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The oblique BPM based on the Du-Fort Frankel method is presented. The paper demonstrates the accuracy and the computational
improvements of the scheme compared to the oblique BPM based on Crank-Nicholson (CN) scheme.

1. Introduction

Increasingly complex optical devices demand computation-
ally fast and memory efficient algorithms for modelling
purposes. Finite difference beam propagation method (FD-
BPM) is a popular numerical technique for simulating large
network of optical components due to its computational
advantages over classical numerical techniques such as
Finite Difference Time Domain (FDTD) method. The BPM
method is commonly applied in the Cartesian coordinate
system. However when the boundaries of an optical com-
ponent are not aligned to the Cartesian mesh, for example
in the case of tilted waveguides, bends and Mach-Zehnder
modulators, sampling on the Cartesian mesh introduces
nonphysical staircasing noise. The noise can be minimised
by using very fine mesh but that in return incurs large
computational costs. To more efficiently reduce the sampling
error an improved three-point formulas are used at the
interface which take into account the distance between the
boundary and the transverse sampling points [1–3]. Further
increase in accuracy of the Cartesian BPM, particularly
for strongly guided waveguides, is achieved by considering
the longitudinal component of magnetic field which is
commonly neglected in the standard FD-BPM method [4].
In contrast to Cartesian system, Oblique and Structure
Related (SR) coordinate system offers an accurate and
efficient alternative for modelling nonorthogonal structures
and automatically satisfies ∂n/∂z = 0. The sampling grid
of the SR mesh is aligned with the component material
boundary thus eliminating staircase error and allowing
relaxation in mesh size. Various SR-BPM schemes have been

introduced [5–11] and different schemes can be combined
together to map out the optical component. Furthermore,
the SR coordinate system ensures high accuracy for the
simple paraxial BPM formulation even without the use of
wide-angled schemes [10]. The oblique equation takes into
account the propagation direction, which is usually parallel
to the structure boundary. Hence the mode-mismatch error
is small. One of the motivations for implementation in
oblique coordinates is to remove the need for high-order
wide-angle scheme which requires substantial computational
resources. Wide-angle for oblique coordinate has been
developed by Sujecki [11]. However the author has also
confirmed that the wide-angle oblique approach should in
principle only be applied to low refractive index contrast
structures [12].

So far SR and oblique BPM schemes have been imple-
mented using implicit scheme such as CN. Whilst for the
two-dimensional (2D) structures this is computationally
fast, in the case of modelling three-dimensional (3D)
structures the CN scheme uses iterative matrix solvers such
as BI-CGSTAB or GMRES [13] and thus requires huge
computational resources. More computationally efficient
Alternate Direction Iterative (ADI) schemes [14] cannot be
implemented in SR coordinates due to mixed derivatives in
transverse directions and are limited to Cartesian meshes.
Alternatively, Du-Fort Frankel (DFF) schemes provide larger
step size and better stability condition than simple explicit
schemes and can be implemented on a parallel computa-
tional platform thus providing computational efficiency for
modelling realistic 3D optical components. The downside of
the DFF scheme is the inherent spurious or “ghost” mode
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that can affect the accuracy and stability of the scheme and
which can be alleviated by the right choice of parameters and
initial fields [15, 16].

In this paper, the oblique BPM method is implemented
using the DFF scheme. Section 2 outlines the formulation
of the method and Section 3 presents the results for the
power loss and computational efficiency of the scheme and
compares it against the oblique CN BPM scheme. The results
are presented for tilted 2D and 3D waveguides and scalar
fields.

2. Formulation

A general approach for formulating oblique BPM is outlined
in [5] and is limited to structures that do not vary with the
propagation direction and the β reference is parallel to the
propagating direction.

In this section an oblique BPM method based on
the paraxial approximation and implemented in the DFF
algorithm is outlined. Figure 1 shows schematic presentation
of two coordinate systems u, y, z′, and x, y, z, where z and
z′ form an angle θ. It is assumed that the fields propagate
with respect to the z′ axis. The 3D oblique coordinate BPM
equation adopted from [9] is used as

(
∂2

∂x2
+

∂2

∂y2
+
∂2

∂z2
+ k2(x, y, z

))
Ψ = 0, (1)

where Ψ represents the scalar field of the form

Ψ(u, z′) = ϕ(u, z′) exp
(− jβ0z

′). (2)

The relationship between the oblique and the Cartesian
coordinate systems is given as

x = u + z′ sin θ,

z = z′ cos θ.
(3)

The difference equations are obtained using the chain
rule as
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Rearranging (6)–(8) and substituting into (1) results in
the oblique wave equation:
(
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∂z′
2 − 2
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Figure 1: Oblique coordinate system.

Substituting the field from (2) into (9) gives the scalar
oblique BPM equation as

2 jβ0
∂ϕ

∂z′
+ sin θ

∂2ϕ

∂u∂z′

= 2 jβ0 sin θ
∂ϕ

∂u
+
∂2ϕ

∂u2
+

∂2

∂y2
+
(
k2 cos θ − β2

0

)
ϕ.

(10)

This equation can be straightforwardly implemented
using the CN scheme. In the case of the 2D modelling where
the ∂2/ ∂2y = 0, CN scheme requires tridiagonal matrix solver
known as Thomas algorithm is used to solve (10) which is
much faster than the sparse matrix solver. However in the
3D modelling, term ∂2/ ∂2y in (10) introduces two additional
unknown field points in each calculation step thus resulting
in five unknown field points. In CN scheme this requires
sparse matrix solver such as the commonly used BI-CGSTAB
iterative solver [17].

In order to implement DFF scheme the local field point
ϕl,m,n and the transverse second derivatives are discretized as

ϕl,m,n ≈
ϕl+1,m,n + ϕl−1,m,n

2
,

∂2ϕl,m,n

∂u2
≈ ϕl,m+1,n + ϕl,m−1,n −

(
ϕl+1,m,n + ϕl−1,m,n

)
Δu2

,

(11)

where l, m, and n are the discretised position in the z′,
u, and y direction. Substituting the DFF scheme into (10),
the numerical implementation for oblique DFF BPM is as
follows:

L

2
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Δz′
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2Δu

)
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(
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2ΔuΔz′
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)

= ϕu′′ + ϕy′′ +
(
k2 − β2

0

)(ϕl+1,m,n + ϕl−1,m,n
)

2
,

(12)

where L = 2 jβ0, and ϕ′′a = (ϕm,a+1 + ϕm,a−1 − ϕm+1,a −
ϕm−1,a)/Δa2.The additional term in (10) diminishes the
explicit nature of the DFF, the 3D oblique DFF scheme
corresponds to separable tri-diagonal matrices on each
layer of the 3D structure. This can be efficiently solved by
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Figure 2: Power loss for a range of tilted angles for the oblique DFF-
BPM and the Cartesian DFF-BPM method.

Thomas algorithm and is algorithmically efficient for parallel
computing. Solving of the tri-diagonal matrix is more
computationally efficient than solving the sparse matrix thus
ensuring better computational efficiency of the 3D oblique
DFF-BPM compared to the oblique CN-BPM.

3. Results

In this section the accuracy and computational stability of
the oblique DFF-BPM method is analyzed and compared
with the oblique CN-BPM method. Both 2D and 3D tilted
waveguides are analyzed.

In an oblique coordinate system a tilted waveguide
is essentially a straight waveguide and ideally the power
transmitted in a tilted waveguide in the oblique system is
identical to the power transmitted in a straight waveguide
in the Cartesian mesh. Figure 2 compares power loss of the
2D tilted waveguide analyzed using the oblique DFF-BPM
with that analyzed using the DFF scheme in Cartesian mesh
for different tilted angles and different sampling meshes.
Perfectly matched layer (PML) is used for absorbing any
leakage from the simulation window. The implementation of
PML for the DFF method is described in [16]. The PML layer
is set as 1.0 μm and strength, σ/ω is set as 10. Guided mode
at the wavelength of 1.15 μm is launched in the 1 μm wide
slab waveguide with core refractive index n = 1.1 surrounded
by air. Longitudinal sampling Δz′ is fixed at 0.1 μm and the
waveguide length is 409.6 μm. It can be seen that by reducing
the sampling of the mesh the power loss in the Cartesian
BPM is reduced whilst for the oblique DFF-BPM the change
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Figure 3: Comparison of the computational time for the oblique
and Cartesian DFF-BPM and CN-BPM w.r.t. the total number of
mesh points N.

of the mesh size does not significantly change the power loss.
This indicates that the mesh size can be more relaxed in the
case of the oblique DFF-BPM ensuring faster run time.

Figure 3 compares the computational runtime of the
3D oblique and Cartesian DFF- and CN-BPM methods for
different number of total mesh points N. A simple 1 μm
by 1 μm square metal-air waveguide is chosen for a fair
speed test. Longitudinal step Δz′ is fixed at 0.05 μm, Δu =
Δy, and the waveguide is 100 μm long. For the oblique
simulation, the same waveguide is used but tilted at an
angle of 5◦. Figure 3 shows that the Cartesian DFF excels
in speed even without any parallelization involved. Figure 3
also shows that oblique DFF-BPM is substantially slower
than Cartesian DFF-BPM due to the implementation of
the Thomas algorithm. However, when compared with the
Cartesian and oblique CN-BPM methods, the oblique DFF-
BPM method is much faster, especially for large mesh sizes.
However, it should be noted that DFF-BPM requires smaller
longitudinal step size than CN-BPM to achieve the same level
of accuracy and maintain stability. The 3D oblique DFF-BPM
is also suitable for parallel computing platform allowing for
more computationally efficient simulations.

Figure 4 analyses the stability of the oblique DFF-BPM
method. It is well known that the main weakness of the
DFF algorithm is the appearance of the spurious solution
[15]. The position of the spurious mode can be controlled
by appropriate choice of the mesh size and the excitation
[16]. It is desirable that the spurious mode is not too close
to the waveguide true mode so that the stability of the
algorithm is not affected. Generally increasing the transverse
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mesh size and reducing the propagation size step will place
the spurious mode further away from the true mode [16].
Figure 4 investigates the impact of the tilted angle on the
position of the spurious mode for a fixed mesh size. Figure 4
gives the Fourier transform of the field overlap between the
incident field and the field evolved along the waveguide for
different tilted angles. The 3D waveguide is a rectangular
metal-air waveguide with dimensions of 1 μm by 0.5 μm
and 204.8 μm long. Transverse mesh size is Δu = Δy =
0.1μm and longitudinal step sized is Δz′ = 0.05μm. Half
sine wave of 1.15 μm wavelength is launched at the input.
Figure 4 shows that the increase of the tilted angle brings
the spurious and the true mode closer together. This will
have implications on the maximum tilted angle that can be
considered using the oblique DFF-BPM method.

The stability of oblique DFF is determined by the oblique
angle and the mesh size. The effect of the mesh size is
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Figure 6: Effective index of a slab waveguide using Cartesian DFF
and 10 degree tilted oblique DFF method. Accuracy deteriorates as
it reaches the unstable region.

examined in Figure 5 for Δu = 0.01μm and different tilted
angles. The waveguide parameters are as in Figure 2. It shows
that for small transverse mesh size, it is necessary to keep the
propagation step size small to maintain stability. It can be
seen that when the oblique angle is small, the oblique DFF
behaves similar to the Cartesian DFF. As the oblique angle
increases, the oblique DFF requires smaller propagation step
or larger transverse mesh size to maintain the stability.

Figure 6 examines the parameter choice and instability
on the calculation of the effective index. The waveguide
parameters are the same as in Figure 2. The obtained effective
index is plotted for Δz′ = 0.025μm with various mesh
sizes and compared between the Cartesian DFF applied to
the straight waveguides and the oblique DFF applied to the
10◦ tilted waveguide. Figure 6 shows the Cartesian DFF and
the 10◦ tilted oblique DFF agree very well for small mesh
sizes but have significant discrepancy when the transverse
mesh size is increased. It can be concluded that the stability
condition has restrained the use of very small transverse
mesh size in DFF. However, using large transverse mesh size
would risk losing accuracy. However, it should be noted
that the difference in coordinate system makes it difficult to
compare results directly. A slice in the oblique coordinate is
equivalent to a diagonal cross-section through multiple slices
on a Cartesian coordinate system.

Figures 7(a)–7(c) shows the field profiles of the 2D tilted
waveguide obtained using the oblique and Cartesian DFF-
BPM method. The slab waveguide is as in Figure 2 but
10 μm long and tilted by 10◦. Figure 7(a) shows the field
profile of the 10◦ tilted waveguide mapped in the Cartesian
mesh and Figure 7(b) shows the same waveguide analysed
using the oblique DFF-BPM method. It can be seen that the
Cartesian mesh introduces large staircasing noise even for
very fine sampling mesh. For comparison, the field profile
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Figure 7: (a) Field surface plot for 10◦ tilted waveguide on Cartesian mesh. Scale has been capped to show the stair case noise. (b) Field
surface plot for 10◦ tilted waveguide on oblique coordinate. (c) Field surface plot for straight waveguide on Cartesian mesh.

of a standard nontilted waveguide modelled on the Cartesian
mesh in Figure 7(c) behaves similarly to the tilted waveguide
modelled on oblique coordinate. Perfectly Matched Layer
(PML) boundary condition is used to absorb the wave
leakage from the waveguide and the nonphysical staircase
noise. The slight leakage of the guided mode near the input of
the waveguide is due to the mismatch of the analytical mode
used to excite the waveguide and the actual numerical field
solution. This leakage disappears as the propagating mode is
settled in the waveguide.

4. Conclusion

The paper demonstrates the implementation of the DFF
algorithm into the 3D scalar oblique BPM method. The
accuracy and stability of the oblique DFF is investigated

on the 2D and 3D tilted waveguides and compared against
the oblique CN-BPM method. The resulting method is
computationally faster than oblique CN-BPM method and
is suitable for parallel computing for further computational
savings. It is noted that the appearance of the spurious mode
can potentially limit the application of the DFF to very large
titled angles.
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