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We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear
integro-differential equations of fractional order q ∈ (1, 2] based on reproducing kernel space
method. According to our work, the analytical solution of the equations is represented in the
reproducing kernel space which we construct and so the n-term approximation. At the same time,
the n-term approximation is proved to converge to the analytical solution. An illustrative example
is also presented, which shows that the new algorithm is efficient and accurate.

1. Introduction

In recent years, differential equations of fractional order have been addressed by several
researchers with the sphere of study ranging from the theoretical aspects of existence and
uniqueness of solutions to the analytic and numerical methods for finding solutions. Several
authors have used fixed point theory to show the existence of solution to differential
equations of fractional order, see the monographs of Bai and Liu [1], Wu and Liu [2],
Hamani et al. [3] and Ahmad and Sivasundaram [4]. At the same time, there may be several
methods for solving differential equations of fractional order, such as the least squares finite-
element method [5], collection method [6], fractional differential transform method [7],
decomposition method [8], and variational iteration method [9]. Besides these cited works,
few more contributions [10, 11] have been made to the analytical and numerical study of the
solutions of fractional boundary value problems.
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Ahmad and Sivasundaram [4] proved the existence and uniqueness of solutions for
a four-point nonlocal boundary value problem of nonlinear integro-differential equations of
fractional order q ∈ (1, 2] by applying some standard fixed point theorems:

cDqu(x) = f
(
x, u(x),

(
φu
)
(x),
(
ψu
)
(x)
)
, 1 < q ≤ 2,

u′(0) + au
(
η1
)
= 0, bu′(1) + u

(
η2
)
= 0, 0 < η1 ≤ η2 < 1,

(1.1)

where cD is the Caputo’s fractional derivative and f : [0, 1] ×X → X is continuous.
In this paper, we consider the following nonlinear fractional integro-differential equa-

tion with four-point nonlocal boundary conditions:

cDqu(x) +
(
φu
)
(x) +

(
ψu
)
(x) = f(x, u(x)), 1 < q ≤ 2,

u′(0) + au
(
η1
)
= 0, bu′(1) + u

(
η2
)
= 0, 0 < η1 ≤ η2 < 1,

(1.2)

where cD is the Caputo’s fractional derivative and f : [0, 1] × X → X is continuous, for
γ, δ : [0, 1] × [0, 1] → [0,+∞),

(
φu
)
(x) =

∫x

0
γ(x, t)u(t)dt,

(
ψu
)
(x) =

∫x

0
δ(x, t)u(t)dt, (1.3)

and a, b ∈ (0, 1). Here, (X, ‖ · ‖) is a Banach space and C = C([0, 1], X) denotes the Banach
space of all continuous functions from [0, 1] → X endowed with a topology of uniform con-
vergence with the norm denoted by ‖ · ‖.

Actually, we remark that the boundary conditions in (1.2) arise in the study of heat
flow problems involving a bar of unit length with two controllers at t = 0 and t = 1 adding or
removing heat according to the temperatures detected by two sensors at t = η1 and t = η2.

The rest of the paper is organized as follows. We begin by introducing some necessary
definitions and mathematical preliminaries of the fractional calculus theory which are
required for establishing our results. Then we construct some special reproducing kernel
spaces, and the new reproducing kernel method is introduced in Section 3. In Section 4 we
present one examples to demonstrate the efficiency of the method.

2. Preliminaries

Let us recall some basic definition and lemmas on fractional calculus.

Definition 2.1. For a function g : [0,+∞) → R, the Caputo derivative of fractional order q is
defined as

cDqg(t) =
1

Γ
(
n − q)

∫ t

0
(t − s)n−q−1g(n)(s)ds, n − 1 < q ≤ n, q > 0, (2.1)

where Γ denotes the gamma function.
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Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ
(
q
)
∫ t

0

g(s)

(t − s)1−q
ds, q > 0, (2.2)

provided the integral exists.

Lemma 2.3 (see [4]). For a given σ ∈ C[0, 1], the unique solution of the boundary value problem

cDqu(x) = σ(x), 0 < x < 1, 1 < q ≤ 2,

u′(0) + au
(
η1
)
= 0, bu′(1) + u

(
η2
)
= 0, 0 < η1 ≤ η2 < 1,

(2.3)

is given by

u(x) =
∫x

0

(x − s)q−1
Γ
(
q
) σ(s)ds +

a
(
b + η2 − x

)

1 + a
(
η1 − η2 − b

)
∫η1

0

(
η1 − s

)q−1

Γ
(
q
) σ(s)ds

+
ax − (1 + aη1

)

1 + a
(
η1 − η2 − b

)

[

b

∫1

0

(1 − s)q−2
Γ
(
q − 1

) σ(s)ds +
∫η2

0

(
η2 − s

)q−1

Γ
(
q
) σ(s)ds

]

.

(2.4)

To introduce the next lemma, we need the following assumptions.

(A1) There exist positive functions L1(t), L2(t), L3(t) such that

∥∥f
(
t, u(t),

(
φu
)
(t),
(
ψu
)
(t)
) − f(t, v(t), (φv)(t), (ψv)(t))∥∥

≤ L1(t)‖u − v‖ + L2(t)
∥∥φu − φv∥∥ + L3(t)

∥∥ψu − ψv∥∥, ∀t ∈ [0, 1], u, v ∈ X.
(2.5)

Further,

γ0 = sup
t∈[0,1]

∣∣∣∣∣

∫ t

0
γ(t, s)ds

∣∣∣∣∣
, δ0 = sup

t∈[0,1]

∣∣∣∣∣

∫ t

0
δ(t, s)ds

∣∣∣∣∣
,

I
q

L = max

{

sup
t∈[0,1]

|IqL1(t)|, sup
t∈[0,1]

|IqL2(t)|, sup
t∈[0,1]

|IqL3(t)|
}

,

Iq−1L(1) = max
{∣∣∣Iq−1L1(1)

∣∣∣,
∣∣∣Iq−1L2(1)

∣∣∣,
∣∣∣Iq−1L3(1)

∣∣∣
}
,

IqL
(
ηi
)
= max

{∣∣IqL1
(
ηi
)∣∣,
∣∣IqL2

(
ηi
)∣∣,
∣∣IqL3

(
ηi
)∣∣}, i = 1, 2.

(2.6)
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(A2) There exist a number κ such that Δ ≤ κ < 1, t ∈ [0, 1], where

Δ =
(
1 + γ0 + δ0

){
I
q

L + λ1I
qL
(
η1
)
+ λ2
(
bIq−1L(1) + IqL

(
η2
))}

,

λ1 = sup
t∈[0,1]

∣
∣
∣
∣
∣

a
(
b + η2 − t

)

1 + a
(
η1 − η2 − b

)

∣
∣
∣
∣
∣
, λ2 = sup

t∈[0,1]

∣
∣
∣
∣
∣

at − (1 + aη1
)

1 + a
(
η1 − η2 − b

)

∣
∣
∣
∣
∣
.

(2.7)

Lemma 2.4 (see [4]). Assume that f : [0, 1] × X × X × X → X is a jointly continuous function
and satisfies assumption (A1). Then the boundary value problem (1.1) has an unique solution provided
Δ < 1, where Δ is given in assumption (A2).

For more information on the mathematical properties of fractional derivatives and
integrals one can consult the mentioned references.

3. Reproducing Kernel Method

3.1. Some Reproducing Kernel Spaces

Firstly, inner space W1
2 [0, 1] is defined as W1

2 [0, 1] = {u(x) | u is absolutely continuous real-
valued functions, u′ ∈ L2[0, 1]}. The inner product inW1

2 [0, 1] is given by

(
f, h
)
W1

2
= f(0)h(0) +

∫1

0
f ′(t)h′(t)dt, f, h ∈W1

2 [0, 1], (3.1)

and the norm ‖u‖W1
2
is denoted by ‖u‖W1

2
=
√
(u, u)W1

2
. From [12], W1

2 [0, 1] is a reproducing
kernel Hilbert space and the reproducing kernel is

K1(t, s) = 1 +min{t, s}. (3.2)

In order to solve (1.2) using RKM, we construct a reproducing kernel space H3
2[0, 1]

in which every function satisfies the boundary conditions of (1.2). Inner space H3
2[0, 1] is

defined as H3
2[0, 1] = {u(x)|u, u′, u′′ are absolutely continuous real valued functions, u′′′ ∈

L2[0, 1], and u′(0) + au(c) = 0, bu′(1) + u(d) = 0}, and the inner product is defined as follows:

(
f, h
)
H3

2
= f(0)h(0) +

∫1

0
f ′′′(t)h′′′(t)dt, f, h ∈ H3

2[0, 1]. (3.3)

Theorem 3.1. H3
2[0, 1] is a Hilbert reproducing kernel space.

Proof. Suppose {vn(x)}∞n=1 is a Cauchy sequence inH3
2[0, 1], that means

∥∥vn+p − vn
∥∥2 =

(
vn+p(0) − vn(0)

)2 +
∫1

0

[
v
(3)
n+p(x) − v(3)

n (x)
]2
dx −→ 0, n −→ ∞. (3.4)
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Therefore, we have vn+p(0) − vn(0) → 0 and
∫1
0 [v

(3)
n+p(x) − v(3)

n (x)]2dx → 0, which shows that

{vn(0)}∞n=1 is a Cauchy sequence in R and {v(3)
n (x)}∞n=1 is a Cauchy sequence in space L2[0, 1].

So, we have

lim
n→∞

vn(0) −→ λ,

∫1

0

[
v
(3)
n (x) − h(x)

]2
dx −→ 0, n −→ ∞, (3.5)

where λ is a real constant and h(x) ∈ L2[0, 1].
Let

g(x) = λ +
1
2

∫x

0
(x − t)2h(t)dt + a1x + a2x2, (3.6)

where a1, a2 are determined by g ′(0) + ag(c) = 0, and bg ′(1) + g(d) = 0.
From h(x) ∈ L2[0, 1], g ′′(x) =

∫x
0 h(t)dt + 2a2 is absolutely continuous in [0, 1] and

g ′′′(x) = h(x) ∈ L2[0, 1] is almost true everywhere in [0, 1]. Consequently, g(x) ∈ H3
2[0, 1].

Moreover,

∥∥vn − g(x)
∥∥2 = (vn(0) − λ)2 +

∫1

0

[
v
(3)
n (x) − h(x)

]2
dx −→ 0, n −→ ∞. (3.7)

That means that,H3
2[0, 1] is complete.

Similar to [13], we can prove that the point-evaluation functional x∗(x∗(x) = u(x),
x ∈ [0, 1]) ofH3

2[0, 1] is bounded. SoH
3
2[0, 1] is a Hilbert reproducing kernel space.

From [12, 14], we have the following.

Theorem 3.2. The reproducing kernel ofH3
2[0, 1] is

R(t, s) =
1

120
R1(t, s)
Δ2

+
R2(t, s) + R3(t, s) + R2(s, t) + R3(s, t)

Δ

+

⎧
⎪⎪⎨

⎪⎪⎩

1
120

s3
(
s2 − 5st + 10t2

)
, t ≥ s,

1
120

t3
(
10s2 − 5st + t2

)
, t < s,

(3.8)

where

Δ = b(−2 + a(−2 + c)c) − d(d + ac(−c + d)),
R1(t, s)

= −s
((

5b(−4 + d)d3 − 6d5
)
(s + ac(−c + s))

+ ac3
(
c2 − 5cd + 10d2

)
(b(−2 + s) + d(−d + s))

− b
((

−40b + 5(−4 + d)d3
)
(ac(c − s) − s)

+ 5a(−4 + c)c3(b(−2 + s) + d(−d + s))
))
t(t + ac(−c + t))
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+ ac3s
(
−5b(−4 + c)(ac(c − s) − s) +

(
c2 − 5cd + 10d2

)
(ac(c − s) − s)

+ 6ac2(b(−2 + s) + d(−d + s))
)
t(b(−2 + t) + d(−d + t))

+ 120
(
(d − s)(−d + a(c − d)(c − s) − s) + b

(
−2 + a

(
−2c + c2 − (−2 + s)s

)))

×
(
(d − t)(−d + a(c − d)(c − t) − t) + b

(
−2 + a

(
−2c + c2 − (−2 + t)t

)))
,

R2(t, s) = t(t + ac(−c + t))

⎛

⎜
⎜
⎝− 1

24
b(−4 + s)s3 +

⎧
⎪⎪⎨

⎪⎪⎩

1
120

s3
(
10d2 − 5ds + s2

)
, d ≥ s

1
120

d3(d2 − 5ds + 10s2
)
, d < s

⎞

⎟
⎟
⎠,

R3(t, s) = −at(b(−2 + t) + d(−d + t)) =

⎧
⎪⎪⎨

⎪⎪⎩

1
120

s3
(
10c2 − 5cs + s2

)
, c ≥ s,

1
120

c3
(
c2 − 5cs + 10s2

)
, c < s.

(3.9)

Actually, it is easy to prove that for every x ∈ [0, 1] and u(y) ∈ H3
2[0, 1], R(x, y) ∈

H3
2[0, 1] and (u(y), R(x, y)) = u(x) holds, that is,R(x, y) is the reproducing kernel ofH3

2[0, 1].

3.2. The Reproducing Kernel Method

In recent years, there has been a growing interest in using a reproducing kernel to solve the
operator equation. In this section, the representation of analytical solution of (1.2) is given in
the reproducing kernel spaceH3

2[0, 1].
Note Lu = cDqu(x) + (φu)(x) + (ψu)(x) + β(x)u(x) and F(x, u(x)) = f(x, u(x)) +

β(x)u(x). We can convert (1.2) into an equivalent equation Lu(x) = F(x, u(x)). It is clear that
L : H3

2[0, 1] → W1
2 [0, 1] is a bounded linear operator.

Put ϕi(x) = K1(xi, x), Ψi(x) = L∗ϕi(x), where L∗ is the adjoint operator of L. Then

Ψi(x) =
(
L∗ϕi
(
y
)
, R
(
x, y
))

=
(
ϕi
(
y
)
, LyR

(
x, y
))

=
(
LyR
(
x, y
)
, ϕi(x)

)
= LyR

(
x, y
)|y=xi .

(3.10)

Similar to [15], we can prove the following.

Lemma 3.3. Under the previous assumptions, if {xi}∞i=1 is dense on [0, 1], then {Ψi(x)}∞i=1 is the
complete basis ofH3

2[0, 1].
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The orthogonal system {Ψi(x)}∞i=1 of H3
2[0, 1] can be derived from Gram-Schmidt

orthogonalization process of {Ψi(x)}∞i=1, and

Ψi(x) =
i∑

j=1

βijΨj(x). (3.11)

We also can prove the following theorem.

Theorem 3.4. If {xi}∞i=1 is dense on [0, 1] and the solution of (1.2) is unique, the solution can be
expressed in the form

u(x) =
∞∑

i=1

i∑

k=1

βikF(xk, u(xk))Ψi(x). (3.12)

The approximate solution of the (1.2) is

un(x) =
n∑

i=1

i∑

k=1

βikF(xk, u(xk))Ψi(x). (3.13)

If (1.2) is linear, that is F(x, u(x)) = F(x), then the approximate solution of (1.2) can
be obtained directly from (3.13). Else, the approximate process could be modified into the
following form:

u0(x) = 0,

un+1(x) =
n+1∑

i=1

BiΨi(x),
(3.14)

where Bi =
∑i

k=1 βikF(xk, un(xk)).

4. Convergent Theorem of the Numerical Method

In this section, we will give the following convergent theorem of our algorithm.

Lemma 4.1. There exists a constantM, satisfied |u(x)| ≤M‖u‖H3
2
, for all u(x) ∈ H3

2[0, 1].

Proof. For all the x ∈ [0, 1] and u ∈ H3
2[0, 1], there are

|u(x)| = |(u(·), K3(·, x))| ≤ ‖K3(·, x)‖H3
2
· ‖u‖H3

2
(4.1)

K3(·, x) ∈ H3
2[0, 1], and note that

M = max
x∈[0,1]

‖K3(·, x)‖H3
2
. (4.2)

That is, |u(x)| ≤M‖u‖H3
2
.

By Lemma 4.1, it is easy to obtain the following lemma.
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Lemma 4.2. If un
‖·‖−−→ u (n → ∞), ‖un‖ is bounded, xn → y (n → ∞) and F(x, u(x)) is continu-

ous, then F(xn, un−1(xn)) → F(y, u(y)).

Theorem 4.3. Suppose that ‖un‖ is bounded in (3.13) and (1.2) has a unique solution. If {xi}∞i=1 is
dense on [0, 1], then the n-term approximate solution un(x) derived from the above method converges
to the analytical solution u(x) of (1.2).

Proof. First, we will prove the convergence of un(x).
From (3.14), we infer that

un+1(x) = un(x) + Bn+1Ψn+1(x). (4.3)

The orthonormality of {Ψi}∞i=1 yields that

‖un+1‖2 = ‖un‖2 + (Bn+1)2 = · · · =
n+1∑

i=1

(Bi)2. (4.4)

That means ‖un+1‖ ≥ ‖un‖. Due to the condition that ‖un‖ is bounded, ‖un‖ is convergent and
there exists a constant � such that

∞∑

i=1

(Bi)2 = �. (4.5)

Ifm > n, then

‖um − un‖2 = ‖um − um−1 + um−1 − um−2 + · · · + un+1 − un‖2. (4.6)

In view of (um − um−1) ⊥ (um−1 − um−2) ⊥ · · · ⊥ (un+1 − un), it follows that

‖um − un‖2 = ‖um − um−1‖2 + ‖um−1 − um−2‖2 + · · · + ‖un+1 − un‖2

=
m∑

i=n+1

(Bi)2 −→ 0 as n −→ ∞.
(4.7)

The completeness ofH3
2[0, 1] shows that un → u as n → ∞ in the sense of ‖ · ‖H3

2
.

Secondly, we will prove that u is the solution of (1.2).
Taking limits in (3.12), we get

u(x) =
∞∑

i=1

BiΨi(x). (4.8)

So

Lu(x) =
∞∑

i=1

BiLΨi(x),

(Lu)(xn) =
∞∑

i=1

Bi
(
LΨi, ϕn

)
=

∞∑

i=1

Bi
(
Ψi, L

∗ϕn
)
=

∞∑

i=1

Bi
(
Ψi,Ψn

)
.

(4.9)
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Therefore,

n∑

i=1

βnj(Lu)(xn) =
∞∑

i=1

Bi

⎛

⎝Ψi,
n∑

j=1

βnjΨj

⎞

⎠ =
∞∑

i=1

Bi
(
Ψi,Ψn

)
= Bn. (4.10)

If n = 1, then

Lu(x1) = F(x1, u0(x1)). (4.11)

If n = 2, then

β21Lu(x1) + β22Lu(x2) = β21F(x1, u0(x1)) + β22F(x2, u1(x2)). (4.12)

It is clear that

(Lu)(x2) = F(x2, u1(x2)). (4.13)

Moreover, it is easy to see by induction that

(Lu)
(
xj
)
= F
(
xj , uj−1

(
xj
))
, j = 1, 2, . . . . (4.14)

Since {xi}∞i=1 is dense on [0, 1], for all Y ∈ [0, 1], there exists a subsequence {xnj}∞j=1 such that

xnj −→ Y as j −→ ∞. (4.15)

It is easy to see that (Lu)(xnj) = F(xnj , unj−1(xnj)). Let j → ∞; by the continuity of F(x, u(x))
and Lemma 4.2, we have

(Lu)(Y ) = F(Y, u(Y )). (4.16)

At the same time, u ∈ H3
2[0, 1]; clearly, u satisfies the boundary conditions of (1.2).

That is, u is the solution of (1.2).
The proof is complete.

In fact, un(x) is just the orthogonal projection of exact solution u(x) onto the space

Span{Ψi}ni=1.

5. Numerical Example

To give a clear overview of the methodology as a numerical tool, we consider one example in
this section. We apply the reproducing kernel method and results obtained by the method are
comparedwith the analytical solution of each example and are found to be in good agreement
with each other. Also, the numerical results obtained are compared with the corresponding
experimental results obtained by the methods presented in [8, 9].
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Table 1: Absolute errors for Example 5.1.

x True solution DM [8] VIM [9] RKM (u115 ) RKM (u1015 )
0 0.05566 5.61689E − 5 1.48366E − 4 2.16993E − 5 2.11552E − 7
0.1 0.19798 5.47421E − 5 1.46246E − 4 1.92463E − 5 1.90591E − 7
0.2 0.39473 5.43973E − 5 1.49244E − 4 1.70817E − 5 1.59788E − 7
0.3 0.60560 5.47579E − 5 1.55807E − 4 1.49046E − 5 1.36933E − 7
0.4 0.77891 5.56624E − 5 1.65449E − 4 1.26031E − 5 1.14128E − 7
0.5 0.83516 5.68976E − 5 1.78225E − 4 1.02477E − 5 9.25561E − 8
0.6 0.70036 5.80389E − 5 1.94554E − 4 7.88466E − 6 6.84821E − 8
0.7 0.50144 5.82441E − 5 2.1518E − 4 5.65515E − 6 4.82468E − 8
0.8 0.29175 5.5968E − 5 2.41183E − 4 3.54481E − 6 2.9536E − 8
0.9 0.11797 4.85764E − 5 2.74062E − 4 1.50572E − 6 9.8474E − 9
1.0 0.01485 3.18397E − 5 3.15881E − 4 9.79078E − 7 1.3896E − 8

Example 5.1. Consider the following boundary value problem:

cD3/2u(t) =
1
5

∫ t

0

e−(s−t) + e−(s−t)/2

5
u(s)ds + u2(t)−2t2u(t)+ 20t

17
u(t)+

454
153

u(t)+f(t), t ∈ [0, 1],

u′(0) +
1
2
u

(
1
3

)
= 0,

1
4
u′(1) + u

(
2
3

)
= 0,

(5.1)

where f(t) = 1674244/585225−2354et/2/3825−169et/3825+4√t/√π−3316t/2601−162647t2/
65025+20t3/17+ t4. According to Lemma 2.4, the boundary value problem (5.1) has a unique
solution on [0, 1]. u(t) = t2 + 10t/17 − 227/153 is the solution of (5.1), so it is the one and the
only one solution. Using our method, taking xi = (i − 1)/(N − 1), i = 1, 2, . . . ,N,N = 11, 101,
the numerical results are given in Table 1.

6. Conclusion

In this paper, RKM is presented to solve four-point nonlocal boundary value problem of
nonlinear integro-differential equations of fractional order q ∈ (1, 2]. The results of numerical
examples demonstrate that the present method is more accurate than the existing methods.
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[1] Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential
equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005.

[2] J. Wu and Y. Liu, “Existence and uniqueness of solutions for the fractional integro-differential
equations in Banach spaces,” Electronic Journal of Differential Equations, no. 129, pp. 1–8, 2009.

[3] S. Hamani, M. Benchohra, and J. R. Graef, “Existence results for boundary-value problems with
nonlinear fractional differential inclusions and integral conditions,” Electronic Journal of Differential
Equations, no. 20, pp. 1–16, 2010.



Mathematical Problems in Engineering 11

[4] B. Ahmad and S. Sivasundaram, “On four-point nonlocal boundary value problems of nonlinear
integro-differential equations of fractional order,” Applied Mathematics and Computation, vol. 217, no.
2, pp. 480–487, 2010.

[5] G. J. Fix and J. P. Roop, “Least squares finite-element solution of a fractional order two-point boundary
value problem,” Computers & Mathematics with Applications, vol. 48, no. 7-8, pp. 1017–1033, 2004.

[6] E. A. Rawashdeh, “Numerical solution of fractional integro-differential equations by collocation
method,” Applied Mathematics and Computation, vol. 176, no. 1, pp. 1–6, 2006.

[7] A. Arikoglu and I. Ozkol, “Solution of fractional integro-differential equations by using fractional
differential transform method,” Chaos, Solitons and Fractals, vol. 40, no. 2, pp. 521–529, 2009.

[8] S. Momani and R. Qaralleh, “Numerical approximations and Padé approximants for a fractional
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