
Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 862469, 26 pages
doi:10.1155/2012/862469

Research Article

Automated Generation of Custom Processor Core from C Code

Jelena Trajkovic,1, 2 Samar Abdi,3 Gabriela Nicolescu,2 and Daniel D. Gajski1

1 Center for Embedded Computer Systems, University of California, Irvine CA 92697, USA
2 École Polytechnique de Montréal, Montreal, QC, Canada H3C 3A7
3 Electrical and Computer Engineering Department, Concordia University, Montreal, QC, Canada H4B 1R6

Correspondence should be addressed to Jelena Trajkovic, jelena.tr@gmail.com

Received 7 June 2011; Revised 14 November 2011; Accepted 21 November 2011

Academic Editor: Yuan Xie

Copyright © 2012 Jelena Trajkovic et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present a method for construction of application-specific processor cores from a given C code. Our approach consists of
three phases. We start by quantifying the properties of the C code in terms of operation types, available parallelism, and other
metrics. We then create an initial data path to exploit the available parallelism. We then apply designer-guided constraints to an
interactive data path refinement algorithm that attempts to reduce the number of the most expensive components while meeting
the constraints. Our experimental results show that our technique scales very well with the size of the C code. We demonstrate
the efficiency of our technique on wide range of applications, from standard academic benchmarks to industrial size examples like
the MP3 decoder. Each processor core was constructed and refined in under a minute, allowing the designer to explore several
different configurations in much less time than needed for manual design. We compared our selection algorithm to the manual
selection in terms of cost/performance and showed that our optimization technique achieves better cost/performance trade-off.
We also synthesized our designs with programmable controller and, on average, the refined core have only 23% latency overhead,
twice as many block RAMs and 36% fewer slices compared to the respective manual designs.

1. Introduction

In order to implement an application, the designer typically
starts from an application model and a set of constraints,
such as performance and cost (Figure 1). One of the
primary design decisions is to define the hardware-software
(HW/SW) partitioning of the application [1]. In case of
noncritical applications, the entire application may be imple-
mented in software. The designer selects the target processor
and compiles the applications for the fixed instruction set
of the selected processor. The generated binary is executed
on the target processor. This is the most flexible solution,
since the target processor is programmable. As such, the
designer may change the application code and recompile
to modify the implementation. In case when part of an
application, or the entire application, has tight performance,
power, or area constraints, the designer may decide to
implement the critical part of the application in hardware.
For hardware implementation, the designer may use pre-
existing intellectual property (IP), use high-level synthesis

(HLS) tools or manually design the hardware. The generated
hardware is highly optimized, but nonprogrammable.

In order to obtain the advantages of both approaches,
that is, programmability and high design quality, the
designer may opt for application-specific processor (ASP).
Application-specific processor cores are being increasingly
used to address the demand for high performance, low area,
and low power consumption in modern embedded systems.
In case of application-specific instruction set processors
(ASIPs), the designer first decides on the instruction set (IS)
then generates the hardware and the compiler to support
the chosen IS. The other possibility is to generate data path
first, and then to generate the controller either manually
or automatically [2]. The advantage of the latter method is
the possibility to remove IS and decoder from the design
process and the design itself, respectively. Removing the
decoder significantly simplifies the design and verification.
Furthermore, the controller generates a set of control signals
that directly drives the data path, which allows for having
any combination of control signals possible, not just the

2 Journal of Electrical and Computer Engineering

ASP design flow

Data path
generator

DP

C

Application model
and constraints

Controller
generator

Controller

HW/SW partitioning

SW design flow HW design flow

ASP

Processor
selection

Compilation

Processor

IP selection/
HLS/

manual
design

Custom
HW

+ SW

Figure 1: Proposed design technique within system-level design flow.

combinations that are allowed by instructions from a pre-
defined IS. Moreover, it facilitates having compiler [3] that
does not need to be modified every time that IS changes.
Therefore, in this work, we adopt the methodology where the
data path gets created separately from the controller.

In general, the challenges of ASP design are as follows:

(1) design of the data path, that is, selection of the best set
of components (functional units, register files, buses,
memories, etc.) and connections;

(2) design of the controller;

(3) ability to scale well with large code size;

(4) controllability of the design process.

In this work, we deal with (1) and (4), and the aspect
of (3) that applies to data path creation, where (2) has been
published in [3, 4].

1.1. Custom Processor Design Methodology. The design of
application-specific cores is nontrivial and the problem
is further exacerbated by the size and complexity of the
application as well as the short time to market. Traditional
C to RTL automation tools have so far had little impact.
This is because they combine the optimization of data
path architecture and controller, which makes the process
unscalable and uncontrollable. We overcome this problem
by applying a design strategy where the data path and
controller are designed separately. The architecture is derived
by analyzing the C code and designer-specified constraints.

The C code is then compiled into either control words
(control word is a collection of control signals that drive the
data path) for programmable cores or FSM for hardwired
cores.

Our target processor core is similar to an ASIP, with the
exception of the instruction decoder. The C application is
directly compiled into microcode that drives the data path.
This approach removes the unnecessary restriction of an
instruction set and provides the abovementioned advantages.
The target processor core template is shown in Figure 2.
First, we construct the data path on the right-hand side
by selecting, configuring, and connecting various functional
and storage units. Then, we develop the microcoded or
hardwired controller (on the left-hand side) for the con-
structed data path. During core construction, the data path
is automatically refined to meet the given performance and
resource constraints. The generated data path is pareto-
optimal for the given application, but it may execute any
other application if it contains all the components required
by the application. However, the execution may not be
optimal. By separating data path and controller design, we
allow simplified optimization of the controller by removing
the data path optimization parameters from the equation.
The scheduling and binding, that is, controller generation,
are performed once the data path has been designed. The
controller generation may be manual or automated, as
presented in [3]. Details of separation of data path generation
from scheduling and binding may be found in [2, 5].

Journal of Electrical and Computer Engineering 3

n-
Memory
interface

RF

To mem

...

MUXMUXMUX

MUX
MUX

MUX
MUX

MUXMUX

MUX

Controller

MUX

FU1

FUn

Figure 2: Proposed processor core template: the data path and the controller are created separately.

Component
library

Data path generator

C

IDp
extraction

Data path
optimization

Constraints

Controller
generation and

profiling

Final
data path

Compiler
(scheduling
and binding)

Controller
(control words)

Processor

IDp

Figure 3: Data path extraction steps.

Automating the design process in the proposed way has
several advantages.

(1) Designers use their expertise to guide the tool instead
of performing cumbersome and error-prone HDL
coding.

(2) The tool automatically produces a design in a fraction
of time while having only marginal performance
degradation and almost the same total area as the
manual design.

(3) The designer may change only the constraints and
iterate over the optimization phase.

Figure 3 shows the steps of proposed extraction tech-
nique. In the first step, called Initial Data path (IDp)
Extraction (Section 2), source code for a given application
is analyzed in order to extract code properties that will be
mapped onto hardware components and structures and the
Initial Data path is created. The Initial Data path is used
for controller generation and profiling of given application
code. The profiled code is then analyzed and the data path
undergoes several iterations of refinement and estimation
during the Data path Optimization (Section 3) step. Data
path Optimization step first selects the portion of code
to be optimized (Section 3.1), converts partial resource
constraints to timing overhead (Section 3.3), and estimates

4 Journal of Electrical and Computer Engineering

execution characteristics of intermediate candidate designs
(Section 3.4) until the specified overhead is met. The final
data path is used for scheduling and binding, and controller
generation. As explained above, the controller generation is
out of scope of this work.

2. Initial Data Path Extraction

The stepwise process of creating the initial data path is
shown in Figure 4. Based on a target-independent scheduling
of the C-code instructions, we identify a set of properties
for the given code. Then, we use the mapping function to
map the code properties to available hardware elements in
the Component Library and to generate a set of hardware
components and structures/templates that correspond to the
reference C code.

The code properties include operators and their fre-
quency, data types and their values, control and data
dependencies, existence of loops, loop nests, size of the loop
body, and the available parallelism. The hardware elements
include different types of parameterizable functional units,
like adders, multipliers, and comparators; storage units,
such as registers, register files, and memory; interconnect
components, like busses, multiplexers, and tristate buffers.
We consider different data path structures/templates: tem-
plates with a different connectivity schemes, like bus-based,
multiplexer-based, and dedicated connections; templates
with pipelined data path, pipelined units or both, and so
forth. For instance, the available parallelism translates into
the number of instances of functional units, the number of
registers, and the number of register file ports. It may also
determine, together with type of dependencies in the code, if
the data path should be pipelined. Also, the data types and
number of used bits to represent the data determines the bit-
width of used components and buses.

The maximum requirements of a given application is
obtained from the application’s “as late as possible” (ALAP)
schedule (produced by Pre-Scheduler). The ALAP schedule is
in a form of Control Data Flow Graph (CDFG) and is target
independent. The underlying assumption is that there are
sufficient resources to execute all existing operations. Front
end of any standard compiler may be used as a Pre-Scheduler.
In this case, the CDFG is output of front end of the Microsoft
Visual C++ compiler. We choose ALAP because it gives good
notion of the operations that may be executed in parallel.
Please note that only the properties required for the data path
generation (described in this section) are extracted from the
CDFG.

The IDp Extractor traverses the given ALAP schedule,
collecting the statistics for each operation. For each opera-
tion (addition, comparison, multiplication, etc.) maximum
number of its occurrences in each cycle is computed. The tool
also records the number of potential data transfers for both
source and destination operands. For example, if the ALAP
schedule assigns three additions in the same cycle, then three
units that perform addition will be allocated, together with
sufficient number of busses, register files, and memories to
provide for reading and writing of all operands. However,

since the resources are selected from the elements available
in the Component Library, the resulting architecture may
have different number of instances than desired. One such
example would be the case where the application requires
three adders, but only a register file with one input and
two output ports is available, and no forwarding is possible.
Therefore, it would be reasonable to allocate only one adder,
because there would be no sources for operands of the
remaining two adders.

In addition to application’s schedule, Component
Library (CL) is another input of the Initial Data path
Extraction. The Component Library consists of hardware
elements, that are indexed by their unique name and
identifier. The record for each component also contains its
type, number of input and/or output ports, and name of
each port. In case of a functional unit, a hash table is used
to link the functional unit type with the list of all operations
it may perform. Later in the section, we also present a set
of heuristics that measure how well the available storage
components match the given requirements. The heuristics
use quantifiers for the code properties, translate them to the
required number of hardware elements, and map them to the
available components in the Component Library.

We chose a load-store data path model. This widely
used model has specialized operations that access memory
(load and store instructions) and any other operation reads
operands from the register file and writes the results back
to the register file. Also, we explore the data path models
that do not have any forwarding path. Therefore, to ensure
that the interconnect is not a bottleneck, for the Initial
Data path, we perform a greedy allocation of connectivity
resources (Figure 7). This means that the output ports of all
register files are connected to all the source buses. Similarly,
the input ports of all register files are connected to all the
destination busses. The same connection scheme applies to
the functional units and the memory interface.

2.1. Application Requirements. In order to design an ap-
plication-specific processor core, we must first determine
the application requirements. These requirements must be
quantized in some form for analysis and eventual selection
of matching components. There are primarily three aspects
of the application that we are concerned with, namely,
computation, communication, and storage. In terms on
the architecture, these aspects translate to operator usage,
operand transfer, and type of storage.

The set of properties of the C code include data
types, operators, variables, parallelism, loops, and depen-
dencies. The components include functional units, storage
elements (registers, register files, memories), and intercon-
nect like buses, multiplexers, and tristate buffers, while
structures/templates refer to different connectivity templates,
like bus-based interconnect, multiplexer-based interconnect,
dedicated connections, data path or component pipelining,
and load/store architecture model. For example, the data
types and number of bits used to represent them would
determine the bit width of used components; the available
parallelism would influence the number of instances of

Journal of Electrical and Computer Engineering 5

void main ()
{int = 1000;

 for (i = 0; i<j; ...

Source code (C)

Prescheduler

ALAP

Code analysis

Component

library

Element mapping

HW set
Template mapping

and trade-off
decisions

IDp extractor

Code properties

cy 0: t483= ∗(t482);
t77 = (t467∗t499);

cy 1: t79 = (t77 + t483);

op +: max = 7,avg = 3
op ld: max = 4, avg = 2

Transfer src: max = 16

ALU: 4

RF: 1; type RF2×1
MemI: 1; type 1×1

j
· · ·

· · ·

· · ·
· · ·

Figure 4: Initial data path (IDp) extraction flow.

1

2

3

4 Adder

N
u

m
be

r
of

 in
st

an
ce

s
N

u
m

be
r

of
 in

st
an

ce
s

0 1 2 3 4 5

Time

Available

Estimated delayed executionIn use

Operation but no available units

1

2

3

4 Adder

Time

Resource constraint

0 1 2 3 4 5 6

dc

Figure 5: dc Computation for given resource constraint.

functional units, number of registers or register file ports,
and pipelining.

While the selection of function units and register
files corresponds directly to the operations and variables,
respectively, the communication needs more analysis. The
operands for each operation are classified into either source
operands or destination operands. The simplest case is the
arithmetic operation, which typically has two or more source
operands and one destination operand. The load operation
has one source operand, the memory address, and one
destination operand, the read variable. On the other hand,
the store operation has two source operands: the address and
the variable.

In a typical load/store architecture, like the one used in
our work, the source and destination operands correspond
to buses that go in and out of the register file. Each
transaction, such as the fetching or storing of operand,
must be performed using a bus. If multiple operations
are scheduled to execute in parallel, multiple source and
destination buses are required. One of the code properties
we consider for design is the maximum number of source
and destination buses that will be used. These numbers can
be obtained easily by analyzing the prescheduled C source
code.

The first step is to extract properties form the C code.
Code property may be extracted from high level code, its

6 Journal of Electrical and Computer Engineering

Time

1

2

3

4
Multiplier

N
u

m
be

r
of

 in
st

an
ce

s
N

u
m

be
r

of
 in

st
an

ce
s

0 1 2 3 4 5

1

2

3

4
Multiplier

Time

Selected number

0 1 2 3 4 5 6

Timing overhead

Figure 6: Balancing the number of instances of multiplier for given timing overhead.

MUXMUX

Memory
interface

RF

MUX

MUX

MUXMUX

To mem

MUX MUX

n-

...

FU1

MUX

Figure 7: Used data path template.

CDFG, or any other intermediate representation generated
by a compiler front end. We chose to start form an
architecture-independent schedule that assumes no resource
constraints, such as ASAP and ALAP. We chose ALAP as
the starting point since our experiments show that the
parallelism is more evenly distributed across cycles than in
corresponding ASAP. The following properties are extracted
from code’s ALAP schedule:

(i) OP: a set of operations for the given application code;

(ii) mop: the maximum number of concurrent usages of
operand op;

(iii) ms and md: the maximum number of concurrent
data transfers of the source and destination operands,
respectively.

2.1.1. Example. We present results for mop value for various
operations in typical multimedia functions to provide an
idea of the application profile. The example shown here is

Journal of Electrical and Computer Engineering 7

Mp3. The size is over 10000 lines (Table 4). The Mp3 decoder
is the example for decoding mp3 frames into pulse-code
modulated (PCM) data for speaker output.

The operations are divided into separate classes depend-
ing on their type and implementation requirements. We
classify the operations into arithmetic, logic, comparisons, and
load/store. The tables below present the maximum number of
concurrent operations (mop) of each operation type.

The mop values for the arithmetic operations, such as
add, subtract, multiply, divide, and remainder are shown
in the left-hand side of Table 1. It can be seen that Mp3
has division operation that may require a divider or be
implemented as software library in C. We can also note the
high degree if concurrency. This is because the loop in the
function is completely unrolled and all the array indexes are
changed to different variables for optimization in software.
A tool that performs component allocation for maximum
performance based on available concurrency would produce
a huge design. This extreme example points to the need
for designer controllability in making component allocation
decisions. The example also points to the fact that application
optimizations for traditional processor architectures may
not necessarily produce better processor designs. Indeed,
the quality of application-specific processor design strongly
depends on the structure of the C code in consideration.

The right-hand side of Table 1 shows the concurrency
available for logic or bit-wise operations. We can see that not
many of thebit-wise operations have been used, even though
they are computationally less expensive than arithmetic
operations. Some compiler optimizations make transform
arithmetic operations involving constants into shifts and
other logic operations. This is called strength reduction and
is also useful code optimization that potentially may result in
lower cost processor designs.

The left-hand side of Table 2 shows the concurrency
available in load/store operations for the benchmarks. This
concurrency typically does not translate into execution since
memories typically have 1-2 ports for reading or writing
data.

There is no concurrency available in the comparison
operations as seen from right-hand side of Table 2. This
is to be expected from the C code structure. Comparison
operations are typically used for condition evaluation in
if-then-else statements or loops. In the case of loops, the
comparison is the only operation in a basic block. Since we
are analyzing an ALAP for each basic block of the application,
we consider concurrency inside the basic block only. In the
case of if-then-else statements, the comparison is the last
operation in a basic block that does not have any other
comparisons. Therefore, comparisons cannot be executed in
parallel due to the ALAP data structure constraints.

Available concurrency in variable reads and writes is
shown by the number of concurrent Read Variable operation
(262) and the number of Write Variable operations (196).
For each basic block ALAP, the operations in the starting
state are read operations that fetch the operands from
the register file. Similarly, the terminating states write the
variables back to the register file. The larger the basic block,
the higher the possible concurrency in reading and writing

Table 1: Application requirement for arithmetic and logic opera-
tions for Mp3 application.

OP—operation mop OP—operation mop

Add 223 And 2

Sub 109 Or 1

Mul 73 Xor 1

Div 1 Neg 2

Div Un 1 Not 1

Rem 1 Shr 90

Rem Un 1 Shr un 2

Shl 15

Table 2: Application requirement for load and store and compari-
son operations for Mp3.

OP—operation mop OP—operation mop

Ldind I1 1 LessThan 1

Ldind I2 1 LessThan Un 1

Ldind I4 32 LessOrEqual 1

Ldind U1 3 LessOrEqual Un

Ldind U2 2 Equal 1

Ldind U4 10 NotEqual 1

Stind I1 1 GreaterOrEqual 1

Stind I2 1 GreaterOrEqual Un 1

Stind I4 20 GreaterThan 1

GreaterThan Un 1

Table 3: Register file (RF) mapping function values and functional
unit mapping.

RF configuration Value Functional unit Value

RF 2 × 1 715 Alu 223

RF 3 × 1 713 Multiplier 73

RF 4 × 1 711 Divider unsigned 1

RF 4 × 2 710 Divider signed 1

RF 6 × 3 705 Comparator 1

RF 8 × 4 700

RF 16 × 8 668

Table 4: Parameter values and code size (LOC).

Benchmark (Pl,Pf ,Pf l)[%] LoC
Gen. T [sec]

Nonpipe Pipe

bdist2 (60,50,45) 61 0.2 0.8

Sort (80,60,45) 33 0.1 0.1

dct32 (18,65,50) 1006 1.3 2.3

Mp3 (30,55,50) 13898 15.6 42.6

inv/forw 4 × 4 (50,45,55) 95 0.2 0.8

variables, especially if the variables inside the basic block are
independent. For our example, we have large basic blocks.
This is due to the loop unrolling optimization on the source
code, as discussed earlier. Furthermore, the array elements

8 Journal of Electrical and Computer Engineering

are represented as independent variables which lead to high
concurrency available for reading and writing variables.
Since the variables are read from output port of register files
and written to the input ports, these numbers are indicative
of a desirable I/O configuration for the register file.

Finally, the available concurrency in data transfers is
shown by the number of data transfers of source ms and
the data transfers of destination md operands. The values
for Mp3 applications are 1360 and 742, respectively. These
numbers correspond to the concurrency in transaction of
source and destination operands that were defined earlier
in the section. Again, we find that high concurrency in
the operations translates into high values of ms and md.
This is to be expected since the number of source and
destination operand transactions correspond directly to the
number of operations in most cases. The only exception
is the store operation that only has destination operand
transactions. However, most other operations, particularly
arithmetic and logic operations, typically have more source
operand transactions than destination operand transactions.

2.2. Mapping Functions and Heuristics. For component allo-
cation, we have derived several heuristic that measure how
well the selected components match the given requirements.
In order to allocate a register file, we have derived a function
that measures how good any of the register files available
in Component Library match the application requirement.
The function used to evaluate the register files is given by the
following formula:

Hr f (x) = 2∗ abs
(
x in− rq in

)
+ abs

(
x out − rq out

)
, (1)

where x is the candidate component form the library, and
x in and x out are the number of input and output ports of
the component x. Also rq in and rq out are the number of
required inputs and outputs, respectively. Required number
of outputs correspond to the number of source operands
read using Read Variable operation, and number of inputs
correspond to the number of Write Variable operations.
The heuristic is chosen to give priority to the input port
requirement in order to allow storage of as many results
as possible. The value of the function is computed for
each candidate register file component from the Component
Libry, and the one with the smallest value of the function
H rq is chosen and allocated to the data path. Determining
the register file size requires estimation of the maximum
number of variables and temporary variables that may occur
in the application. While counting local and global variables
is straight forwarder task, estimating the temporaries require
scheduling and binding to be done for the given data path.
Therefore, the register file size determination is out of the
scope of this work. For all the practical purposes, we use the
rule of thumb: for the Initial Data path, we count the number
of all the variables in ALAP code and allocate additional 25%
registers in the register file.

Allocation of the source and the destination buses
depends on the number of source operands and destination
operands that the application may require at the same time
(in the same cycle). Therefore, the number of source busses

equals to ms and the number of the destination busses equals
to md that was recorded while traversing the application
ALAP schedule.

As for the memory interface allocation, we first consider
number of sources and destination buses and chose the
maximum of them to serve as the required number of ports
rq mi. We compute the value of H mi for each candidate x
component according to

H mi(x) = x in− rq mi, (2)

where x in is the number of input ports of memory interface,
and rq mi is a required number of memory interface input
ports. The component with the minimum value of the
heuristic is selected. In the corner case, where rq mi is less
than any of x in, the memory interface with the minimum
(or maximum) number of ports is chosen. Similarly, in case
where rq mi is less greater than any of x in, the memory
interface with the maximum number of ports is chosen.

Furthermore, in order to select functional units for
available operators, we define

(i) Ops(FU) as a set of operations that a functional unit
FU performs,

(ii) Selected set of selected functional units for the
implementation of a final data path,

(iii) nFU the number of instances of the functional unit
FU in the Selected.

A matching heuristics H(OP,Ops(FU)) → Selected maps
the set of operations OP to a set of functional units Selected
to implement the custom data path. The heuristics H
determines both the type and the number of instances of a
functional unit. Algorithm 1 describes the heuristics used in
this work. |Ops(FUi)| represents the cardinal number of set
Ops(FUi). According to heuristics H, a functional unit FUi

will be selected to perform an operation opi if it performs the
greatest total number of operands alongside the chosen one.
Therefore, this heuristics prioritizes functional units with a
higher possibility for sharing. As for the number of instances,
the heuristics includes additional units of a chosen type to the
set Selected only if the maximum number of occurrences of
operand opi is greater than the number of units nFU of that
type currently in Selected, that is, if mop > nFUi. For example,
if application requires 3 units to perform additions and 4
units to perform subtractions, and an ALU is chosen for both
addition and subtraction operator, the tool will allocate only
4 instances of the ALU.

To ensure that the interconnect is not a bottleneck in the
Initial Data path, the connection resources are allocated in
greedy manner. This means that output ports of all register
files are connected to all source buses. Similarly, input ports
of all register files are connected to all destination busses.
The same connection scheme applies to the functional units
and the memory interface, making it possible to transfer any
source operand to any functional unit or memory interface
and the result back into a register file. Note that data
forwarding is not presented in this paper and that it is a part
of our current research.

Journal of Electrical and Computer Engineering 9

for all opi ∈ OP do
Select FUi such that
opi ∈ Ops(FUi) &&
|Ops(FUi)| = max(|Ops(FUk)|,∀k such that opi ∈
Ops(FUk))
if mop > nFUi then

Add [(mop − nFUi) ×FUi] to Selected
end if

end for
return Selected

Algorithm 1: H(OP,Ops(FU)).

2.2.1. Example. The heuristic described in this section was
applied to compute the initial estimates of components
and their configuration for our application examples. In
particular, we computed H r f values corresponding to
each application for all the register files in the component
database. We also computed the required number of source
and destination buses for each design. The functional unit
mapping heuristic was used to select the type and instances
of functional units from the component database. The initial
design decisions for the given applications are shown in this
section.

Left-hand side of Table 3 shows the register file heuristic
values (H r f) for all possible I/O configurations available
in the database. The configuration is indicated in the name
of the register file type. For example, RF 4 × 2 refers to
a register file with 4 outputs and 2 inputs. The minimum
heuristic value for each application is highlighted in bold.
In other words, the configuration that produces the lowest
H r f value is selected. Typically, for larger applications with
higher available parallelism in computation, we find that the
register file with most input and output ports is selected.

The desirable number of source and destination busses
exactly matches the number of data transfers: it is 1360
for the source and 742 for the destination busses. However,
it may be unreasonable to have a huge number of buses.
In most of such cases, design decisions on the number of
function units or the configuration of register files may
limit the number of source or destination buses. We will
discuss such structural dependencies and their impact on bus
selection in the following section.

Memory selection and organization is an important
issue in processor design. In general, it is possible to have
architectures with multiple memories. However, the task
of the memory manager becomes quite complicated in
such scenario. For the target processor, the memory is not
considered to be the part of the datapath itself. Instead, a
fixed single-port memory interface is assumed to provide
access to all addressable data. Therefore, in this work we
have not focused on memory configuration. The available
memory interface with one read and one write ports has been
selected for all the applications.

The functional units selected for our example applica-
tions are listed in the right-hand side of Table 3. The selection
is based on the heuristics described earlier. We have mapped

all arithmetic and logic operations to ALUs. Multipliers and
dividers are expensive components and have been assigned
selectively. We also distinguish between signed divider and
unsigned divider. All comparison operations have also been
mapped to a common comparator. As in the case of buses,
some desirable numbers for function unit allocation require
very large area. However, as we will shortly see, the allocation
is adjusted based on the structural dependencies between the
components.

2.3. Structural Restrictions and Dependencies. In the previous
sections, we discussed matching of C code structures to
architectural components and templates. Since the compo-
nents must be connected to each other, there exist several
structural dependencies between them. As a result, the
number of components may not be independently decided.
There are several cases in which we must make trade-offs
based on structural restrictions and dependencies. We will
discuss some of these restrictions and dependencies in this
section. Based on the structural restrictions, we will define
an initial data path for the application-specific processor
corresponding to each C example.

One of the primary bottlenecks is the number of register
files and their configuration. If multiple or distributed
register files were used, we would need to provide algorithms
for mapping of both variables and temporaries to each
register file or each partition. This is a significant problem
because we must know the variables and all temporaries
in the generated code and provide binding rules for them.
Furthermore, we must have the scheduling information
for the operations. Scheduling, binding, and mapping are
complex problems that are out of the scope of this work.
Indeed, one of the fundamental assumption of our proces-
sor design paradigm is the separation of allocation from
scheduling and code generation. We make the trade-off in
optimal concurrency and restrict ourselves to a single register
file. However, concurrency is still available by configuring
the number of input and output ports of the register file.
Therefore, the restriction stems from our methodology and
the computational complexity of data partitioning.

Another restriction that we imposed on the data path
template is that it does not support forwarding. Therefore,
the source operands may come only from register file output

10 Journal of Electrical and Computer Engineering

ports and from the constant value stored in the microcode
itself (i.e., in the control word). It must be noted that this
restriction is only to manage the problem size and there
does not exist any technical reason for restricting forwarding.
Program analysis can give us information for deciding where
to insert the forwarding paths. Also, in this work, only one
constant value is assumed to be stored in any microcode for
a single cycle (i.e., in one control word). Hence, the total
maximum number of source buses equals the number of
register file output ports (+1 in case the number of output
ports is odd). In all of the cases of the benchmarks presented
here, we have imposed an upper limit on the number of
source buses as the number of register file output ports. By
the same token, the number of destination buses is at most
equal to the number of register file input ports.

We have assumed that the output of the function units is
written directly to the register file. Therefore, for the practical
purposes, it makes sense to limit the number of instances of
any functional unit type to be not more than the number of
register file input ports. This decision has been made because
in case where all of the units of the same type are utilized
at the same time, they need to be able to store their values
after executing the operation. Due to the above reason, we
also limit the total number of functional units to be not more
than the total number of register file input ports. Therefore,
we may need to adjust the number of functional unit with
the highest number of instances, for a given application. For
example, the Mp3 application requires 223 ALUs to exploit
all the available parallelism. However, since there are total of
four other types of functional units, we allocate only four
ALUs.

We can conclude from the above arguments that the
register file allocation imposes the most stringent constraints
on the data path structure. Therefore, it makes sense to start
with allocating the register file, followed by all other compo-
nent allocations. Once all the components are allocated, we
may readjust the number of instances of functional units, if
needed.

The resulting initial data path for Mp3 consists of one
register file with 16 outputs and 8 inputs (Rf 16 × 8), 4
ALUs, 2 Multipliers, 1 Comparator, 1 Divider Unsigned, and
1 Divider Signed. The number of source and destination
buses is equal to the number of register file output and input
ports, respectively. As it can be seen, because the applications
has high level of parallelism, it utilizes the register files with
the largest number of ports and the large number of instances
of functional units.

3. Data Path Optimization

The initial data path is used for compiling and profiling the
given application code. The compiled code is then analyzed:
first, the basic blocks (BBs) to be optimized are selected
(Section 3.1). The designer may chose from a single BB
to all BBs in the code. Nevertheless, the entire application
runs on the generated data path. Then, for each selected
BB, a usage plot (usage per cycle) for each component is
created (Section 3.2). For each specified resource constraint,

the estimation algorithm computes the number of extra
cycles that the application needs when the number of
instances is as specified by the constraint. As multiple
resource constraints may be specified, the smallest estimated
number of extra cycles is selected to be the Timing Overhead
(Section 3.3). A subset of possible designs is created and
the number of execution cycles is estimated for each design
[6]. The optimization goal is to determine the number of
unconstrained components and the structure of the data
path such that the execution is extended by no more than
the Timing Overhead (Section 3.4).

3.1. Critical Code Extraction. We define critical code as the
set of BBs in the source code that contributes the most
to the execution time and have the largest potential for
optimization. Our selection criterion is based on the relative
size and execution frequencies of the BBs in the application.
Large BBs have high potential for optimization, since they
have several operations that may potentially be performed in
parallel. On the other hand, even minor optimization of BBs
that have high frequency will yield high overall performance
gains. Therefore, we keep 3-ordered lists of BBs, sorted by
length (li), frequency (fi), and frequency-length product,
where i is the block id. For user-defined parameters Pf l, Pl,
and Pf , a BB is considered critical if it meets any of the below
conditions:

fi · li ≥ Pf l ·
N∑

j=0

f j · l j , (3)

li ≥ Pl· N
max
j=0

(
l j
)

, (4)

fi ≥ Pf · N
max
j=0

(
f j
)
. (5)

If any of the parameters equals to 100%, the data path
will be optimized for the entire code.

3.2. Usage Plot Creation. A usage plot shows cycle-by-cycle
usage for each data path resource. One usage plot is created
for each selected BB for each component type (in case of
functional units and buses), and for data ports of the same
type, that is, input or output ports (in case of the storage
units). Usage plots are extracted from the schedule generated
for the Initial Data path. The usage plot is annotated with
the frequency of a corresponding BB. The example of a usage
plot for adders is shown in Figure 5. If we assume that the
type and number of instances of all other components do not
change, we can conclude that we need 3 instances of adder to
execute this BB in ≤6 cycles.

3.3. Timing Overhead Computation. Changing the number
of instances of a resource may affect the application execu-
tion time. If the designer specifies resource constraint for
adders to be two (Figure 5), the number of cycles required
for execution of the BB would increase. There would be one

Journal of Electrical and Computer Engineering 11

extra operation in cycle three and in cycle five that could
not execute in the originally specified cycle. The estimation
algorithm finds a consecutive cycle that has an available
adder (such as cycle four and cycle six) and uses it for delayed
execution of the extra operation. By modeling the delayed
execution the tool estimates, the extra number of cycles,
dc. If this is the only resource constraint specified, Timing
Overhead equals to dc (one cycle in Figure 5). For all other
unconstrained resources, the number of instances needs to
be sufficient so that the given BB executes in maximum seven
cycles.

The estimation is done for a single resource type at a
time and, therefore, the input is a set of usage plots for that
resource for selected basic blocks. The task of estimation
step is to quantify the effect of change in the number of
instances of the resource to the application execution time.
In order to do so, we compute the number of extra cycles
(dc) that is required to execute a single basic block with
the desired number of units (NewNumber) using “Spill”
algorithm (Algorithm 2).

We keep a counter (DemandCounter) of operations/data
transfers that were originally scheduled for the execution in
the current cycle on an instance of the resource r but could
not possibly be executed in that cycle with the NewNumber of
instances. For example, in both cycles 3 and 5 (in bottom of
the Figure 5), there is one operation (shown in dashed lines)
that cannot be executed if only two adders are used. Those
operations need to be accounted for by the DemandCounter.

In each cycle, we compare the number of instances in
use in a current cycle (X.InUse) to the NewNumber. If
the number in the current cycle is greater, the number of
“extra” instances is added to the DemandCounter, counting
the number of operations/transfers that would need to be
executed later. On the other hand, if the number in the
current cycle is less than the NewNumber, there are available
resources that may execute the operations/transfers that
were previously accounted for with DemandCounter. In the
bottom of Figure 6, the available resources are shown in
yellow and the “postponed” execution of “extra” operations
is shown by arrows. The “Spill” algorithm models in this
way the delayed execution of all “extra” operations. After
going through all cycles in a given block, the DemandCounter
equals to the number of operations that need to be executed
during the additional cycles dc.

The “Spill” algorithm uses only statically available infor-
mation and provides the overhead for a single execution
of a given basic block. In order to estimate the resulting
performance, we incorporate execution frequencies in the
estimation. The estimated total execution time equals sum
of products of block’s dc and block’s frequency for each block
selected for the optimization. We must note that this method
does not explicitly account for interference while changing
the number of instances of other resources than the specified
ones.

3.4. Balancing Instances of Unrestricted Components. We
assume that it is acceptable to trade off certain percentage
of the execution time in order to reduce number of used

resources (hence to reduce area and power and increase
component utilization). Therefore, we select a subset of all
possible designs to be estimated. The designs in the selected
subset are created as follows:

(i) set the number of instances for the constrained
resources to their specified value,

(ii) set the number of instances of unconstrained
resources (functional units, buses, storage elements,
and their ports) to the same values as in the Initial
Data path,

(iii) assume the same connectivity as in the Initial Data
path,

(iv) randomly select a resource type and vary its number
of instances.

For the example depicted in Figure 6, where a multiplier
is selected to have its number of instances varied, there will
be two candidate designs created: with one and with two
multipliers. The candidate design with no multipliers would
not make sense, since there will be no units to perform the
operations that were originally performed by the multiplier
(Algorithm 1). Also, there is no need to consider three
multipliers, since two already satisfy the constraints. It may
happen that even if we increase the number of instances
of some component, the Timing Overhead cannot be met.
The algorithm then backtracks to the minimal number that
causes violation and reports the “best effort” design. In the
simple case, shown in the Figure 6, if the Timing Overhead is
1 cycle, having only 1 unit results in the acceptable overhead.

4. Experimental Setup

We implemented the IDp Extraction and the Data path
Optimization in C++. We used programmable controller
unit, NISC compiler [2, 3] to generate schedule and Verilog
generator [7, 8] for translating architecture description
from ADL to Verilog. For synthesis and simulation of the
designs, we used Xilinx ISE 8.1i and ModelSim SE 6.2 g
running on a 3 GHz Intel Pentium 4 machine. The target
implementation device was a Xilinx Virtex II FPGA xc2v2000
in FF896 package with speed grade−6. The benchmarks used
were bdist2 (from MPEG2 encoder), Sort (implementing
bubble sort), dct32 (from MP3 decoder), Mp3 (decoder), and
inv/forw 4 × 4 (functions inverse4 × 4 and forward4 × 4 are
amongst top five most frequently executed functions from
H.264). The functions and programs vary in size from 100
lines of C code to over 10000 lines (Table 4). Function bdist2
is part of the MPEG2 encoder algorithm. Sort is a bubble sort
implementation that is widely used in various applications.
Function dct32 is a fixed-point implementation of a discrete
cosine transform. The Mp3 decoder is the example for
decoding mp3 frames into pulse-code modulated (PCM)
data for speaker output. It also contains the dct32 as one of
the functions. Finally, inv/forw 4 × 4 is a forward and inverse
integer transform that is used in H.264 decoder. Profiling
information was obtained manually.

Table 4 shows input parameters, benchmark length, and
generation time. Parameters Pl, Pf , Pf l are defined in

12 Journal of Electrical and Computer Engineering

in: Usage Plot(UP) for a Resource r
in: Number of Instances: NewNum
out: dc//in number of cycles
for all X = cycle ∈ UP do

CycleBudget = NewNumber − X.InUse;
if CycleBudget ≥ 0&&DemandCounter ≥ 0 then

CanFit =min(CycleBudget,DemandCounter)
DemandCounter+ = CanFit

else
DemandCounter+ = CycleBudget

end if
end for
dc = �DemandCounter/NewNumber	
return dc

Algorithm 2: Spill.

Section 3.1. We decided on parameter values using the
profiling information. The selected values of parameters
ensure that blocks that affect the execution time the most
are selected for optimization. The following column shows
the number of lines of the C code (LoC). The largest C
code has 13,898 lines of code, proving the ability of the pro-
posed approach to handle large industrial scale applications.
The last two columns present average generation time for
nonpipelined and pipelined designs. Even for industrial size
application, generation time is less than one minute.

In this paper, we present three sets of experiments. The
first set of experiments illustrates design space exploration
using the automatic extraction of data path from application
C code. The second set of experiments compares our
selection algorithm to manual selection of components from
C code. The last set of experiments compare the presented
extraction technique to HLS and manual design in order to
establish quality of generated designs.

5. Results: Interactive Design Exploration

Results of the exploration experiments are shown in Figures
8, 9, 10, 11, 12, and 13. Used baseline data path architectures
are MIPS-style manual designs (pipelined and nonpipelined)
[5] with an ALU, a multiplier, two source and one destination
bus, and a 128-entry register file with one input and two
output ports. Only for the Mp3 application, we have added
a divider unit to this processor for comparison with the
generated data path. In order to perform fair comparison,
the size of storage elements has been customized for every
application such that the resources (area) are minimized.
Also, for comparison with automatically generated pipelined
design, the pipelined version of manual design was used as a
baseline. In-house compiler is used to create schedule for all
baseline and generated data paths. This guarantees that the
execution time depends on the data path architecture and
does not depend on the compiler optimizations.

While exploring different designs for selected applica-
tions, we specified the resource constraints on the number
of ALUs and number of output and input ports of register

file (RF). The tool extracts a data path from the C code such
that it complies to the specified constraint, and resulting data
paths are named as

(i) ALU-N, where N ∈ {1, 2, 3} is the specified number
of ALUs,

(ii) RFOxI, where (O, I) ∈ {(2, 1), (4, 2), (6, 3), (8, 4)} are
the number of output and input ports.

In case of data path denoted by RFOxI, two resource
constraints were used to generate the design: one for the
number of output and the other for the number of input
ports while all the remaining elements (like functional units,
memories, and connectivity) are decided by the tool as
described in Section 3.

Figures 8 and 9 show the number of execution cycles
for generated architectures normalized to the number of
cycles for the baseline architecture. These graphs include two
additional data paths that are generated only to illustrate tool
behavior and to explore theoretical limits of the used data
path model (Figure 7). Those additional configurations are

(i) RF 16 × 8: a configuration that was generated using
RF 16 × 8 constraint,

(ii) IDp: an Initial Data path.

Table 5 summarizes generated architectures for all the
configurations that are presented in this paper. Each bench-
mark and each configuration have a nonpipelined and a
pipelined architecture generated, and those are presented
in rows marked with N and Y in the column “Pipe.” The
table lists the difference from the corresponding baseline
architecture. For example, “#R = 64” means that the
generated data path has 64 registers in register file, “Rf 4× 2”
means that there is a register file with 4 output and 2 input
ports, and “—” means that there is no change to the baseline
data path parameters.

For generated nonpipelined data paths (Figure 8), nor-
malized execution cycles range from 0.98 to 0.46. All of the
benchmarks experience only a small improvement for RF2×
1 configuration because this configuration is the most similar

Journal of Electrical and Computer Engineering 13

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

bdist2 0.82 0.82 0.82 0.98 0.67 0.68 0.67 0.67 0.46
Sort 0.89 0.89 0.89 0.89 0.88 0.88 0.89 0.88 0.88

dct32 0.86 0.72 0.7 0.97 0.75 0.71 0.7 0.7 0.68

Mp3 0.76 0.68 0.67 0.93 0.72 0.67 0.67 0.67 0.67

0.97 0.97 0.97 0.98 0.92 0.92 0.92 0.92 0.92

ALU 1 ALU 2 ALU 3 IDp

inv/forw
4× 4

RF2× 1 RF4× 2 RF6× 3 RF8× 4 RF16× 8

Figure 8: Relative number of execution cycles on nonpipelined data paths generated for different resource constraints.

0.7

0.8

0.9

1

1.1

bdist2 0.95 0.95 0.95 0.95 0.77 0.77 0.77 0.77 0.77
Sort 1 1 1 1 1 1 1 1 1
dct32 0.93 0.91 0.9 0.97 0.9 0.9 0.9 0.9 0.89
Mp3 0.85 0.81 0.81 0.96 0.83 0.81 0.81 0.81 0.81

1 1 1 0.99 0.99 0.99 0.99 0.99 1

ALU 1 ALU 2 ALU 3 IDp

inv/forw
4× 4

RF2× 1 RF4× 2 RF6× 3 RF8× 4 RF16× 8

Figure 9: Relative number of execution cycles on pipelined data paths generated for different resource constraints.

0.6

0.8

1

1.2

1.4

1.6

bdist2 1.03 1.03 1.06 1.03 1.09 1.08 1.14
Sort 0.87 0.9 0.9 0.87 0.89 0.95 0.98
dct32 1.36 1.38 1.46 1.28 1.36 1.39 1.46
Mp3 1.03 1.1 1.2 1.03 1.11 1.13 1.2

0.9 0.94 0.94 0.87 0.89 0.92 0.98

ALU 1 ALU 2 ALU 3 RF2× 1 RF4× 2 RF6× 3 RF8× 4

inv/forw
4× 4

Figure 10: Relative cycle time for nonpipelined data paths generated for different resource constraints.

14 Journal of Electrical and Computer Engineering

0.6

0.7

0.8

0.9

1

1.1

bdist2 0.8 0.81 0.81 0.8 0.86 0.86 0.89
Sort 0.74 0.74 0.74 0.74 0.8 0.78 0.81
dct32 0.98 0.98 0.98 0.93 0.98 0.96 1.02
Mp3 0.91 0.98 0.98 0.94 1 0.98 1.01

0.81 0.81 0.81 0.74 0.81 0.79 0.84

ALU 1 ALU 2 ALU 3

inv/forw
4× 4

RF2× 1 RF4× 2 RF6× 3 RF8× 4

Figure 11: Relative cycle time for pipelined data paths generated for different resource constraints.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

bdist2 0.85 0.85 0.87 1.01 0.73 0.73 0.77
Sort 0.77 0.79 0.8 0.77 0.79 0.84 0.87

dct32 1.17 1 1.01 1.24 1.02 0.98 1.01
Mp3 0.78 0.74 0.8 0.97 0.8 0.76 0.8

0.87 0.91 0.91 0.85 0.82 0.85 0.89

ALU 1 ALU 2 ALU 3

inv/forw
4 × 4

RF2 × 1 RF4 × 2 RF6 × 3 RF8 × 4

Figure 12: Relative execution time for nonpipelined data paths generated for different resource constraints.

0.6

0.7

0.8

0.9

1

bdist2 0.76 0.77 0.77 0.76 0.66 0.67 0.69
Sort 0.73 0.74 0.74 0.73 0.8 0.78 0.81
dct32 0.9 0.88 0.88 0.9 0.88 0.87 0.92
Mp3 0.78 0.79 0.79 0.9 0.84 0.79 0.82

0.8 0.8 0.81 0.73 0.8 0.78 0.83

ALU 1 ALU 2 ALU 3

inv/forw
4 × 4

RF2 × 1 RF4 × 2 RF6 × 3 RF8 × 4

Figure 13: Relative execution time for Pipelined data paths generated for different resource constraints.

Journal of Electrical and Computer Engineering 15

Table 5: Difference in components and parameters between respective baseline and generated design.

Benchmark Pipe ALU1 ALU2 ALU3 RF 2 × 1 RF 4 × 2 RF 6 × 3 RF 8 × 4 RF 16 × 8 IDp

bdist2
N #R = 64 #R = 64 #R = 64 #R = 64 #R = 64 #R = 64 #R = 64 #R = 64 Rf 8 × 4, 3 Alu, 2 Mul

Y #R = 32 #R = 32 #R = 32 #R = 32 #R = 32 #R = 32 #R = 32 #R = 32 Rf 8 × 4, 3 Alu, 2 Mul

Sort
N #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 Rf 6 × 3, 1 Alu

Y #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 Rf 6 × 3, 1 Alu

dct32
N Rf 4 × 2 Rf 6 × 3 Rf 8 × 4 — 2 Alu 3 Alu 3 Alu 3 Alu Rf 16 × 8, 4 Alu, 2 Mul

Y Rf 4 × 2 Rf 4 × 2 Rf 6 × 3 — 2 Alu 2 Alu 2 Alu 3 Alu Rf 16 × 8, 4 Alu, 2 Mul

Mp3
N — Rf 6 × 3 Rf 8 × 4 — 2 Alu 3 Alu 3 Alu 3 Alu Rf 16 × 8, 4 Alu, 2 Mul

Y Rf 4 × 2 Rf 6 × 3 Rf 6 × 3 — 2 Alu 2 Alu 2 Alu 2 Alu Rf 16 × 8, 4 Alu, 2 Mul

inv/forw 4 × 4
N #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 Rf 16 × 8, 4 Alu, 1 Mul

Y #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 #R = 16 Rf 16 × 8, 4 Alu, 1 Mul

to the baseline. Also, the number of cycles is not exactly the
same but slightly reduced. This effect is due to replacing of
buses in architecture specification with multiplexers which
allows for more efficient handling by the compiler. This
effect is particularly emphasized in case of bdist2. For
this benchmark, the improvements are small (0.82) for all
ALU configurations and may be attributed to the effect
of explicit multiplexer specification that results in more
efficient compiler handling and shorter prologue/epilogue
code. We see the further reduction to 0.67 for RF 4 × 2
configuration which exploits the parallelism of operations
executed on different units. No further improvement is seen
for further increase in the number of register file ports.
However, execution on the IDp, which has two ALU and
two multiplier units, experiences additional improvement in
number of cycles to 0.47.

Benchmark Sort is sequential in nature and, therefore,
it does not experience significant improvement regardless
of the number of ALUs or register file ports that are intro-
duced. Both benchmarks dct32 and Mp3 have abundance
of available parallelism. The dct32 benefits the most from
having two ALUs (ALU2-0.72), and the increase in number
of ports or adding more units (in IDp) contributes by only
4% of additional improvement. Similarly, Mp3 executes in
0.68 of the number of baseline execution cycles for ALU2
configuration. Note that specifying two ALUs as resource
constraint for both benchmarks results in an increase in the
number of RF ports and buses: since both instances of ALU
and one instance of multiplier are significantly utilized, the
resulting configurations have RF 6 × 3 and full connectivity
scheme. On the other hand, both benchmarks suffer from
significant increase of prologue/epilogue code which sets
back the savings in number of cycles that are obtained by
the “body” of the benchmark. Adding more ALUs does not
help in case of benchmark inv/forw 4 × 4. The benchmark
benefits the most from additional register file ports, because
this configuration exposes limited parallelism between the
operations that execute on functional units of different type.

As for the pipelined configurations, shown in Figure 9,
across all the benchmarks, maximum reduction in the
number of execution cycles for generated data paths (0.77) is
less than a maximum reduction for the nonpipelined designs
since the pipelining itself exploits some degree of available

parallelism. In case of bdist2, there is no improvement with
increased number of ALUs since the tool allocates single
RF 2 × 1. Same as for the nonpipelined configurations, the
minimal normalized number of cycles is reached for RF 4× 2
due to the increased simultaneous use of ALU and multiplier.
On the other hand, benchmark Sort does not change the
number of execution cycles since pipelining takes advantage
of already limited available parallelism.

For configurations ALU 1, ALU 2, and ALU 3, the tool
allocates, together with sufficient connectivity resources:

(i) for dct32: RF 4 × 2, RF 4 × 2 and RF 6 × 3,
respectively;

(ii) for Mp3: RF 4× 2, RF 6× 3 and RF 6× 3, respectively.

The most of the execution cycle reduction is brought by
an increase in the number of register file ports in case of
configuration ALU1. Increasing both number of ALUs and
ports brings down the normalized cycles only by 0.02 and
0.04 down to 0.90 and 0.81 for dct32 and Mp3, respectively.
For all the RF configurations, both benchmarks have the
same trend for allocation: the tool recognizes a potential for
adding more ALUs and, therefore, two ALUs are allocated for
all of them, except for RF 16× 8 configuration of dct32 where
three ALUs are allocated. One would expect the tool would
allocate more units for RF 8 × 4 and RF 16 × 8. However,
the data dependencies limit concurrent usage of more units
than allocated. The results for IDp illustrate this: even though
IDp has three ALUs and two multipliers, further reduction in
the number of normalized cycles is only by 0.01 to 0.02 for
dct32 and Mp3, respectively. Similarly to Sort, inv/forw 4 ×
4 has almost no improvement if the number of instances of
increases.

Figures 10 and 11 show normalized cycle time for
nonpipelined and pipelined automatically generated designs.
We observed the cycle time in order to explain the total
execution time of each benchmark. Current version of the
tool does not take into account postsynthesis results. How-
ever, we believe that this feature is crucial for DFM and are
currently working on incorporating prelayout information in
data path optimization.

Results for normalized cycle time for designs are intu-
itive: as complexity of generated data path increases, so does

16 Journal of Electrical and Computer Engineering

the cycle time. For nonpipelined designs (Figure 10), designs
for all benchmarks except Sort have larger cycle time than
for corresponding baseline. The main contributor to cycle
time length is register file: as the number of ports increase,
the decoding logic increases and so does the cycle time. In
case of Sort, cycle time is lower because of the reduction of
the register file size. For nonpipelined configurations, the
normalized cycle time ranges from 0.85 to 1.46. Pipelined
configurations (Figure 11) uniformly have smaller or equal
cycle time as the baseline configuration. For each benchmark,
there is almost no difference in cycle time across all ALU
configurations. Mp3 is the only benchmark that has signif-
icantly lower normalized cycle time for ALU1 configuration
(0.91) than for the remaining two ALU configurations (0.98).
RF configurations experience the increase in cycle time with
an increase in complexity. For RF 6 × 3 in case of Sort,
dct32, Mp3, and inv/forw 4 × 4, there is a small decrease in
cycle time comparing to RF 4 × 2 configurations because
the synthesis too manages to decrease combinational delay
of interconnect.

Figures 12 and 13 show normalized total execution
time. Across all configurations and all benchmarks, except
all nonpipelined configurations for dct32, total execution
time has been reduced. Nonpipelined dct32 experiences
increase in execution time for all but ALU2 configuration:
the reduction in number of cycles is not sufficient to offset
the large increase in the cycle time. The reduction in number
of cycles is less than expected because of explosion of
prologue/epilogue code. The nonpipelined configurations
reduce the execution time up to 0.73, 0.77, 1.00, 0.74,
and 0.82 for bdist2, Sort, dct32, Mp3, and inv/forw 4 ×
4, respectively. Normalized execution times for all non-
pipelined configurations, except for the Sort, are greater than
the corresponding normalized number of cycles. The Sort
has further decrease in execution time due to significant
cycle time reduction (resulting from “minimized” data
path comparing to the baseline). Furthermore, for dct32
and Mp3, that perform the best for ALU2, several other
configurations have minimum normalized number of cycles.
Pipelined configurations uniformly experience smaller nor-
malized execution time compared to the nonpipelined. The
minimums are 0.66, 0.73, 0.88, 0.79, and 0.73 for bdist2,
Sort, dct32, Mp3, and inv/forw 4 × 4, respectively. For all
applications, each normalized execution time is smaller than
the corresponding normalized number of execution cycles.
Furthermore, the configurations that perform in minimal
time are the same as the one that performs in minimal
number of cycles.

In order to find a data path with a minimum execution
time and the best configuration, we plot for each benchmark
absolute execution time in Figure 14. The leftmost bar
shows the execution time on a baseline architecture. The
best implementation for bdist2 is pipelined RF 4 × 2.
RF 6 × 3 has only slightly longer execution time, but since
it uses more resources, it is a less desirable (recommendable)
choice. Benchmark Sort benefits from reduction of resources
and, therefore, the best configuration is ALU1. For this
benchmark, all of the pipelined configurations perform
worse than corresponding nonpipelined. Benchmark dct32,

despite having plethora of available parallelism, performs
good only for nonpipelined Baseline, ALU2, and RF 6 × 3
configurations. The pipelined configurations do not perform
as well as nonpipelined. To improve the current generated
pipelined architectures, we may consider use of multicycle
and pipelined functional units which may reduce the cycle
time. Furthermore, if there is only single function to be per-
formed on the generated hardware module, both prologue
and epilogue code may be eliminated and the speedup of
“parallel” architectures would increase. Here, we presented
the results for all the applications with prologue/epilogue
code because we believe that the application execution needs
to have data received and sent proceeding and following the
execution of the benchmark body. Therefore, benchmark
is a function that needs to be called and, therefore, the
prologue and epilogue codes are required. In this case, the
number of registers that need to be stored and restored,
and hence the length of prologue and epilogue code, needs
to be estimated. Nonpipelined designs for Mp3 perform
better than pipelined, for the same reason. Overall, the
best design would be for ALU2 configuration with 32%
performance improvement over the baseline. Similarly,
benchmark inv/forw 4 × 4 has smaller execution time for all
nonpipelined configurations than for the pipelined ones. The
peak performance improvement, 37%, is achieved for RF 4×
2 configuration.

6. Results: Selection Algorithm Quality

Table 6 shows the comparison of manually designed archi-
tectures and the automatically generated ones. The manual
designs were created by computer engineering graduate
students. The students were asked to select the components
for the templatized data path, as the one in Figure 7, based
on the application C code. Running and profiling the code
on the host machine with the same input as used for the
automatic generation data were allowed.

There is the only one column for manual designs
in Table 6 because the designers had the same compo-
nent/parameter selection for nonpipelined and for pipelined
data paths. However, our experiments in Section 5 show
that often there is less resources required for pipelined
configurations. Such examples are configurations ALU2,
ALU3, RF 6 × 3, and RF 8 × 4 for dct32 in Table 5.
The nonpipelined and pipelined configurations presented in
Table 6 are those that have the smallest number of execution
cycles for the given benchmark, as seen in Figures 8 and 9.

It is interesting to notice that for manual designs, in
most cases, the number of instances and parameters of
selected register files and functional units outnumbers the
one in the best generated architectures. For example, for
benchmark bdist2, manual designer anticipated use of four
ALUs. The nonpipelined IDp for benchmark bdist2 needs
only three and pipelined IDp only one ALU, which shows
that the designer overestimates the number of ALUs. Also,
the optimal automatically generated data path uses only one
ALU in both nonpipelined and pipelined cases. However,
for this benchmark, the designer underestimated register file

Journal of Electrical and Computer Engineering 17

Te
xe

 (
s)

Nonpipelined Pipelined
0E+00

1E−05

2E−05

3E−05

4E−05

5E−05

6E−05

7E−05

8E−05

9E−05

(a) bdist2

Te
xe

 (
s)

Nonpipelined Pipelined
0E+00

2.5E−04

5E−04

7.5E−04

1E−03

1.25E−03

1.5E−03

1.75E−05

2E−03

2.25E−03

2.5E−03

(b) Sort

Te
xe

 (
s)

Nonpipelined Pipelined
0E+00

2.5E−04

5E−04

7.5E−04

1E−03

1.25E−03

1.5E−03

1.75E−05

2E−03

2.25E−03

2.5E−03

(c) dct32

Te
xe

 (
s)

Nonpipelined Pipelined
0E+00

2.5E−03

5E−03

7.5E−03

1E−02

1.25E−02

1.5E−02

1.75E−02

2E−02

2.25E−02

2.5E−02

(d) Mp3

Te
xe

 (
s)

Nonpipelined Pipelined

Baseline
ALU 1
ALU 2
ALU 3

RF2× 1
RF4× 2
RF6× 3
RF8× 4

0E+00

2.5E−04

5E−04

7.5E−04

1E−03

1.25E−03

1.5E−03

1.75E−05

2E−03

2.25E−03

2.5E−03

(e) inv/forw 4 × 4

Figure 14: Total execution time on generated data paths.

size: in case where there are more functional units, more
operations may be performed in parallel and, therefore, there
will be more operands/registers required. The tendency to
allocate manually more resources than actually required may
be explain the best on the example of function inverse4 × 4
from H.264, shown in Algorithm 3.

The designer allocates four ALUs based on an observa-
tion that code in lines 7, 8, 9, and 10 is not dependent and
an assumption that once all of the operations from line 2
to line 5 are completed, the entire block of lines 7 to 10

will be executed at the same time. However, code in lines
2 to 5 has data dependencies, requires sequential execution,
and performs memory access. Therefore, it makes sense to
compute expressions in line 7 and line 8 as soon as t0 and t2
are available. Hence, no need for 4 ALU in the data path.

Similarly, for dct32, data dependencies are not “visible”
from C code. Therefore, the designer allocates four ALUs,
two multipliers, a comparator, and two adders. IDp for dct32
has only three ALUs, two multipliers, and a comparator even
though it has a register file RF 16 × 8. IDp configuration

18 Journal of Electrical and Computer Engineering

Table 6: Comparison between components and parameters of manual and automatically generated design.

Benchmark Manual
Automatic

Nonpipe Pipe

bdist2
#R = 32, Rf 8 × 4, #R = 64, Rf 4 × 2, #R = 32, Rf 4 × 2,

4 Alu, 1 Mul 1 Alu, 1 Mul, 1 Comp 1 Alu, 1 Mul, 1 Comp

Sort
#R = 32, Rf 4 × 2, #R = 32, Rf 2 × 1, #R = 32, Rf 2 × 1,

1 Alu 1 Alu, 1 Mul, 1 Comp 1 Alu, 1 Mul, 1 Comp

dct32
#R = 48, Rf 8 × 4, #R = 128, Rf 8 × 4, #R = 128, Rf 4 × 2,

4 Alu, 2 Mul, 1 Comp, 2 Adders 3 Alu, 1 Mul, 1 Comp 2 Alu, 1 Mul, 1 Comp

Mp3
#R > 16, Rf 16 × 8, 4 Alu, 8 Mul #R = 128, Rf 8 × 4, #R = 128, Rf 2 × 1,

1 Or, 1 Comp, 1 NotEq Comp, 1 Div 3 Alu, 1 Mul, 1 Comp, 1 Div 1 Alu, 1 Mul, 1 Comp, 1 Div

inv/forw 4 × 4
#R = 32, Rf 8 × 4, #R = 16, Rf 4 × 2, #R = 16, Rf 2 × 1,

4 Alu, 1 Comp 1 Alu, 1, Mul, 1 Comp 1 Alu, 1 Mul, 1 Comp

1: . . .
2: t0 = ∗(pblock++);
3: t1 = ∗(pblock++);
4: t2 = ∗(pblock++);
5: t3 = ∗(pblock);
6:
7: p0 = t0 + t2;
8: p1 = t0 − t2;
9: p2 = SHIFT(t1, 1) − t3;
10: p3 = t1 + SHIFT(t3, 1);
11: . . .

Algorithm 3: Part of inverse4 × 4 C code.

performs in 0.68 of the baseline, which is only 2% better than
configurations ALU3, RF 8 × 4, and RF 16 × 8 that have
less resources. The number of registers in the register file is
computed based on the number of units (eight without the
comparator), the fact that each unit has two inputs and one
output, and assumption that for each source/destination the
data memory will be used twice. Therefore,

#R = 8× (2 + 1)× 2 = 48, (6)

that is, the designer decides on 48 registers. Practically,
with these many units, there are more than 48 registers
required for temporary variables, if we want to avoid access
to memory for fetching data and storing results.

Manual selection of components and parameters for Mp3
shows the same properties: the number of functional units
was overestimated, the number of registers in the register
file was underestimated, and the pipelining was selected after
the decision on units had been made. The designer profiled
the application and found that among all computationally
intensive functions, function synth full contributes 35% to
total execution. The designer identified eight multiplications
and four additions that may be executed in parallel in this
function. Also, only the lower bound for the number of
registers in the register file was specified.

In order to better understand cost/performance trade-
off for manually and automatically generated data paths, we

defined a total cost of a design Cdesign as a sum of slices and a
sum of RAMs for all the selected components:

Cdesign =
∑

components

slice +
∑

components

RAM. (7)

We synthesized all available components and assigned cost in
terms of slices and RAMs. We generated both nonpipelined
and pipelined versions of manual design, so that we can
perform fair comparison of cost and performance. We
assumed that when pipelining was selected all inputs and
outputs of functional units have a pipeline register (uniform
pipelining, such as shown in Figure 7). Cost of pipeline
registers was added to the total cost of pipelined data path
designs. The performance is measured in the number of
execution cycles, since neither the designers nor the tool were
given any synthesis information as an input.

Figures 15, 16, 17, 18, and 19 show set of
cost/performance graphs for all presented benchmarks.
All automatically generated designs have significantly
lower cost compared to the ones manually derived from
C code. Relative to the corresponding manual designs,
the automatically generated ones have from 7.41% (dct32
nonpipelined) to 82.13% (pipelined inv/forw 4 × 4) less
slices and from 8.22% (nonpipelined bdist2) to 87.46%
(pipelined Mp3) less RAMs. As seen in the performance
graphs, overhead in the number of cycles is negligible for all
designs except for the above-mentioned pipelined Mp3. Mp3
has 18.84% overhead, but 81.50% and 87.46% less slices and
RAMs, which according to us is a reasonable trade-off. For
all the remaining designs, overhead of the number of cycles
ranges from 0.00% to 0.68% relative to the corresponding
manual design.

This experiment showed that translating C code into
simple hardware design is a nontrivial process. Selecting
components and their parameters, tracking data and control
dependencies, and estimating operation sequencing and
available parallelism based on high level description results
in underutilization of data path elements. On the other hand,
using our tool, within the same time, a designer may explore
many different alternatives and create working solution that
satisfies his or her needs.

Journal of Electrical and Computer Engineering 19

bdist2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Manual
non

pipelined

Automatic
non

pipelined

Manual
pipelined

Automatic
pipelined

Slice

RAM

(a) Cost

bdist2

0

500

1000

1500

2000

2500

3000

3500

Manual
non

pipelined

Automatic
non

pipelined

Manual
pipelined

Automatic
pipelined

Number of cycles

(b) Performance

Figure 15: bdist2: number of slices, number of RAMs, and number of cycles for manually selected and automatically generated data paths.

Sort

0

500

1000

1500

2000

2500

3000

3500

4000

Manual
non

pipelined

Automatic
non

pipelined

Manual
pipelined

Automatic
pipelined

Slice
RAM

(a) Cost

Sort

0

20000

40000

60000

80000

100000

120000

140000

160000

Manual
non

pipelined

Automatic
non

pipelined

Manual
pipelined

Automatic
pipelined

Number of cycles

(b) Performance

Figure 16: Sort: number of slices, number of RAMs, and number of cycles for manually selected and automatically generated data paths.

7. Results: Design Refinement Quality

In this section, we present design refinement quality for
two applications dct32 and Mp3 and compare automatically
generated data paths to implementations using HLS tool and
MicroBlaze soft processor.

7.1. Dct32. Figure 20 plots values for the number of cycles
(No.cycle), clock cycle time (Tclk), and total execution time
(Texe), while Figure 21 plots values for number of slices and
bRAMs (Slice and BRAM) for several different data paths for
dct32 benchmark. All the values have been normalized to the
corresponding values of a manually designed data path for
the same application. Note that the same C code has been

used as a starting point for all designs, including manual. The
graphs show following data paths:

(i) Baseline—corresponds to a pipelined version of a
baseline design for the dct32 used in 5,

(ii) ALU1-N and RF 4 × 2-N—generated nonpipelined
data paths for constraints ALU 1 and RF 4 × 2,
respectively,

(iii) RF 4 × 2-P—generated pipelined data path for
constraint RF 4 × 2,

(iv) HLS—a design generated by academic high level
synthesis tool [9],

(v) MicroBlaze—a design implemented on soft processor
MicroBlaze [10].

20 Journal of Electrical and Computer Engineering

dct32

0

5000

10000

15000

20000

25000

Manual
non

pipelined

Automatic
non

pipelined

Manual
pipelined

Automatic
pipelined

Slice
RAM

(a) Cost

dct32

0

20000

40000

60000

80000

100000

120000

140000

Manual
non

pipelined

Automatic
non

pipelined

Manual
pipelined

Automatic
pipelined

Number of cycles

(b) Performance

Figure 17: dct32: number of slices, number of RAMs, and number of cycles for manually selected and automatically generated data paths.

Mp3

0

10000

20000

30000

40000

50000

60000

Manual
non

pipelined

Automatic
non

pipelined

Manual

pipelined

Automatic

pipelined

Slice
RAM

(a) Cost

Mp3

0

200000

400000

600000

800000

1000000

1200000

1400000

Manual
non

pipelined

Automatic
non

pipelined

Manual
pipelined

Automatic
pipelined

Number of cycles

(b) Performance

Figure 18: Mp3: number of slices, number of RAMs, and number of cycles for manually selected and automatically generated data paths.

To alleviate different assumptions of different tools
and designers for wrapping the function by send/receive
primitives, we present here the results for the body of
the dct32 function, contrary to experiments in 5. The
manual implementation has been designed by third-party
RTL designer [11]. It is important to notice that the largest
normalized value across all performance metrics for the
Baseline and all the generated designs is 2.59 times the
corresponding metric of the manual design, where HLS and
MicroBlaze reach 3.06 and 14.67, respectively. Hence, for the
generated designs, none of the compared metrics are several
orders of magnitude larger than the manual design. The
overhead of number of cycles for generated designs range

from 23% (i.e 1.23 on the graph) to 80% of the manual
design, while cycle time experiences from 25% (0.85 in the
figure) speedup to 25% (1.25 in the figure) slowdown. The
best generated design RF 4 × 2-P has 1.23 times longer
execution time comparing to the manual.

Baseline and all generated architectures have from 0.53
to 0.64 times slices and 2.29 times block RAMs (bRAMs)
compared to the manual design. This is because the tool
attempts to map all storage elements to bRAM on FPGA.
On the other hand, the design generated by HLS tool
uses 1.36 times slices and only 0.14 times bRAMs due to
the heavy use of registers and multiplexers. The generated
designs outperform the design produced by HLS tool with

Journal of Electrical and Computer Engineering 21

0

1000

2000

3000

4000

5000

6000

7000

8000

Manual
non

pipelined

Automatic
non

pipelined

Manual

pipelined

Automatic

pipelined

Slice
RAM

inv/forw 4 × 4

(a) Cost

0

20000

40000

60000

80000

100000

120000

140000

160000

Manual
non-

pipelined

Automatic
non-

pipelined

Manual
pipelined

Automatic
pipelined

Number of cycles

inv/forw 4 × 4

(b) Performance

Figure 19: inv/forw 4 × 4: number of slices, number of RAMs, and number of cycles for manually selected and automatically generated data
paths.

0

2

4

6

8

10

12

14

16

No. of cycles
Tclk

Texec

2.51 1.8 1.23 1.52 1.83 6.14

Tclk

No. of
cycles

1.03 1.2 1.2 0.81 1.67 2.39

Texec 2.59 2.16 1.47 1.23 3.06 14.67

Baseline ALU1-N HLS MicroBlazeRF4× 2-N RF4× 2-P

Figure 20: Performance comparison for dct32 relative to manual implementation.

22 Journal of Electrical and Computer Engineering

0

0.5

1

1.5

2

2.5

Slice

Slice

0.53 0.66 0.66 0.64 1.36 0.4

BRAM 2.29 2.29 2.29 2.29 0.14 0.57

Baseline HLS MicroBlazeRF4 × 2- RF4 × 2-N PALU1-N

BRAM

Figure 21: Area comparison for dct32 relative to manual implementation.

respect to all the metrics except the number of used bRAMs.
Moreover, the average generation time for dct32 is 2.3
seconds while it took 3 man-weeks for the manual design.
The fastest extracted design has only 23% of execution
overhead and a negligible generation time compared to
the manual design. Hence, we believe that the proposed
data path extraction from C code is valuable technique
for creation of an application-specific data path design.
Moreover, all the generated designs outperform MicroBlaze:
the best automatically generated design RF 4 × 2-P has 1.23
times longer execution time, where MicroBlaze has 14.67
times longer one. However, MicroBlaze utilizes smaller area:
0.4 slices and 0.57 bRAMSs, where our best design utilizes
0.64 slices ad 2.29 bRAMs.

7.2. Mp3. Figures 22 and 23 plot the same performance
and area metrics as the previous two figures, but relative
to the implementation on MicroBlaze, because manual
implementation for Mp3 is not available. Also, the HLS tool
could not be used, due to the capacity issues, hence we
present the results for all the remaining data path designs.
We, also, used the the same C code as an input to all tools.
The graphs show following data paths:

(i) Baseline—corresponds to a pipelined version of a
baseline design for the dct32 used in Section 5,

(ii) ALU2-N—generated nonpipelined data paths for
constraints ALU 2,

(iii) RF 6 × 3-P and ALU1-P—generated pipelined data
path for constraint RF 4 × 2 and ALU 1, respectively.

With respect to performance, all the designs outperform
the MicroBlaze implementation. The number of cycles
improvements range from 73% to 88% (i.e., 0.27 to 0.12
on the graph), and the cycle time improvement form 24%
to 46% (0.76 to 0.54). This significant improvement in
both number of execution cycles and the cycle time directly
translates to significant savings in total execution time. The
best execution time is only a fraction on execution time on
MicroBlaze (0.11, i.e., 89% improvement) and it is achieved
while running on RF 4 × 2-N and RF 4 × 2-P data path
configurations. The significant performance improvements
are because of the use of extra resources: register file with
more input/output ports and more functional units that
facilitate efficient use of available parallelism. This directly
translates into the use of more slices: from 3.53 to 6.12 times
more than in the MicroBlaze implementation. Similarly to
dct32, the tool maps all the storage elements to bRAMs on
FPGA, and hence the high bRAM overhead compared to the
MicroBlaze implementation.

Journal of Electrical and Computer Engineering 23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No. of
cycles

No. of cycles

0.27 0.14 0.14 0.23

Tclk 0.59 0.76 0.78 0.54

Texec 0.16 0.11 0.11 0.12

Baseline ALU2-N RF 6× 3-N ALU1-P

Tclk
Texec

Figure 22: Performance comparison for Mp3 relative to implementation on MicroBlaze.

8. Related Work

In order to accomplish performance goals, ASIPs and IS
extension use configurable and extensible processors. One
such processor is Xtensa [12] that allows the designer to
configure features like memories, external buses, protocols,
and commonly used peripherals [13, 14]. Xtensa also allows
the designer to specify a set of instruction set extensions,
hardware for which is incorporated within the processor. Our
work presents algorithms that generate custom data path,
which determines a set of (micro-) operations that can be
preformed. This approach is orthogonal to ASIP/IS extension
approach. The automatically generated data path can be used
in ASIP or added to a processor, as custom hardware unit. In
order to do so, one would need to identify the instructions
that are to be executed on such a data path. The automated
extraction of instructions from a set of operations is a topic
of our future work.

The Tensilica XPRES (Xtensa PRocessor Extension Syn-
thesis) Compiler [15] automatically generates extensions that
are formed from the existing instructions in style of VLIW,
vector, fused operations, or combination of those. Therefore,
automated customizations are possible only within bound
of those combinations of existing instructions. IS extensions

also require the decoder modifications in order to incor-
porate new instructions. For example, having VLIW-style
(parallel) instructions requires multiple parallel decoders
[15], which not only increase hardware cost (that may
affect the cycle time) but also limit the possible number of
instructions that may be executed in parallel. Our approach
also automatically generates data path which defines a set
of possible (micro-) operations. However, in our approach,
the decoding stage has been removed. Therefore, there is no
increase in hardware complexity and no limitations on the
number and type of operations to be executed in parallel. In
case where the code size exceeds the size of on-chip memory,
due to the number of operations that are specified to be
executed in parallel, “instruction” caches and compression
techniques may be employed, both of them have been in
scope of our current research.

The IS extensions, in case of Stretch processor [16],
are implemented using configurable Xtensa processor and
Instruction Set Extension Fabric (ISEF). The designer is
responsible for, using available tools, identifying the critical
portion of the code “hot spot” and rewriting the code
so the “hot spot” is isolated into the custom instruction.
The custom instruction is then implemented in ISEF.
Thus, the application code needs to be modified which

24 Journal of Electrical and Computer Engineering

0

2

4

6

8

10

12

14

16

18

Slice

Slice

3.46 3.74 6.12 1.42

BRAM

BRAM

16 16 16 16

Baseline ALU2-N RF 6× 3-N ALU1-P

Figure 23: Area comparison for Mp3 relative to implementation on MicroBlaze.

requires expertise and potentially more functional testing.
The designer is expected to explicitly allocate the extension
registers. In contrary, our approach allows but does not
require C code modifications and does not require the
designer to manipulate the underlying hardware directly.
In both previous cases, it is required that the designer has
expertise in both software and hardware engineering.

On the other hand, C-to-RTL tools, such as Catapult
Synthesis [17], Behaviour Synthesizer Cyber [18], and
Cynthesizer [19] generate the data path and the controller
simultaneously, which may lead to capacity issues, like the
one in the case of GSM algorithm [20]. Catapult [17]
allows control over resource sharing, loop unrolling, and
loop pipelining. It also provides technology-specific libraries
[21] that allow specific hardware instances to be inferred
from C code. However, this requires code modifications. As
reported by Mentor Graphics, code modifications took one
week while the synthesis took one day. Also, the biggest listed
C code had 480 lines of code. Other examples published in
[20] include W-CDMA 3G modem algorithm called EPC
and 2D graphics acceleration algorithm IDCT (which has
the same complexity as dct32 used here). Unfortunately, no
number of lines of code was reported. Behavior Synthesizer
Cyber [18], in addition to the abovementioned, provides
various knobs for fine tuning, such as multiple clocks,
gated clocks, synchronous/asynchronous resert, and syn-
chronous/asynchronous/pipelined memory. The C code is

extended to describe hardware by adding support for bit-
length and in-out declarations; synchronization, clocking
and concurrency; various data transfers (last two often
not required). Such description is called behavioral C or
BDL. Therefore, as seen in [23], the existing C code needs
to be modified for in/out declaration, fifo requests, and
so forth. In addition to control over loop unrolling and
pipelining, Cynthesizer [19] also provides control over
operator balancing, array flattening, chaining, mapping of
arrays or array indexes to memory, and so forth. The designer
may also select a part of design to be implemented in
gate level design in a given number of cycles. Some of
examples of implemented algorithms include multimedia
applications [24]: H.264, video scaling, DCT, IDCT, motion
estimation, NTSC encoder, VC1; security algorithms [25]:
AES, DES, SHA, and MD5 encryption/decryption standards;
digital media and security applications for wireless devices
[26]: Viterbi encoders and decoders and proprietary noise
rejection algorithms.

In case of all of the tools, the data path is built “on
the fly” and heavily codependent on controller generation.
Moreover, the resulting controller is usually in FSM style.
The use of the FSM imposes size constraints for the design.
Some of the tools, like Behaviour Synthesizer Cyber [18], and
Cynthesizer [19], do provide FSM partitioning or hierarchi-
cal FSMs in order to expand beyond these constraints. To
overcome capacity issues Catapult then uses its hierarchical

Journal of Electrical and Computer Engineering 25

engine to synthesize each function to concurrent hierarchical
blocks with autonomous FSMs, control logic, and datapaths
[27]. The fundamental difference is in the separation of a
data path generation from a controller generation: this allows
us to analyze code and perform profiling before the data
path generation. Moreover, the separation of data path and
controller generation reduces the problem size, therefore,
reducing the size and quantity of the data structures that a
tool needs to maintain and manipulate on. Besides, while
all the above-mentioned tools do allow that a designer gives
guideline to a tool, there is no mechanism by which a
designer may influence a choice of particular components
(other than inferring via code change in case of Catapult).
Therefore, after the design has been made, designer may not
make any modifications in the datapath. Contrary, the pro-
posed technique separates creation of the data path and the
controller, which automatically overcomes size constraint.
Also, the designer may specify a subset of components and
have the remaining of the data path automatically generated.
Finally, the data path can be modified as little or as much
after the automatic generation. Therefore, we find that
providing designer with ability to control the automated
design process and the ability to handle any size of C code
are valuable assets in data path generation.

Many traditional HLS algorithms, such as [28, 29], create
data path while performing scheduling and binding. The
work in [28] uses ILP formulation with emphasis on efficient
use of library components, which makes it applicable to
fairly small input code. The work in [29] tries to balance
distribution of operations over the allowed time in order to
minimize resource requirement hence the algorithm makes
decisions considering only local application requirements.
The work in [30] takes into account global application
requirements to perform allocation and scheduling simul-
taneously using simulated annealing. In contrast with the
previous approaches, we separate data path creation from
the scheduling and/or binding, that is, controller creation.
This separation allows potential reuse of created data path
by reprogramming, controllability over the design process,
and use prelayout information for data path architecture
creation.

The work in [31–35] separate allocation from binding
and scheduling. The work in [31] uses “hill climbing”
algorithm to optimize number and type of functional unit
allocated, while the work in [32] applies clique partitioning
in order to minimize storage elements, units, and inter-
connect. The work in [33] uses the schedule to determine
the minimum required number of functional units, buses,
register files, and ROMs. Then, the interconnect of the
resulting data path is optimized by exploring different
binding options for data types, variables, and operations. In
[34], the expert system breaks down the global goals into
local constraints (resource, control units, clock period) while
iteratively moves toward satisfying the designer’s specifica-
tion. It creates and evaluates several intermediate designs
using the schedule and estimated timing. However, all of the
afore-mentioned traditional HLS techniques use FSM-style
controller. Creation and synthesis of such state machine that
correspond to thousands of lines of C code which, to the best

of our knowledge, is not practically possible. In contrast to
this, having programmable controller allows us to apply our
technique to (for all practical purposes) any size of C code,
as it was shown in Section 4.

Similarly to our approach, the work in [35] does not
have limitations on the input size, since it uses horizontally
microcoded control unit. On the other hand, it requires
specification in language other than C and it produces only
nonpipelined designs, none of which is the restriction of the
proposed technique.

9. Conclusions and Future Work

In this paper, we presented a novel solution to constructing
a processor core from a given application C code. We
first create an initial data path design by matching code
properties to hardware elements. Then, we iteratively refine
it under given user constraints. The proposed technique
allows handling of any size of C code, controllability of
the design process, and independent optimization of data
path and controller. We presented results for wide range of
benchmarks, including industrial size applications like the
MP3 decoder. Each data path architecture was generated in
less than a minute allowing the designer to explore several
different configurations in much less time than required for
manual design. We define a total cost of a design in terms of
total number of slices and RAMs for all selected components,
and performance in terms of number of the execution cycles.
Our experiments showed that up to 82.13% of slices and
87.46% of RAMs were saved. The number of execution cycles
was 18.84% more in case of a single benchmark and for
the remaining benchmarks, the maximum increase in the
number of cycles was 0.68%. We measured design refinement
quality on an example of dct32 for which we synthesized all
the designs on an FPGA board. We also showed that the
best generated data path architecture is only 23% slower and
had 2.29 times more BRAMs and 0.64 times slices utilized
compared to the manual design. In the future, we plan of
optimizing the generated core area, performance, and power
by automatically determining the best control and data path
pipeline configuration.

References

[1] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification
and Design of Embedded Systems, Prentice-Hall, Englewood
Cliffs, NJ, USA, 1994.

[2] D. Gajski, “Nisc: the ultimate reconfigurable component,”
Tech. Rep. TR 03-28, University of California-Irvine, 2003.

[3] M. Reshadi and D. Gajski, “A cycle-accurate compilation algo-
rithm for custom pipelined datapaths,” in Proceedings of
the 3rd IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and Systems Synthesis CODES+ISSS,
pp. 21–26, September 2005.

[4] M. Reshadi, B. Gorjiara, and D. Gajski, “Utilizing horizontal
and vertical parallelism with a no-instruction-set compiler for
custom datapaths,” in Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and
Processors, pp. 69–74, October 2005.

26 Journal of Electrical and Computer Engineering

[5] D. Gajski and M. Reshadi, “Nisc application and advantages,”
Tech. Rep. TR 04-12, University of California-Irvine, 2004.

[6] J. Trajkovic and D. D. Gajski, “Generation of custom co-
processor structure from C-code,” Tech. Rep. CECS-TR-08-
05, Center for Embedded Computer Systems, University of
California-Irvine, 2008.

[7] B. Gorjiara, M. Reshadi, P. Chandraiah, and D. Gajski,
“Generic netlist representation for system and pe level design
exploration,” in Proceedings of the 4th International Conference
on Hardware/Software Codesign and System Synthesis, pp. 282–
287, ACM, New York, NY, USA, 2006.

[8] B. Gorjiara, M. Reshadi, and D. Gajski, “Generic architecture
description for retargetable compilation and synthesis of
application-specific pipelined ips,” in Proceedings of the Pro-
ceedings of International Conference on Computer Design
(ICCD ’06), 2006.

[9] D. Shin, A. Gerstlauer, R. Dömer, and D. D. Gajski, “An inter-
active design environment for C-based high-level synthesis,”
in IESS, A. Rettberg, M. C. Zanella, R. Dömer, A. Gerstlauer,
and F.-J. Rammig, Eds., vol. 231 of IFIP, pp. 135–144, Springer,
2007.

[10] Xilinx: MicroBlaze Soft Processor Core, 2008, http://www
.xilinx.com/tools/microblaze.htm.

[11] R. Ang, http://www.cecs.uci.edu/presentation slides/ESE-
Back-End2.0-notes.pdf.

[12] Tensilica: Xtensa LX, 2005, http://www.tensilica.com/products
/xtensa LX.htm.

[13] Automated Configurable Processor Design Flow, White Paper,
Tensilica, 2005, http://www.tensilica.com/pdf/Tools white
paper final-1.pdf.

[14] Diamond Standard Processor Core Family Architecture,
White Paper, Tensilica, 2006, http://www.tensilica.com/pdf/
DiamondWP.pdf.

[15] D. Goodwin and D. Petkov, “Automatic generation of appli-
cation specific processors,” in Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embed-
ded Systems, 2003.

[16] Stretch: S5000 Software-Configurable Processors, 2008, http://
www.stretchinc.com/products/devices.php.

[17] Mentor Graphics Catapult Synthesis, 2008, http://www
.mentor.com/esl/catapult/overview//index.cfm.

[18] NEC CyberWorkBench, 2008, http://www.necst.co.jp/prod-
uct/cwb/english/index.html.

[19] Forte Design System Cynthesizer, 2008, http://www.forteds
.com/products/cynthesizer.asp.

[20] Mentor Graphics Catapult Synthesis—Ericsson Success Story,
2011, http://www.mentor.com/esl/success/ericsson-success.

[21] Mentor Graphics Technical Publications: Designing High Per-
formance DSP Hardware using Catapult C Synthesis
and the Altera Accelerated Libraries, 2008, http://www.mentor
.com/techpapers/fulfillment/upload/ mentorpaper 36558.pdf.

[22] Mentor Graphics Technical Publications: Alcatel Conquers
the Next Frontier of Design Space Exploration using
Cat-apult C Synthesis, 2008, http://www.mentor.com/
techpapers/fulfillment/upload/mentorpaper 22739.pdf.

[23] K. Wakabayashi, “C-based synthesis experiences with a behav-
ior synthesizer, Cyber,” in Proceedings of the Proceedings of the
Conference on Design, Automation and Test in Europe (DATE
’99), p. 83, 1999.

[24] Forte Design System Cynthesizer—Applications: Digital
Media, 2008, http://www.forteds.com/applications/digitalme-
dia.asp.

[25] Forte Design System Cynthesizer—Applications: Security,
2008, http://www.forteds.com/applications/security.asp.

[26] Forte Design System Cynthesizer—Applications: Wireless,
2008, http://www.forteds.com/applications/wireless.asp.

[27] Mentor Graphics Catapult Datasheet, 2010, http://www
.mentor.com/esl/catapult/upload/Catapult DS.pdf.

[28] B. Landwehr, P. Marwedel, and R. Dömer, “OSCAR: optimum
simultaneous scheduling, allocation and resource binding
based on integer programming,” in Proceedings of the European
Design Automation Conference, pp. 90–95, IEEE Computer
Society Press, Grenoble, France, 1994.

[29] P. G. Paulin and J. P. Knight, “Force-directed scheduling
for the behavioral synthesis of ASIC’s,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
8, no. 6, pp. 661–679, 1989.

[30] S. Devadas and A. R. Newton, “Algorithms for hardware
allocation in data path synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
8, no. 7, pp. 768–781, 1989.

[31] P. Gutberlet, J. Müller, H. Krämer, and W. Rosenstiel, “Auto-
matic module allocation in high level synthesis,” in Proceedings
of the Conference on European Design Automation (EURO-DAC
’92), pp. 328–333, 1992.

[32] C. J. Tseng and D. P. Siewiorek, “Automated synthesis of data
paths in digital systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 5, no. 3,
pp. 379–395, 1986.

[33] F.-S. Tsai and Y.-C. Hsu, “STAR: an automatic data path alloca-
tor,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 11, no. 9, pp. 1053–1064, 1992.

[34] F. Brewer and D. D. Gajski, “Chippe: a system for constraint
driven behavioral synthesis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 9, no. 7,
pp. 681–695, 1990.

[35] P. Marwedel, “The MIMOLA system: detailed description of
the system software,” in Proceedings of the Design Automation
Conference, ACM/IEEE, 1993.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

