ten thousand words.” With any reservation we can con-
clude that the fractional order derivative plays an important
role while modeling real-world problem into mathematical
equation. This solution is in perfect agreement with the data
observed from the pumping test performed by the institute

for groundwater study on one of their borehole settled on the
test site of the University of the Free State.

8. Conclusion

We have generalized to Theim and Theis groundwater flow
equation to the concept of fractional order derivatives.
The resulting equations were solved analytically via several
techniques, including the Laplace transform method, the
Fourier transform method, the Laplace-Carson transform
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Figure 3: Comparison of Theis-time-fractional groundwater flow
equation with experimental data from real observation.

method, and the Boltzmann variable method.The numerical
simulations show that the fractional order derivative plays
an important role in the simulation process. In addition, we
compare the analytical solution with experimental data to
access the accuracy of the fractional groundwater model.The
analytical solution was in perfect agreement with experimen-
tal data.
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