Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2009, Article ID 910819, 10 pages
doi:10.1155/2009/910819

Research Article

A Multiagent Potential Field-Based Bot for
Real-Time Strategy Games

Johan Hagelbiéck and Stefan J. Johansson

Department of Software and Systems Engineering, Blekinge Institute of Technology, P.O. Box 520, 372 25 Ronneby, Sweden
Correspondence should be addressed to Johan Hagelbick, jhg@bth.se

Received 30 April 2008; Accepted 7 September 2008

Recommended by Abdennour El Rhalibi

Bots for real-time strategy (RTS) games may be very challenging to implement. A bot controls a number of units that will have
to navigate in a partially unknown environment, while at the same time avoid each other, search for enemies, and coordinate
attacks to fight them down. Potential fields are a technique originating from the area of robotics where it is used in controlling
the navigation of robots in dynamic environments. Although attempts have been made to transfer the technology to the gaming
sector, assumed problems with efficiency and high costs for implementation have made the industry reluctant to adopt it. We
present a multiagent potential field-based bot architecture that is evaluated in two different real-time strategy game settings and
compare them, both in terms of performance, and in terms of softer attributes such as configurability with other state-of-the-art
solutions. We show that the solution is a highly configurable bot that can match the performance standards of traditional RTS bots.
Furthermore, we show that our approach deals with Fog of War (imperfect information about the opponent units) surprisingly
well. We also show that a multiagent potential field-based bot is highly competitive in a resource gathering scenario.

Copyright © 2009 J. Hagelbick and S. J. Johansson. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1. Introduction

A real-time strategy (RTS) game is a game in which the
players use resource gathering, base building, technological
development and unit control in order to defeat its oppo-
nent(s), typically in some kind of war setting. The RTS game
is not turn-based in contrast to board games such as Risk
and Diplomacy. Instead, all decisions by all players have to
be made in real time. Generally the player has a top-down
perspective on the battlefield although some 3D RTS games
allow different camera angles. The real-time aspect makes
the RTS genre suitable for multiplayer games since it allows
players to interact with the game independently of each other
and does not let them wait for someone else to finish a turn.

In RTS games computer bots often “cheats,” that is, they
have complete visibility (perfect information) of the whole
game world. The purpose is to have as much information
available as possible for the artificial intillegence (AI) to
reason about tactics and strategies in a certain environment.
Cheating is, according to Nareyek, “very annoying for the
player if discovered” and he predicts the game Als to get

a larger share of the processing power in the future which
in turn may open up for the possibility to use more
sophisticated Als [1]. The human player in most modern
RTS games does not have this luxury, instead the player only
has visibility of the area populated by the own units, and the
rest of the game world is unknown until it gets explored. This
property of incomplete information is usually referred to as
Fog of War or FoW.

In 1985, Ossama Khatib introduced a new concept while
he was looking for a real-time obstacle avoidance approach
for manipulators and mobile robots. The technique which
he called Artificial Potential Fields moves a manipulator in a
field of forces. The position to be reached is an attractive pole
for the end effector (e.g., a robot) and obstacles are repulsive
surfaces for the manipulator parts [2]. Later on Arkin [3]
updated the knowledge by creating another technique using
superposition of spatial vector fields in order to generate
behaviors in his so called motor schema concept.

Many studies concerning potential fields are related to
spatial navigation and obstacle avoidance (see, e.g., [4, 5]).
The technique is really helpful for the avoidance of simple

obstacles even though they are numerous. Combined with an
autonomous navigation approach, the result is even better,
being able to surpass highly complicated obstacles [6].

Lately some other interesting applications for potential
fields have been presented. The use of potential fields in
architectures of multi agent systems is giving quite good
results defining the way of how the agents interact. Howard
et al. developed a mobile sensor network deployment using
potential fields [7], and potential fields have been used in
robot soccer [8, 9]. Thurau et al. [10] have developed a game
bot which learns reactive behaviours (or potential fields) for
actions in the first-Person Shooter game Quake II through
imitation.

The article is organised as follows. First, we propose
a methodology for multiagent potential field- (MAPFs-)
based solution in an RTS game environment. We will show
how the methodology can be used to create a bot for a
resource gathering scenario (Section 4) followed by a more
complex tankbattle scenario in Section 5. We will also present
some preliminary results on how to deal with imperfect
information, Fog of War (Section 6). The methodology has
been presented in our previous papers [11, 12]. This article
summarises the previous work and extends it by adding new
experiments and new results. Last in this article, we have a
discussion and line out some directions for future work.

2. A Methodology for Multiagent
Potential Fields

When constructing a multiagent potential field-based system
for controlling agents in a certain domain, there are a
number of issues that we must take into consideration. It
is, for example, important that each interesting object in the
game world generates some type of field, and we must decide
which objects can use static fields to decrease computation
time.

To structure this, we identify six phases in the design of
an MAPF-based solution:

(1) the identification of objects;

(2) the identification of the driving forces (i.e., the fields)
of the game;

(3) the process of assigning charges to the objects;

(4) the granularity of time and space in the environment;
(5) the agents of the system;

(6) the architecture of the MAS.

In the first phase, we may ask us the following questions.
What are the static objects of the environment? That is, what
objects keep their attributes throughout the lifetime of the
scenario? What are the dynamic objects of the environment?
Here we may identify a number of different ways that objects
may change. They may move around, if the environment has
a notion of physical space. They may change their attractive
(or repulsive) impact on the agents. What is the modifiability
of the objects? Some objects may be consumed, created, or
changed by the agents.

International Journal of Computer Games Technology

In the second phase, we identify the driving forces of
the game at a rather abstract level, for example, to avoid
obstacles, or to base the movements on what the opponent
does. This leads us to a number of fields. The main reason
to enable multiple fields is that it is very easy to isolate
certain aspects of the computation of the potentials if we
are able to filter out a certain aspect of the overall potential,
for example, the repulsive forces generated by the terrain
in a physical environment. We may also dynamically weight
fields separately, for example, in order to decrease the
importance of the navigation field when a robot stands
still in a surveillance mission (and only moves its camera).
We may also have strategic fields telling the agents in what
direction their next goal is, or tactical fields coordinating the
movements with those of the teammate agents.

The third phase includes placing the objects in the
different fields. Static objects should typically be in the field
of navigation. The potentials of such a field are precalculated
in order to save precious run time CPU resources.

In the fourth phase, we have to decide the resolution of
space and time. Resolution of space means how detailed the
navigation in the game world should be. Should for example
the agents be able to move to every single point in the world,
or should the game world be divided into a grid with tiles
of for example 4 X 4 points in the world? Resolution of time
means how often the potential fields should be updated. If
the agents are able to move around in the environment, both
these measures have an impact on the lookahead. The space
resolution obviously, since it decides what points in space
that we are able to access, and the time in that it determines
how far we may get in one time frame (before it is time to
make the next decision about what to do).

The fifth phase is to decide what objects to agentify and
set the repertoire of those agents: what actions are we going
to evaluate in the lookahead? As an example, if the agent
is omnidirectional in its movements, we may not want to
evaluate all possible points that the agent may move to, but
rather try to filter out the most promising ones by using some
heuristic, or use some representable sample.

In the sixth step, we design the architecture of the MAS.
Here we take the unit agents identified in the fifth phase,
give them roles, and add the supplementary agents (possibly)
needed for coordination, and special missions (not covered
by the unit agents themselves).

3. ORTS

Open real-time strategy (ORTS) [13] is a real-time strategy
game engine developed as a tool for researchers within arti-
ficial intelligence (AI) in general and game Al in particular.
ORTS uses a client-server architecture with a game server and
players connected as clients. Each timeframe clients receives
a data structure from the server containing the current game
state. Clients can then call commands that activate and
control their units. Commands can be like “move unit A
to (x, y) or attack opponent unit X with unit A” The game
server executes the client commands in random order.

Users can define different types of games in scripts where
units, structures, and their interactions are described. All

International Journal of Computer Games Technology

types of games from resource gathering to full real-time
strategy (RTS) games are supported.

We will begin by looking at a one-player resource
gathering scenario game called Collaborative Pathfinding,
which was part of the 2007 and 2008 ORTS competitions
[13]. In this game, the player has 20 worker units. The goal
is to use the workers to mine resources from nearby mineral
patches and return them to a base. A worker must be adjacent
to a mineral object to mine, and to a base to return resources.
As many resources as possible will be collected within 10
minutes.

This is followed by looking at the two-player games,
Tankbattle, which was part of the 2007 and 2008 ORTS
competitions [13] as well.

In Tankbattle, each player has 50 tanks and five bases.
The goal is to destroy the bases of the opponent. Tanks are
heavy units with long fire range and devastating firepower
but a long cool-down period, that is, the time after an attack
before the unit is ready to attack again. Bases can take a lot of
damage before they are destroyed, but they have no defence
mechanism of their own so it may be important to defend
our own bases with tanks. The map in a tankbattle game
has randomly generated terrain with passable lowland and
impassable cliffs.

Both games contain a number of neutral units (sheep).
These are small indestructible units moving randomly
around the map. The purpose of sheep is to make pathfind-
ing and collision detection more complex.

4. Multiagent Potential Fields in ORTS

First we will describe a bot playing the Collaborative
Pathfinding game based on MAPF following the proposed
methodology. Collaborative Pathfinding is a 1-player game
where the player has one control center and 20 worker units.
The aim is to move workers to mineral patches, mine up to
10 resources (the maximum load a worker can carry), then
return to a friendly control center to drop them off.

4.1. Identifying Objects. We identify the following objects in
our application: Cliffs, Sheep, Base stations, and workers.

4.2. Identifying Fields. We identified five tasks in ORTS: avoid
colliding with the terrain, avoid getting stuck at other moving
objects, avoid colliding with the bases, move to the bases
to leave resources, and move to the mineral patches to get
new resources. This leads us to three major types of potential
fields: a field of navigation, a strategic field, and a tactical field.

The field of navigation is a field generated by repelling
static terrain. This is because we would like the agents to
avoid getting too close to objects where they may get stuck,
but instead smoothly pass around them.

The strategic field is a dynamic attracting field. It makes
agents go towards the mineral patches to mine, and return to
the base to drop off resources.

Own workers, bases, and sheep generate small repelling
fields. The purpose of these fields is the same as for obstacle
avoidance; we would like our agents to avoid colliding with

each other and bases as well as avoiding the sheep. This task
is managed by the tactical field.

4.3. Assigning Charges. Each worker, base, sheep, and cliffs
has a set of charges which generates a potential field around
the object. These fields are weighted and summed together
to form a total potential field that is used by our agents for
navigation.

Cliffs, for example, impassable terrain, generate a
repelling field for obstacle avoidance. The field is constructed
by copying pregenerated matrixes of potentials into the field
of navigation when a new game is started. The potential all
cliffs generate in a point (x, y) is calculated as the lowest
potential a cliff generates in that point. The potential pgig(d)
in a point at distance d from the closest impassable terrain

tile is calculated as:
—80

5 ifd >0,
(d/8) (1)

-80 ifd=0.

paie(d) =

Own worker units generate repelling fields for obstacle
avoidance. The potential pyorker(d) at distance d from the
center of another worker is calculated as

-20 if d <6,

16 —2-d ifd€]e6,8]. @

pworker(d) = 1.429- {

Sheep. Sheep generate a small repelling field for obstacle
avoidance. The potential pseep(d) at distance d from the
center of a sheep is calculated as

-20 ifd <8,

2-d-25 ifde]8 12.5]. ®)

psheep(d) = 0.125- {

Own bases. The own bases generate two different fields
depending on the current state of a worker. The base
generates an attractive field if the worker needs to move to
the base and drop off its resources. Once it has arrived at the
base, all the resources are dropped. The potential pattractive(d)
at distance d from the center of the base is calculated as

240 - d-0.32 if d < 750,

0 if d > 750. @)

pattractive(d) = {

In all other states of the worker, the own base generates
a repelling field for obstacle avoidance. Below is the function
for calculating the potential powns(d) at distance d from the
center of the base. Note that this is, of course, the view of
the worker. The base will effect some of the workers with
the attracting field while at the same time effect the rest with
a repelling field. If a point is inside the quadratic area the
base occupies, the potential in those points is always 10000
(potential used for impassable points):

6-d —258 ifd <43,

0 ifds>4a3 O

pownB(d) =0.125- {

Minerals, similar to own bases, generate attractive fields
for all workers that do not carry maximum loads and a

No resources Arrived at mineral

Move to mineral

Drop resources Gather

Return to base

Arrived at base Has ten resources

FIGURE 1: The finite state machine used by the workers in a resource
gathering scenario.

repelling field for obstacle avoidance when they do. The
potential of the attractive field is the same as the attractive
field around the own base in (4).

In the case when minerals generate a repelling field, the
potential pmineral(d) at distance d from the center of a mineral
is calculated as

-20 ifd <8,

20-2-d if d €]8,10]. ©)

Pmineral(d) = 1.429- {

4.4. The Granularity of the System. Since the application is
rather simple, we use full resolution of both the map and the
time frames without any problems.

4.5. The Agents. The main units of our system are the
workers. They use a simple finite state machine (FSM)
illustrated in Figure 1 to decide what state they are in (and
thus what fields to activate). No central control or explicit
coordination is needed, since the coordination is emerging
through the use of the charges.

4.6. The Multiagent System Architecture. In addition to the
worker agents, we have one additional agent that is the
interface between the workers and the game server. It receives
server information about the positions of all objects and
workers which it distributes to the worker agents. They then
decide what to do, and submit their proposed actions to the
interface agent which in turn sends them through to the
ORTS server.

4.7. Experiments, Resource Gathering. Table 1 shows the
result from the Collaborative Pathfinding game in 2008 years’
ORTS tournament. It shows that an MAPF-based bot can
compete with A*-based solutions in a resource gathering
scenario. There are however some uncertainties in these
results. Our bot has disconnected from the server (i.e.,
crashed) in 30 games. The reason for this is not yet clear
and must be investigated in more detail. Another issue is that
Uofa has used the same bot that they used in the 2007 years’
tournament, and the bot had a lower score this year. The
reason, according to the authors, was “probably caused by
a pathfinding bug we introduced” [14]. Still we believe that
with some more tuning and bug fixing our bot can probably
match the best bots in this scenario.

International Journal of Computer Games Technology

TaBLE 1: Experiment results from the Collaborative Pathfinding
game in 2008 years’ tournament.

Team Matches Avg. Resources Disconnected
BTH 250 5630.72 30
Uofa 250 4839.6 0

5. MAPF in ORTS, Tankbattle

In the 2-player Tankbattle game, each player has a number
of tanks and bases, and the goal is to destroy the oppo-
nent bases. In [11] we describe the implementation of an
ORTS bot playing Tankbattle based on MAPF following
the proposed methodology. This bot was further improved
in [12] where a number of weaknesses of the original bot
were addressed. We will now, just as in the case of the
Collaborative pathfinding scenario, present the six steps
of the used methodology. However, there are details in
the implementation of several of these steps that we have
improved and shown the effect of in experiments. We will
therefore, to improve the flow of the presentation, not
present all of them in chronologic order. Instead we start by
presenting the ones that we have kept untouched through the
series of experiments.

5.1. Identifying Objects. We identify the following objects in
our application: Cliffs, Sheep, and own (and opponent) tanks
and base stations.

5.2. Identifying Fields. We identified four tasks in ORTS:
Avoid colliding with the terrain, Avoid getting stuck at other
moving objects, Hunt down the enemy’s forces, and Defend the
bases. In the resource gathering scenario we used the two
major types: field of navigation and strategic field. Here we
add a new major type of potential field: the defensive field.

The field of navigation is, as in the previous example
of Collaborative pathfinding, a field generated by repelling
static terrain for obstacle avoidance.

The strategic field is an attracting field. It makes units go
towards the opponents and place themselves on appropriate
distances where they can fight the enemies.

The defensive field is a repelling field. The purpose is to
make own agents retreat from enemy tanks when they are in
cooldown phase. After an agent has attacked an enemy unit
or base, it has a cooldown period when it cannot attack and it
is therefore a good idea to stay outside enemy fire range while
being in this phase. The defensive field is an improvement to
deal with a weakness found in the original bot [11].

Own units, own bases, and sheep generate small repelling
fields. The purpose is the same as for obstacle avoidance; we
would like our agents to avoid colliding with each other or
bases as well as avoiding the sheep. This is managed by the
tactical field.

5.3. Assigning Charges. The upper picture in Figure 2 shows
part of the map during a tankbattle game. The screenshots
are from the 2D GUI available in the ORTS server. It
shows our agents (light-grey circles) moving in to attack an

International Journal of Computer Games Technology

(b)

FIGURE 2: Part of the map during a tankbattle game. The upper
picture shows our agents (light-grey circles), an opponent unit
(white circle), and three sheep (small dark-grey circles). The lower
picture shows the total potential field for the same area. Light areas
have high potential and dark areas have low potential.

Popponent (a)

MSD MDR
a

F1GURE 3: The potential popponent(@) generated by opponent units as
a function of the distance a.

opponent unit (white circle). The area also has some cliffs
(black areas) and three sheep (small dark-grey circles). The
lower picture shows the total potential field in the same
area. Dark areas have low potential and light areas have high
potential. The light ring around the opponent unit, located
at maximum shooting distance of our tanks, is the distance
from which our agents prefer to attack opponent units. The
picture also shows the small repelling fields generated by our
own agents and the sheep.

Cliffs. Cliffs generate the same field as in the resource
gathering scenario, see Section 4.3.

Popponent (a)

F1GURE 4: The potential popponent(@) generated by the opponent that
is in the middle.

The Opponent Units and Bases. All opponent units and
bases generate symmetric surrounding fields where the
highest potential is in a ring around the object with a
radius of maximum shooting distance (MSD). MDR refers
to the Maximum Detection Range, the distance from which
an agent starts to detect the opponent unit. The reason why
the location of the enemy unit is not the final goal is that
we would like our units to surround the enemy units by
attacking from the largest possible distance. The potential
all opponent units generate in a certain point is then equal
to the highest potential any opponent unit generates in that
point, and not the sum of the potentials that all opponent
units generate. If we were to sum the potentials, the highest
potential and most attractive destination would be in the
center of the opponent unit cluster. This was the case in
the first version of our bot and was identified as one of its
major weaknesses [11]. The potentials poppu (d) and popps(d)
at distance d from the center of an agent and with D = MSD
and R = MDR are calculated as

240/d(D - 2) if d € [0,D - 2],
Poppu(d) = 0.125- 1240 if d e [D-2,D],
240 - 0.24(d - D) if d €]D,R],
360/d(D - 2) if d € [0,D - 2],
Poppp(d) = 0.125- 1 360 if d € [D-2,D],
360 — 0.32(d — D) if d €]D,R].
(7)

I = [a, b[denote the half-open interval, where a € I, but
bel.

Own units generate repelling fields for obstacle avoid-
ance. The potential pownu(d) at distance d from the center
of a unit is calculated as:

=20 ifd <14

32-2-d ifd€]14,16] ®

Pownu(d) = 0.125- {

Own bases generate repelling fields similar to the fields
around the own bases described in Section 4.3.

Sheep generate the same weak repelling fields as in the
Collaborative pathfinding scenario, see Section 4.3.

5.4. The Multiagent Architecture. In addition to the interface
agent dealing with the server (which is more or less the

6 International Journal of Computer Games Technology
TABLE 2: Experiment results from the original bot.
Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 0% (0/100) 0.01 0.00 —46.99
WarsawB 0% (0/100) 1.05 0.01 —42.56
UBC 24% (24/100) 4.66 0.92 —17.41
Uofa.06 32% (32/100) 4.20 1.45 —16.34
Average 14% (14/100) 2.48 0.60 -30.83
Y HP=8
- Y =
— /\ - //\ \
A B C
- - - A B C
Dmg=3 Dmg=3 Dmg=3 Dmg=3 Dmg=3 Dmg=3

FIGURE 5: Attacking most damaged unit within firerange.

same as in the collaborative pathfinding scenario), we use
a coordinator agent to globally coordinate the attacks on
opponent units to maximise the number of opponent units
destroyed. The difference between using the coordinator
agent compared to attacking the most damaged unit within
fire range is best illustrated with an example.

In Figure 5, the own units A, B, and C does 3 damage to
opponent units. They can attack opponent unit X (can take
8 more damage before it is destroyed) and unit Y (can take 4
more damage before it is destroyed). Only unit A can attack
enemy unit Y. The most common approach in the ORTS
tournament [13] was to attack the most damaged enemy unit
within firerange. In the example both enemy unit X and Y
would be attacked, but both would survive to answer the
attacks.

With the coordinator agent attacks would be spread out
as in Figure 6. In this case enemy unit X would be destroyed
and only unit Y can answer the attacks.

5.5. The Granularity of the System. Each unit (own or
enemy), base, sheep, and cliffs has a set of charges which
generates a potential field around the object. These fields are
weighted and summed together to form a total potential field
that is used by our agents for navigation.

In [11] we used pregenerated fields that were simply
added to the total potential field at runtime. To reduce
memory and CPU resources needed, the game world was
split into tiles where each tile was 8 X 8 points in the game
world. This proved not to be detailed enough and our agents
often got stuck in terrain and other game objects. The results
as shown in Table 2 are not very impressive and our bot only
won 14% of the played games.

Some notes on how the results are presented:

(i) Avg units. This is the average number of units (tanks)
our bot had left after a game is finished.

FIGURE 6: Optimise attacks to destroy as many units as possible.

(ii) Avg bases. This is the average number of bases our bot
had left after a game is finished.

(iii) Avg score. This is the average score for our bot after a
game is finished. The score is calculated as

score = 5(ownBasesLeft — oppBasesLeft)

+ ownUnitsLeft — oppUnitsLeft. ©)
In [12] we proposed a solution to this problem. Instead
of dividing the game world into tiles, the resolution of the
potential fields was set to 1 X 1 points. This allows navigation
at the most detailed level. To make this computationally
feasible, we calculate the potentials at runtime, but only for
those points that are near own units that are candidates to
move to in the next time frame. In total, we calculate nine
potentials per unit, eight directions, and the potential of
staying in the position it is. The results, as shown in Table 3,
show a slight increase in the number of games won and a
large improvement in the game score.

5.6. Adding an Additional Field. Defensive Field. After a unit
has fired its weapon, the unit has a cooldown period when it
cannot attack. In the original bot our agents were, as long
as there were enemies within maximum shooting distance
(MSD), stationary until they were ready to fire again. The
cooldown period can instead be used for something more
useful and in [12] we proposed the use of a defensive field.
This field makes the units retreat when they cannot attack
and advance when they are ready to attack once again. With
this enhancement, our agents always aim to be at MSD of the
closest opponent unit or base and surround the opponent
unit cluster at MSD. The potential pdefensive(d) at distance d
from the center of an agent is calculated using the formula in

wy-(—800+6.4-d) if d <125,

0 if d > 125. (10)

Pdefensive(d) = {

International Journal of Computer Games Technology 7
TABLE 3: Experiment results from increased granularity.
Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 9% (9/100) 1.18 0.57 -32.89
WarsawB 0% (0/100) 3.03 0.12 -36.71
UBC 24% (24/100) 16.11 0.94 0.46
Uofa.06 42% (42/100) 10.86 2.74 0.30
Average 18.75% (18.75/100) 7.80 1.09 -17.21
TABLE 4: Experiment results from defensive field.

Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 64% (64/100) 22.95 3.13 28.28
WarsawB 48% (48/100) 18.32 1.98 15.31
UBC 57% (57/100) 30.48 1.71 29.90
Uofa.06 88% (88/100) 29.69 4.00 40.49
Average 64.25% (64.25/100) 25.36 2.71 28.50

The use of a defensive field is a great performance
improvement of the bot, and it now wins over 64% of the
games against the four opponent teams (Table 4).

5.7. Local Optima. To get stuck in local optima is a problem
that is well known and that has to be dealt with when using
PFE. Local optima are positions in the potential field that have
higher potential than all their neighbouring positions. An
agent positioned in a local optimum may therefore get stuck
even if the position is not the final destination for the agent.
In the first version of our bot, agents that had been idle for
some time moved in random directions for some frames.
This is not a very reliable solution to the problem since there
are no guarantees that the agents will move out of, or will not
directly return to, the local optima.

Thurau et al. [15] describe a solution to the local
optima problem called avoid-past potential field forces. In this
solution, each agent generates a trail of negative potentials on
previous visited positions, similar to a pheromone trail used
by ants. The trail pushes the agent forward if it reaches a local
optimum. We have introduced a trail that adds a negative
potential to the last 20 positions of each agent. Note that an
agent is not affected by the trails of other own agents. The
negative potential used for the trail is set to —0.5.

The use of pheromone trails further boosts the result and
our bot now wins 76.5% of the games (see Table 5).

5.8. Using Maximum Potentials. In the original bot, all
potential fields generated by opponent units were weighted
and summed to form the total potential field which is used
for navigation by our agents. The effect of summing the
potential fields generated by opponent units is that the
highest potentials are generated from the centres of the
opponent unit clusters. This makes our agents attack the
centres of the enemy forces instead of keeping the MSD to
the closest enemy. The proposed solution to this issue is that,
instead of summing the potentials generated by opponent
units and bases, we add the highest potential any opponent

unit or base generates. The effect of this is that our agents
engage the closest enemy unit at maximum shooting distance
instead of trying to keep the MSD to the centre of the
opponent unit cluster. The results from the experiments are
presented in Table 6.

5.9. A Final Note on the Performance. Our results were
further validated in the 2008 ORTS tournament, where
our PF-based bots won the three competitions that we
participated in (Collaborative Pathfinding, Tankbattle, and
Complete RTS). In the Tankbattle competition, we won all
100 games against NUS, the winner of last year, and only lost
four of 100 games to Lidia (see Table 7 [14]).

6. Fog of War

To deal with FoW, the bot needs to solve the following
issues: remember locations of enemy bases, explore unknown
terrain to find enemy bases and units, and handle dynamic
terrain due to exploration. We must also take into consider-
ation the increase in computational resources needed when
designing solutions to these issues. To enable FoW for only
one client, we made a minor change in the ORTS server.
We added an extra condition to an IF statement that always
enabled Fog of War for client 0. Due to this, our client is
always client 0 in the experiments (of course, it does not
matter from the game point of view if the bots play as client
0 or client 1). The changes we made to deal with these issues
come below.

6.1. Remember Locations of the Enemies. In ORTS, a data
structure with the current game world state is sent, each
frame from the server to the connected clients. If Fog of War
is enabled, the location of an enemy base is only included in
the data structure if an own unit is within the visibility range
of the base. It means that an enemy base if has been spotted
by an own unit and that unit is destroyed, the location of the
base is no longer sent in the data structure. Therefore our bot

8 International Journal of Computer Games Technology
TaBLE 5: Experiment results from avoid-past potential field forces.
Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 73% (73/100) 23.12 3.26 32.06
WarsawB 71% (71/100) 23.81 2.11 27.91
UBC 69% (69/100) 30.71 1.72 31.59
Uofa.06 93% (93/100) 30.81 4.13 46.97
Average 76.5% (76.5/100) 27.11 2.81 34.63
TaBLE 6: Experiment results from using maximum potential, instead of summing the potentials.
Team Win % Wins/games Avg. units Avg. bases Avg. score
NUS 100% (100/100) 28.05 3.62 46.14
WarsawB 99% (99/100) 31.82 3.21 47.59
UBC 98% (98/100) 33.19 2.84 46.46
Uofa.06 100% (100/100) 33.19 4.22 54.26
Average 99.25% (99.25/100) 31.56 3.47 48.61

TaBLE 7: Results from the ORTS Tankbattle 2008 competition.

Team Total win % Blekinge Lidia NUS
Blekinge 98 — 96 100
Lidia 43 4 — 82
NUS 9 0 18 —

has a dedicated global map agent to which all detected objects
are reported. This agent always remembers the location of
previously spotted enemy bases until a base is destroyed, and
distributes the positions of detected enemy tanks to all the
own units.

The global map agent also takes care of the map sharing
concerning the opponent tank units. However, it only shares
momentary information about opponent tanks that are
within the detection range of at least one own unit. If all units
that see a certain opponent tank are destroyed, the position
of that tank is no longer distributed by the global map agent
and that opponent disappears from our map.

6.2. Dynamic Knowledge about the Terrain. 1f the game world
is completely known, the knowledge about the terrain is
static throughout the game. In the original bot, we created
a static potential field for the terrain at the beginning of each
new game. With Fog of War, the terrain is partly unknown
and must be explored. Therefore our bot must be able to
update its knowledge about the terrain.

Once the distance to the closest impassable terrain has
been found, the potential is calculated as

—10000 ifd <1,
-5
i =+——= if d €]1,50],
pterram(d) (d/8)2 1]] (11)
0 if d > 50.

6.3. Exploration. Since the game world is partially unknown,
our units have to explore the unknown terrain to locate the

hidden enemy bases. The solution we propose is to assign an
attractive field to each unexplored game tile. This works well
in theory as well as in practice if we are being careful about
the computation resources spent on it.

The potential punknown generated in a point (x,y) is
calculated as follows.

(1) Divide the terrain tile map into blocks of 4 x 4 terrain
tiles.

(2) For each block, check every terrain tile in the block.
If the terrain is unknown in ten or more of the (at
most 16) checked tiles the whole block is considered
unknown.

(3) For each block that needs to be explored, calculate the
Manhattan Distance md from the center of the own
unit to the center of the block.

(4) Calculate the potential punknown €ach block generates
using (12) below.

(5) The total potential in (x,y) is the sum of the
potentials each block generates in (x, y):

md .
Punknown(md) = (0'25 ~ 3000) if md < 2000,

0 if md > 2000.

(12)

6.4. Experiments, FoOW Bot. In this experiment set we have
used the same setup as in the Tankbattle except that now
our bot has FoW enabled, that is, it does not get information
about objects, terrain, and so forth that is further away than
160 points from all of our units. At the same time, the
opponents have complete visibility of the game world. The
results of the experiments are presented in Table 8. They
show that our bot still wins 98.5% of the games against
the opponents, which is just a minor decrease compared to
having complete visibility.

It is also important to take into consideration the changes
in the needs for computational resources when FoW is

International Journal of Computer Games Technology 9
TaBLE 8: Experiment results when FoW is enabled for our bot.
Team Wins ratio Wins/games Avg. units Avg. bases Avg. score
NUS 100% (100/100) 29.74 3.62 46.94
WarsawB 98% (98/100) 32.35 3.19 46.70
UBC 96% (96/100) 33.82 3.03 47.67
Uofa.06 100% (100/100) 34.81 4.27 54.90
Average 98.5% (98.5/100) 32.68 3.53 49.05
26 T T T T T T 100 T T T T T
90 b
£
3 . -
£ g
2 3 .
& 2
oy
g]
z
50 | b
6
50 45 40 35 30 25 20 40 ! ! ! ! !
. 0 50 100 150 200 250 300
Own units
Game time (s)
—— No FoW

-%- FoW

FiGure 7: The average frame time used for bots with perfect and
imperfect information about the game world.

enabled, since we need to deal with dynamic terrain and
exploration field. To show this we have run 100 games
without FoW against team NUS and 100 games with FoW
enabled. The same seeds are used for both. For each game
we measured the average time in milliseconds that the bots
used in each game frame and the number of own units
left. Figure 7 shows the average frame time for both bots in
relation to number of own units left. It shows that the FoW-
enabled bot used less CPU resources in the beginning of a
game, which is probably because some opponent units and
bases are hidden in unexplored areas and less potential field-
based on opponent units have to be generated. Later in the
game, the FoOW bot requires more CPU resources probably
due to the exploration and the dynamic terrain fields.

In the next set of experiments we show the performance
of the exploration field. We ran 20 different games in this
experiment, each in which the opponent faced both a bot
with the field of exploration enabled, and one where this
field was disabled (the rest of the parameters, seeds, etc.
were kept identical). Figure 8 shows the performance of the
exploration field. It shows how much area that has been
explored given the time of the game. The standard deviation
increases with the time since only a few of the games last
longer than three minutes.

In Table 9, we see that the use of the field of exploration
(as implemented here) does not improve the results dramati-
cally. However, the differences are not statistically significant.

—— No FoW field
-x- FoW field

FiGure 8: The average explored area given the current game time
for a bot using the field of exploration, compared to one that does
not.

TaBLE 9: Performance of the bot with and without field of
exploration in 20 matches against NUS.

Version Won Lost Avg. units Avg. bases
With FoE 20 0 28.65 3.7
Without FoE 19 1 27.40 3.8

7. Discussion

We have shown that the bot can easily be modified to
handle changes in the environment, in this case a number
of details concerning the agents, the granularity, the fields,
and also FOW. The results show that FoW initially decreases
the need for processing power and in the end, it had a very
small impact on the performance of the bot in the matches.
However, this has to be investigated further. In Figure 8, we
see that using the field of exploration in general gives a higher
degree of explored area in the game, but the fact that the
average area is not monotonically increasing as the games go
on may seem harder to explain. One plausible explanation is
that the games where our units do not get stuck in the terrain
will be won faster as well as having more units available to
explore the surroundings. When these games end, they do
not contribute to the average and the average difference in
explored areas will decrease. Does the field of exploration
contribute to the performance? Is it at all important to be

10

able to explore the map? Our results (see Table 9) indicate
that—it in this case—may not be that important. However,
the question is complex. Our experiments were carried out
with an opponent bot that had perfect information and thus
was able to find our units. The results may have been different
if also the opponent lacked perfect information.

It is our belief that MAPF-based bots in RTS games
have great potential even though the scenarios used in the
experiments are, from an Al perspective, quite simple RTS
scenarios. In most modern commercial RTS games, the Al
(and human player) has to deal with base building, eco-
nomics, technological development, and resource gathering.
However, we cannot think of any better testbed for new
and innovative RTS games Al research than to test it in
competitions like ORTS.

8. Conclusions and Future Work

In Section4 we introduced a methodology for creating
MAPE-based bots in an RTS environment. We showed how
to deal with a gathering resources scenario in an MAPF-
based bot. Our bot won this game in the 2008 years’
ORTS competition, but would have ended up somewhere in
the middle in 2007 years’ tournament. The bot had some
problems with crashes, and more work can be done here to
further boost the result.

This was followed by Section 5 where we showed how to
design an MAPF-based for playing a tankbattle game. The
performance of the first version of our bot was tested in the
2007 years’ ORTS competition organized by the University of
Alberta. The results, although not very impressive, showed
that the use of MAPF-based bots had potential. A number
of weaknesses of the first version were identified, solutions
to these issues were proposed and new experiments showed
that the bot won over 99% of the games against four of the
top teams from the tournament. This version of the bot won
the 2008 years’ tournament with an almost perfect score of
98% wins.

Some initial work has been done in this direction. Our
bot quite easily won the full RTS scenario in the 2008 years’
ORTS tournament, but more has to be done here. The full
RTS scenario in ORTS, even though handling most parts of a
modern RTS game, is still quite simple. We will develop this
in the future to handle a larger variety of RTS game scenarios.

Another potential idea is to use the fact that our solution,
in many ways, is highly configurable even in runtime. By
adjusting weights of fields, the speed of the units, and so forth
in real time, the performance can be more or less changed as
the game goes on. This can be used to tune the performance
to the level of the opponent to create games that are more
enjoyable to play. One of our next projects will focus on this
aspect of MAPEF-based bots for RTS games.

Acknowledgments

We would like to thank Blekinge Institute of Technology for
supporting our research, the anonymous reviewers, and the
organisers of ORTS for providing an interesting application.

International Journal of Computer Games Technology

References

[1] A.Nareyek, “Al in computer games,” Queue, vol. 1, no. 10, pp.
58-65, 2004.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” The International Journal of Robotics
Research, vol. 5, no. 1, pp. 90-98, 1986.

[3] R. C. Arkin, “Motor schema based navigation for a mobile
robot: an approach to programming by behavior,” in Pro-
ceedings of IEEE International Conference on Robotics and
Automation (ICRA °87), vol. 4, pp. 264-271, Raleigh, NC,
USA, March 1987.

[4] J. Borenstein and Y. Koren, “The vector field histogram: fast
obstacle avoidance for mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 7, no. 3, pp. 278-288, 1991.

[5] M. Massari, G. Giardini, and F. Bernelli-Zazzera, “Auto-
nomous navigation system for planetary exploration rover
based on artificial potential fields,” in Proceedings of the 6th
Conference on Dynamics and Control of Systems and Structures
in Space (DCSSS ’04), Riomaggiore, Italy, July 2004.

[6] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for
fast mobile robots,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 19, no. 5, pp. 1179-1187, 1989.

[7] A. Howard, M. Matari¢, and G. Sukhatme, “Mobile sensor
network deployment using potential fields: a distributed,
scalable solution to the area coverage problem,” in Proceedings
of the 6th International Symposium on Distributed Autonomous
Robotics Systems (DARS °02), Fukuoka, Japan, June 2002.

[8] S. J. Johansson and A. Saffiotti, “An electric field approach
to autonomous robot control,” in Robot Soccer World Cup V
(RoboCup °01), Springer, London, UK, 2002.

[9] T. Rofer, R. Brunn, 1. Dahm, et al., GermanTeam 2004: the
german national Robocup team.

[10] C. Thurau, C. Bauckhage, and G. Sagerer, “Learning human-
like movement behavior for computer games,” in Proceedings
of the 8th International Conference on the Simulation of
Adaptive Behavior (SAB °04), Los Angeles, Calif, USA, July
2004.

[11] J. Hagelbdck and S. J. Johansson, “Using multiagent potential
fields in real-time strategy games,” in Proceedings of the
7th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS °08), L. Padgham and D.
Parkesm, Eds., vol. 2, pp. 631-638, Estoril, Portugal, May 2008.

[12] J. Hagelbdck and S. J. Johansson, “The rise of potential fields
in real time strategy bots,” in Proceedings of the 4th Conference
on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE ’08), Stanford, Calif, USA, October 2008.

[13] M. Buro, “ORTS—A Free Software RTS Game Engine,” July
2007, http://www.cs.ualberta.ca/~mburo/orts/.

[14] M. Buro, “ORTS RTS game AI competition,” August 2008,

http://www.cs.ualberta.ca/~mburo/orts/AIIDE0S/.

C. Thurau, C. Bauckhage, and G. Sagerer, “Imitation learning

at all levels of game-ai,” in Proceedings of the 5th International

Conference on Computer Games, Artificial Intelligence, Design

and Education (CGAIDE ’04), pp. 402-408, University of

Wolverhampton, Reading, UK, November 2004.

[15

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

o

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

