Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2008, Article ID 594313, 9 pages
doi:10.1155/2008/594313

Research Article

ALVIC versus the Internet: Redesigning a Networked
Virtual Environment Architecture

Peter Quax, Jeroen Dierckx, Bart Cornelissen, and Wim Lamotte

Expertise Center For Digital Media, tUL, IBBT, Hasselt University, Wetenschapspark 2, 3590 Diepenbeek, Belgium

Correspondence should be addressed to Peter Quax, peter.quax@uhasselt.be

Received 31 January 2008; Revised 25 April 2008; Accepted 16 June 2008

Recommended by Jouni Smed

The explosive growth of the number of applications based on networked virtual environment technology, both games and virtual
communities, shows that these types of applications have become commonplace in a short period of time. However, from a
research point of view, the inherent weaknesses in their architectures are quickly exposed. The Architecture for Large-Scale
Virtual Interactive Communities (ALVICs) was originally developed to serve as a generic framework to deploy networked virtual
environment applications on the Internet. While it has been shown to effectively scale to the numbers originally put forward, our
findings have shown that, on a real-life network, such as the Internet, several drawbacks will not be overcome in the near future.
It is, therefore, that we have recently started with the development of ALVIC-NG, which, while incorporating the findings from
our previous research, makes several improvements on the original version, making it suitable for deployment on the Internet as
it exists today.

Copyright © 2008 Peter Quax et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Witness the media attention that applications such as Second
Life [1] and There [2] have gathered, it should be obvious
that the technology behind them is an important subject
of study. Indeed, historically, many architectures have been
proposed, that were designed from the ground up to be
scalable. In modern day’s terms, however, the figures that
can be attained are not exactly state of the art. Looking
at examples of [3] or [4], the authors point out that
architectures scale up to a maximum of tens of users.
Comparing this to a modern-day application such as Second
Life, which claims to have around 1.3 million active residents
(a subject of debate), or World of Warcraft, with around 10
million active subscribers, these numbers indeed do seem
ridiculously low.

Once the architecture behind these success stories is
exposed, however, it quickly becomes clear how the devel-
opers have tweaked the systems in such a way that the
user is tricked into imagining the virtual world being a
single-instance massive environment. In practice, World of
Warcraft, for example, uses a system of instancing where a

limited amount of players are active in a single instance.
By adding additional instances of the same virtual world,
the community of players can grow indefinitely (as long as
servers are added). However, it is clearly not possible for all
players in the community to interact—as they need to be
active in the same instance. A different approach is taken by
Second Life, a single-instance virtual world, where the virtual
land is split up into several regions, each managed by a single
server. While this approach is definitely simple to implement,
there are very obvious limitations, such as the (possibly
disastrous) growth of network and processing load on the
server once an event takes place in a location that is deemed
popular by the community. Several circumventions have
been implemented to mitigate these problems, for example,
the limitation of the number of polygons that can make
up a model in the environment, or the splitting of regions
that have become too popular. This latter solution, however,
leads to additional costs in terms of server infrastructure
and cannot cope with a highly dynamic world, as the
region definition, in terms of server assignment, is relatively
static.


mailto:peter.quax@uhasselt.be

International Journal of Computer Games Technology

2. RELATED WORK

Several years ago, we investigated an alternative architecture,
able to support the same numbers of users that are needed for
todays’ applications, that is, the Architecture for Large-Scale
Virtual Interactive communities (ALVICs) [5]. ALVIC was
designed from the ground up to be scalable to high numbers
of users, all present in a single instance of the virtual world.
The basics behind ALVIC were founded on several (at the
time) next-generation network features that were thought
to become available in the near future. It has turned out,
however, that the promised improvements are clearly not yet
met. This is the reason why a new version of ALVIC is being
designed (dubbed ALVIC-NG), that takes into account the
limitations apparent in today’s version of the global Internet
architecture. For reasons of clarity, a brief description of
the original ALVIC architecture is given in Section 3, we do,
however, refer the reader interested in more details to our
previous work published in [5, 6].

There are some commercially available products (and
architectures) that show some familiarities with our work.
For example, the BigWorld [7] middleware platform is
claimed to be the upcoming industry standard by its devel-
opers. The software collection that is offered consists of a set
of server applications, together with a 3D client and specially
developed API’s. Unfortunately, as is common with most
commercially available products, the technical details are not
disclosed; it is, however, clear that a client/server architecture
forms the basis of BigWorld. The technology behind World
of Warcraft [8] may seem—at first glance—to be able to
support millions of simultaneous users. In practice, however,
the World of Warcraft system is based on a sharded design,
whereby multiple instances of the virtual world (called
shards or realms) are run concurrently on a large number
of servers. This means that only a small subset of players
is—at any given time—able to interact with each other,
typically a few thousand. The architecture also supports
“instancing,” through which a group of players (typically less
than 25 players) can indicate that they wish to complete a
quest without interference from other players. The World
of Warcraft architecture is fundamentally different from the
ALVIC-NG architecture in the fact that it uses sever realms to
support the total number of players that is subscribed. In case
the number of players outgrows the server capacity, a new
realm is started on a new server cluster. Readers familiar with
the Eve On-line [9] architecture may notice several parallels
with the approach used for that particular game. We will
point out, as part of the discussion on the new architecture,
some key differences, although the intricate details about the
implementation of the EVE Online architecture are also not
publicly available.

When comparing ALVIC-NG to Second Life [1], one
of the best-known and most successful (single-shard) 3D
virtual communities, we should remark that Second Life
uses a fixed assignment of (virtual) geographical regions
to servers. At the time of writing, a maximum of about
35000 simultaneous users were active in the virtual world,
which is run on more than 5000 servers, each serving an
area of 256 by 256 meters. While this type of design is

easy to implement, scalability problems are sure to become
apparent as soon as the number of users increases. As users
are not typically evenly distributed over the virtual world,
some servers are nearly idle, while some are overloaded. The
ALVIC-NG architecture is designed to use the available server
processing power as efficiently as possible, thereby decreasing
the chance of system failure in case a large number of users
decide to convene in a single location in the virtual world.

There are also some architecture-only solutions that
should be compared to our ALVIC-NG framework. One of
these is the Sun Game Server Technology framework [10].
This is fundamentally different from our approach, as the
virtual world is not spatially subdivided; every server is
able to manage each object through a massive centralized
database. For each operation that is to be performed on
an object, the information is retrieved from the database,
and stored again after the manipulation is completed. While
this is clearly scalable in terms of the size of the virtual
world, this solution also introduces extra delay for each
operation that is to be performed on an object (which
may accumulate if interactions involve several objects). This
architecture is designed to be scalable up to around 10000
users, and it uses a cluster of database servers that are
load-balanced. A second example of a similar architecture
is the Multiverse technology platform, which also does not
use a “traditional” spatial subdivision scheme for scalability
purposes (it does in fact have such a scheme for visibility
purposes, but this is rather trivially implemented and not
relevant here), but rather tries to scale the number of
supported users by defining services that are implemented
through plugins. Examples of these services are those that
handle combat events, intricate interactions, and so forth.
At run-time, those plugins that are able to support a
large number of users can be migrated to servers that are
minimally loaded. However, it should be noted that some
plugins are inherently more processor-intensive than others
(or are sure to be used much more than others), so they
will probably be assigned to the most powerful servers
anyway.

In research, several other architectures have been pro-
posed and discussed, which were designed to support net-
worked virtual environment applications, both client/server
and peer-to-peer based. In this section, we have specifically
opted to discuss only those that are currently being used
in the specific context of games. We do refer the reader to
[6, 11, 12] for a comprehensive overview of existing literature
on the more general subject of NVEs.

Section 3 provides a brief overview of the original ALVIC
architecture, which is required to understand some of the
design options that were made for ALVIC-NG. Section 4
describes the problems associated with ALVIC, when one
wants to deploy the architecture on real-life networks such
as the Internet. In-between solutions that can be used to
overcome some of the limitations are presented in Section 5.
The next generation of ALVIC is described in Section 6.
Conclusions and pointers to future work are presented in
Sections 7 and 8.



Peter Quax et al.

3. THE ORIGINAL ALVIC ARCHITECTURE

The architecture behind ALVIC was designed to be adaptable
to several usage scenario’s, ranging from games to virtual
interactive communities. Each of these applications should
be able to be deployed on the same architecture, preferably
even concurrently. However, in practice, this means that each
end-user can, at a given time, only be present in one specific
world. Because of the extensive size of the virtual world, we
followed an approach similar to that in [13], in which each
virtual world, running on the server infrastructure, is divided
into a number of square regions. Their size depends on the
estimated number of active clients in that region and on
the type of region. For example, a region that represents a
small room inside a building would most likely be scaled to
equal the dimensions of the room. Clients that move around
the world dynamically enter and leave regions depending on
their position.

The reasoning behind this subdivision of the world
is to effectively link the physical properties of the virtual
world (geographic location) with the underlying network
architecture. The relation between the two entities is strong
because of the fact that data propagation can easily be
coupled to visibility. If an object is invisible to the end-user,
there is no need for any data to be received. Furthermore,
by assigning a distinctive multicast address to each of the
regions defined before, we can reduce unnecessary network
traffic.

In fact, event information, originating from a single
end-user, should only be sent to the multicast address of
the region from which the event originated. When a client
enters a region, a simple subscription to the multicast group
assigned to that specific region suffices to start receiving
state information on all objects present in the region. As all
members of a region send their generated events to the same
multicast address, it should be clear that they will also receive
all events from other members in the same group without
the need for an explicit distribution mechanism through a
dedicated or ad hoc-defined server.

It should be clear that a mapping of these (geographical)
regions onto multicast groups is an efficient way of distribut-
ing data. There is no need to maintain open connections
with a “number of” server(s) to receive state information.
Neither would one need to determine where to send data, as
the current location is always known by a client. The key to
the entire system is the fact that data distribution within a
multicast group is done implicitly.

Besides this first trivial task, each client is responsible for
managing its own area of interest (AOI), analogous to, for
example, the work in [14]. It is of vital importance to note (as
stated before) that there is a coupling between geographical
regions and their associated multicast addresses. It can clearly
be seen that at a specific moment in time, a limited number
of other regions will be located in the view frustum of a
client. It is, therefore, only necessary for a client to subscribe
to exactly those regions. The view frustum size is entirely
client-side determined, and can be adapted dynamically to
either expand or shrink depending on several factors, such as
available bandwidth or processing power. We point out here

that a large view frustum does not have any impact on the
upstream traffic needed for sending out state information, as
this data only needs to be sent to the local multicast address.

While, in theory, it is entirely possible to design a net-
worked virtual environment architecture using only multi-
cast traffic, we opted to include a set of governing servers into
the architecture. Their purpose is threefold: authentication,
network resource management (e.g., multicast addresses),
and server resource management. The minimal load on these
servers in the architecture allows for a large number of
clients to be simultaneously connected to a single server (for
more details, see our previous work, as referred in Section 2)
and facilitates the distribution of load over several physical
machines.

4. ALVIC-SPECIFIC DEPLOYMENT ISSUES

While ALVIC has been shown to scale to several thousands
of users using only a very limited number of servers (see
[15]), the features it relies on to make this possible have
still not become widely available on the Internet as it is
available to typical end-users. In this section, we will identify
the main issues that still exist, and will remain problematic
in the near future. While some intermediary solutions exist
for some of the problems, a good example of this is the
use of TURN for NAT traversal, they cannot always be
applied to the specific transmission methods used in ALVIC
(i.e., multicast transmissions). Also, not all solutions provide
satisfactory results due to the special requirements posed
on the multicast transmissions employed by ALVIC (e.g.,
IGMP snooping would introduce prohibitive amounts of
delay, IPv4 tunneling of IPv6 traffic is rather inefficient, etc.).
These restrictions have been the main reasoning behing the
development of the next-generation ALVIC architecture.

4.1. IPv6 deployment

When ALVIC was first proposed, the mass introduction
of IPv6 was touted as being the solution to many of
the problems facing the Internet community at the time.
Several features, such as a massive increase in the machine-
addressing space and the support for large numbers of
multicast addresses (together with improved supporting
protocols), would make it possible to manage a large set of
multicast groups, necessary for ALVIC to be deployed for
massive environments. It has turned out, however, that while
the backbone networks of ISP’s do support or actually run on
IPv6, the availability of this technology to typical end-users
is still severely limited, and will probably remain so for the
next few years.

4.2. NAT gateways

The main reason behind this is the proliferation of 1Pv4
NAT gateways and firewalls, which mitigate the problems
associated with the limited number of addresses available. By
hiding several machines behind a common IP address, these
machines are at the same time able to connect to the Internet,
and they are (relatively) protected against attacks from the



International Journal of Computer Games Technology

outside. For ALVIC, however, NAT gateways present a major
obstacle, as direct peer-to-peer connections are required for
the architecture to work as it was originally designed. Even
worse, the support for multicast applications behind NAT
gateways is practically nonexistent. To provide an optimal
experience to the end-user, it is clearly undesirable that
major reconfiguration of network equipment (such as port
forwarding and/or definition of DMZs) is required to run an
application.

4.3. Multicast address space and scope

Multicast applications, as they exist today, are based around
a very limited set of content producers that distribute their
data to large amounts of “listeners.” This is especially true
for the case of digital TV distribution (possibly on-demand),
where a single producer (the broadcasting company and/or
network provider) sources all data watched by subscribers.
As these networks are managed by a single entity (the
network provider), the scope of the multicast transmissions
can be limited to the provider-owned network. For ALVIC
purposes, addresses with a global scope are clearly required,
as a single instance of the virtual world is required for all
users. Coming back to the example of Digital TV, it should
also be clear that only a limited number of addresses is
required (e.g., one for each stream in a set of TV channels).
ALVIC, on the other hand, requires large amounts of
multicast group addresses, if it is to be deployed with a fine-
grained spatial subdivision scheme. At the same time, real-
life wide-area networks are optimized specifically for one-to-
many multicast applications. However, in the case of ALVIC,
users generate their own multicast traffic, which needs to be
transmitted from their own computers or devices to the other
participants, something which cannot be done on these types
of networks due to the possible explosive growth in traffic.

5. INTERMEDIATE SOLUTIONS

As it became clear during the final stages of the development
of ALVIC that the Internet would not quickly evolve in the
direction that was required for deployment, a temporary
solution was envisaged that would overcome several practical
issues, while retaining the advantages a multicast-based
architecture could offer.

We used the CastGate [16] project, which, in practice,
consists of two entities. One of these entities, the router,
is placed in the local, multicast-enabled LAN. Its role is
to intercept the packages that are to be transmitted to
the multicast-enabled backbone network. The link between
the router and the multicast-enabled backbone network is
unicast only. A separate entity needs to be placed in the
backbone network as an end point for the tunnel between
the different networks.

Using this approach, we were able to interconnect several
sites using a number of routers, every one of them connected
to the multicast-enabled BELNET network. While it would,
in theory, be feasible to have each of the connected parties
install this additional piece of software and to reconfigure
their network equipment, this is clearly undesirable from

Authentication,
region management,
and Assets

Logic and database
servers

Proxy servers @
g 3

FiGure 1: Conceptual overview of ALVIC-NG.

a user’s point of view. It is, therefore, only interesting for
academic reasons.

6. ALVIC-NG

The limitations as described above, combined with the
unsatisfactory intermediate solution described in Section 5,
have triggered a major redesign of the ALVIC framework,
now designated as ALVIC-NG (next generation).

We have been very careful to retain the strong points
of ALVIC, while translating them into a more real-life
network-friendly architecture, mainly based on the client-
server paradigm instead of peer-to-peer.

6.1. Overall overview

The main entities of the architecture are shown in Figure 1,
represented in a set of concentric circles. At the outer
perimeter, the clients are shown that want to connect to
the virtual world. Instead of connecting to a variety of
supporting servers as is often the case in current-generation
examples, such as Second Life, nearly all traffic is tunneled
over the client-proxy link. The proxies are responsible for
handling a number of clients at the same time, and are
assigned based on several properties. These may include, for
example, their processing load and/or the network properties
of the link between the client and the proxy (e.g., typical
RTT values and/or packet loss). More on this subject can
be found in next section. Proxies are assigned from a pool
of available servers, managed by a centralized entity, which
is also responsible for other authentication and accounting
tasks. This entity, as mentioned in what follows, is based on
the master server of the original ALVIC architecture.

As the spatial subdivision and area of interest manage-
ment scheme used in ALVIC provided us with a powerful way
to manage downstream bandwidth, we wanted to retain this
system for the new architecture. However, the peer-to-peer
approach needed to be substituted with a client-server-based



Peter Quax et al.

equivalent. The new entities responsible for managing parts
of the world are referred to as Logic servers. They are
notably different from, for example, the simulators in the
Second Life architecture, in the way they are assigned to
geographical regions in the virtual world. Instead of using
a fixed allocation scheme, as is traditionally used, a new
entity is created, responsible for managing the relationship
between virtual locations and Logic servers, called the Region
Management (RM) system. Analogies can easily be drawn
between these RM servers and the DNS system that is
currently in use on the Internet. The RM system can be
queried by the proxy servers to find out which region(s)
is/are managed by a specific server. At the same time, the
RM system is responsible for keeping track of the load on the
various logic servers. A control link is, therefore, established
between the RM system and the individual logic servers, over
which several parameters are sent, comparable to the SNMP
querying system. In case the RM system detects either a Logic
server failure or an impending overload of a specific server,
the Logic servers are re-assigned to remediate the problems.
Possible solutions include splitting the management of a
single part of the virtual world over a number of servers or
transferring the complete responsibility to a new instance,
for example, in case of complete logic server failure. A more
detailed scenario is described in Section 6.2. When compared
to the original ALVIC design, the Region Management
system is roughly comparable to the Game server entities.

Logic servers can also be used as entities that control the
behavior of objects, such as non-playable characters (NPC’s)
or autonomous interactive objects such as virtual video walls.
Behaviors are triggered by scripts that are assigned to specific
objects. As the logic servers are responsible for handling all
objects present in a specific part of the virtual world, which
will traverse the virtual word, the scripts need to be shared
between all logic servers. These scripts, together with the
information regarding the visual representation of objects,
are stored in asset databases.

The reason behind the introduction of the intermediary
layer of proxy servers in the architecture is threefold. First of
all, it reduces the number of connections each client needs
to initiate and maintain with other servers (which may lead
to issues as discussed in Section 4 due to the presence of
firewalls and NAT gateways). Secondly, the proxies reduce
the number of connections for the logic servers, which is
important if a high number of clients is to be supported
on a single machine due to the overhead associated with
connection tracking. Finally, the proxies can “cache” a lot
of data, possibly reducing the response time (and load) on
the logic servers, as these servers can be assigned in such way
that they provide a better response time than the entire path
between the client and the logic server(s).

As with any virtual environment system, persistent
storage is a requirement to keep the world up and running
over long periods of time. It also offers enhanced features
such as roll-back capabilities in case of system failure
and/or, more applicable to the virtual world scenario, in
case of malevolent users that have exploited the system.
Instead of using a single, high capacity database, as is
typical in existing applications (e.g., Eve Online), the ALVIC-

NG architecture provides a fine-grained mechanism for
determining the degree of persistency that is required. In
case transactions being handled have financial repercussions
(e.g., the exchange of virtual currency between users), it is
likely that these transactions need to be logged and written
to disk immediately, as an in-between state, where currency
is “floating” between users would clearly not be desirable.
However, it should be clear that not all objects and actions
require an immediate storage of state to disk. This enables the
ALVIC-NG architecture to retain as much state as possible
in the main memory of the Logic servers, which improves
both response time and the load on the database servers. It
is, in any case, the goal of ALVIC-NG not to use a single
server (farm) for persistent storage, as the requirements on
this type of server would increase in a nonlinear fashion
with a growing number of users. A clear demonstration of
this fact is the limitation that is put on the objects that
are present in a single simulation server (analogous to our
logic servers) in Second Life. In reality, only about 15000
prims (primitive objects such as spheres, cones, etc.) can be
supported on a single server [17]. Also, relational database
systems are CPU-intensive applications. An example is given
in [18], where a cluster of more than one hundred machines
is required to support about 30000 transactions per second
in a game context. The persistency modules of ALVIC-NG
are designed in such a way that they can employ a number
of distinct servers, again based on factors such as load or
network link capacity. As the update rate of the database
system is low due to the in-memory processing and adaptive
storage requirements for different classes of operations (e.g.,
player movement versus financial transactions), we are able
to use a basic MySQL infrastructure, were a number of
instances of this software can run on the same hardware
as the logic servers. Persistency and the inclusion of logic
servers that do processing on parts of the environment is
something that is entirely new to the ALVIC-NG framework,
as the (previous) peer-to-peer approach necessitated the
individual clients to be responsible for the distribution
of their own state information. In case the client would
disconnect, there was no way to store his/her data in a
central location. Please note that ALVIC-NG only provides
an interface to a back-end, which will in most cases consist of
an off-the-shelf database management system (either object-
oriented, relational, or any other type). A benchmark for the
performance of this back-end is outside the scope of this
paper. The back-end should provide functionality such as
roll-back capabilities and redundant storage of information,
which will automatically provide the ALVIC-NG framework
with the same capabilities.

6.2. Typical usage scenario

To clarify the interdependence of the various entities in the
architecture, we will describe the typical workflow for a client
that connects to the system and subsequently moves around
in the virtual world. We refer to Figure 2 for a graphical
representation.

Initially, the client is unaware of the existence of the
proxy and logic servers. The only publicly known entities



International Journal of Computer Games Technology

Authentication

@(—1—)‘)‘

Region
management
system

Database server Logic server Logic server

FIGURE 2: Typical usage scenario of ALVIC-NG.

are the Authentication servers. A (possibly minimal) pool
of proxy servers is available, and the members of this pool
are known by the Authentication servers (through the region
management facility, which was described in the previous
section). Once a connection has been established by the client
(1), a specific proxy is assigned. The decision on which proxy
to select is based on several metrics, including the current
“load” on the proxy. In practice, the load calculation on
the proxy servers is achieved through several parameters,
including the number of clients it is currently serving, as well
as the 5-minute-average CPU load (which is available, e.g.,
on linux systems through the /proc file system). At regular
intervals, this load information is exchanged between the
proxy servers and the region management infrastructure,
enabling the authentication servers to choose a proxy server
that currently has a minimal amount of “load.” Of course,
a proxy server may still decide to reject clients based on
momentary information, available only to the server itself
(after which the process repeats from the beginning). Beside
the load factor, another metric is used in determining the
appropriate proxy server to assign, namely, the network delay
between the client and the server. The network delay is
sampled from (existing) active connections between clients
and proxies, and is also communicated through the region
management infrastructure. If this data is not available (in
case of a newly introduced proxy server), the geographic
location of the proxy server can be compared to that of the
client (available through, e.g., a WHOIS database lookup)
and used as as intuitive metric. While this does not guarantee
an optimal assignment, it does severely decrease the chance
that a server is chosen on a very impaired network path. In
practice, a combination of several metrics can be used to
provide satisfactory results.

Once authentication is finished, the client is redirected
to the proxy server and establishes a (reliable) control
connection (2). At the same time, a UDP data channel is
established by sending out datagrams to a specific port on
the server (dynamically assigned). This enables the packets to

be sent in the reverse direction, possibly traversing the NAT
gateway at client side.

Subsequently, the client will announce its initial position
to the proxy server it is connected to. We should point out
here that only the proxy servers are aware of the assignment
of regions to servers, not the clients. This enables regular
updates of the mapping, without requiring notifications to
be sent to all connected clients. The starting position of the
client determines its starting region, and the associated Logic
server address is determined (by the proxy) by querying
the Region Management servers (3 and 4). If the client is
located in a region for which the proxy server does not yet
have an active connection to the logic server, the connection
is established (5) and the client position is announced to
the Logic server in question. At the same time, all updates
originating from the specified region are, through the proxy
server, sent to the client (6). This may also include additional
regions, as required by the AOI management scheme applied.

On a regular basis, determined by the persistency
requirements as explained above, the data stored in the Logic
server’s memory is stored in one of the many database servers
(7).

If a client is moving around in the virtual world, and
traverses a region boundary, the proxy will detect this,
request the associated Logic server address by querying the
RM system, and connect to the new Logic server (8). The
information state associated with the client is removed from
the old server and uploaded to the new one (9).

At any given time, the RM system may determine that
one of the Logic servers is overloaded and/or has failed. In
the former case, a migration of data will take place, called a
region split. This involves storing the Logic server’s state in
a database and/or directly exchanging information between
servers (10) (depending on connectivity) and subsequently
assigning the newly created regions to the appointed logic
servers. If required, it is possible for the new Logic servers
to update their state memory by reading it from the
persistent storage medium. In case of a region split, the
region boundaries will be updated, and these updates will
be announced to the proxy servers (the clients remain
unaware of the world buildup). An analogous scenario can be
envisaged for the merger of two regions with minimal client
load. In case of server failure, a new server is assigned and the
state is recreated from what is available in persistent storage.

The decision of splitting and merging regions (at run-
time) is left to the region management system. As we stated
before, the load on several entities in the architecture is
communicated in specific intervals between these entities
and the RMS. In this case, the logic servers gather “local”
information on the amount of regions they are currently
managing, the amount of open connections to proxy servers
and the amount of objects in memory (or persistent storage).
This information is compared to static information on the
available processing/handling power of each of the logic
servers (determined by link capacities and raw CPU power).
Based on these metrics, a decision will be taken to either
split or merge regions if the server becomes overloaded or
even superfluous (due to client inactivity in specific regions).
However, a single strategy cannot be cited as being the “best”



Peter Quax et al.

solution under all circumstances. Depending on the type
of game or overall player behavior, it may or may not be
desirable to have frequent updates in the spatial subdivision
scheme. The ALVIC-NG architecture does not depend on a
single metric to determine region management, but is rather
developed in such a way that new metrics can easily be added.
We will come back to this issues when discussing some of the
simulation results in Section 6.4.

6.3. Advantages of ALVIC-NG

In this section, we will look at how the new ALVIC-NG
architecture overcomes the issues described in Section 4.

First of all, tunneling all traffic required for a session
through the proxy servers enables us to have a severely
limited number of open connections and streams at any
given time. They also remain the same during an entire
session, which is an ideal situation when considering NAT
gateways and firewalls. All TCP connections can be initiated
at client side, and UDP sessions can easily be kept alive as
the port numbers remain the same. There is no need for
any incoming peer-to-peer traffic that may be blocked by the
network configuration.

The spatial subdivision scheme, proposed in ALVIC, was
retained but redesigned to be independent of multicasting
capabilities of the network. We should, however, point out
here, that the software architecture underlying ALVIC-NG
is designed in such a way that the previous implementation
using multicast is still supported. The fact that regions are
now assigned to Logic servers instead of multicast groups in
a dynamic way enables us to exchange the data using unicast
connections, albeit with the additional overhead caused by
this distribution method. To mitigate this clear disadvantage,
the proxy servers are also able to act as caching servers, and
distribute “known” data to users without having to fetch the
data for each client individually.

Using a (possibly large) set of proxy and logic servers,
globally distributed, relieves the need for multicast addresses
with a global scope. At the same time, it enables optimal
connection circumstances for clients (in terms of delay and
link capacity), without the additional delays associated with
the propagation of IGMP messages required for multicast
traffic.

Of course, there is a tradeoff when switching to a client-
server-based architecture from a peer-to-peer approach.
For one, we loose the automatic distribution mechanisms
offered by multicast transmissions. At the same time, the
additional investment in terms of server infrastructure may
be a hindrance to the uptake of applications based on
ALVIC-NG. We do feel, however, that the added advantages,
in terms of being able to be deployed on any current-
generation broadband access network technology, as well as
the ease of management and moderation outweighs these
disadvantages.

6.4. Simulation and results

To test the concepts introduced in the ALVIC-NG architec-
ture, we have implemented the various elements to serve as

a test-bed for scalability tests. The applications are deployed
on a dedicated 16-node PC cluster, interconnected through
a gigabit LAN. For testing purposes, the “client” application
was developed with a dual interface: one that uses 2D/3D
visualization (to confirm the correct functioning through
the eyes of a user) and a command-line version; the latter
enables us to deploy a large number of instances of the
client software on a single machine. As static clients (in other
words, clients that do not move around in the virtual world)
are not representative of real-life users, a scripting language
(LUA [19]) is used to move the avatars in the virtual world,
based on predefined movement patterns. As the behavior
is scripted, and scripts are assigned on a random basis, the
result is a semirandom population of the virtual world. The
client with visualization enabled allows us to check whether
the system works as intended. Besides the normal client
functionality, this version also is able to query the servers in
the world to get an overall outlook on the region assignment
to logic servers.

A sample is shown in Figure 3, where the world is divided
into seven regions. We should point out here that, for these
simulation results, we have opted to manage the virtual
world as a quad-tree, as this is an efficient data structure
for fast detection of boundary passing and can easily be
split/merged. The ALVIC-NG architecture, in principle, can
be extended to work with a generic region definition. The
“active” avatar is shown by the blue dot, surrounded by the
circle indicating its area of interest. The “active” regions are
indicated by the slightly brighter colors (in this case, these
are the ones that overlap with the clients’ AOI). The other
avatars, which are, as stated before, steered by scripting, of
which state information is being received, are also visualized.
By moving around in the virtual world, this simulation
allows us to test that handovers between logic servers can
be handled without major delays and impact on the user
experience. It should be noted that a certain delay cannot
be avoided, as there is a propagation delay for the new
data to arrive at the proxy. The simulation setup will enable
us to effectively determine worst-case figures for this delay
value and examine how this deficiency can be masked (e.g.,
through tweaks in the graphical rendering engine). At the
same time, it allows us to test the efficiency of the region
splitting/merging algorithm that is implemented, which may
depend on a number of metrics, as mentioned in Section 6.2.
The application also allows us to force the split/merge
operation on regions to simplify the testing process. In
Figure 4, another scenario is visualized, in which a more
intricately subdivided world is shown, together with a client
with a reduced AOI (indicated by the smaller surrounding
circle).

7. FUTURE WORK

The load and scalability tests on the ALVIC-NG framework
are ongoing work. Based on our findings, the metrics used
for determining the optimal time to split/merge regions can
be adapted. The ALVIC-NG architecture is to be used as a
basis for story-telling applications, games, and community-
related features in the IBBT Teleon Project, the goal of which



International Journal of Computer Games Technology

FiGure 3: Sample spatial subdivision based on a quad-tree. Active
regions are brightly colored.

FiGure 4: A client with reduced AOI in a more intricately
subdivided virtual world (distributed over several logic servers).

is to deploy the architecture as the base for a nation-wide
platform (under supervision of the Flemish radio and TV
broadcasting company VRT).

8. CONCLUSIONS

In this paper, we have introduced ALVIC-NG, a generic
framework supporting networked virtual environment
applications. The technology presented is applicable to
both games and virtual community applications. Based on
our original findings during development of the ALVIC
architecture, the NG version is designed from the ground up
to be deployable on heterogeneous networks, independent
of the availability of next-generation network features such
as user-generated multicast data distribution and large

numbers of globally scoped multicast addresses. The unique
selling points of ALVIC, in terms of its spatial subdivision
scheme and scalability, have been retained in a novel, mainly
client-server paradigm-based architecture. Besides purely
scalability-related features, ALVIC-NG also offers solutions
for issues that plague many current-generation applications,
such as intricate NAT traversal and the additional problems
associated with peer-to-peer traffic flows.

ACKNOWLEDGMENTS

Part of this research is funded by the European Fund for
Regional Development (EFRD). The authors are grateful to
the partners involved in the IBBT Teleon project, as well as
the members of the NVE research group at EDM.

REFERENCES

[1] BigWorld Technology, BigWorld, http://www.bigworldtech
.com/.

[2] Blizzard, World of Warcraft, http://[www.worldofwarcraft
.com/.

[3] MULTIVERSE, Multiverse, http://www.multiverse.net/.

[4] P. Quax, An architecture for large-scale virtual interactive com-
munities, Ph.D. thesis, Transnationale Universiteit Limburg,
Limburg, Belgium, 2007.

[5] K. L. Morse, “Interest management in large-scale distributed
simulations,” Irvine Technical Report TR 96-27, University of
California, Berkeley, Calif, USA, 1996.

[6] P. Quax, T. Jehaes, P. Jorissen, and W. Lamotte, “A multi-user
framework supporting video-based avatars,” in Proceedings of
the 2nd Workshop on Network and System Support for Games,
pp. 137-147, ACM Press, Redwood City, Calif, USA, May
2003.

[7] Linden Labs, Second Life Forums, https://jira.secondlife.com/
browse/MISC-210.

[8] C. Greenhalgh and S. Benford, “A multicast network archi-
tecture for large scale collaborative virtual environments,” in
Proceedings of the 2nd European Conference on Multimedia
Applications, Services and Techniques (ECMAST *97), pp. 113—
128, Milan, Italy, May 1997.

[9] M. Capps, D. McGregor, D. Brutzman, and M. Zyda,
“NPSNET-V: a new beginning for dynamically extensible vir-
tual environments,” IEEE Computer Graphics and Applications,
vol. 20, no. 5, pp. 1215, 2000.

[10] CastGate, CastGate, VUB ETRO-TELE, http://www.castgate
.net/.

| There, There.com, http://www.there.com/.

[12] R. C. Waters, D. B. Anderson, J. W. Barrus, et al., “Diamond
park and spline: a social virtual reality system with 3d ani-
mation, spoken interaction, and runtime modifiability,” Tech.
Rep. TR-96-02a, Mitsubishi Electric Research Laboratories,
Cambridge, Mass, USA, November 1996.

[13] SUN, Game server technology white paper, Sun, http://www
.sun.com/solutions/documents/white-papers/me_sungame-
server.pdf.

[14] P. Quax, P. Monsieurs, T. Jehaes, and W. Lamotte, “Using
autonomous avatars to simulate a large-scale multi-user
networked virtual environment,” in Proceedings of the ACM
SIGGRAPH International Conference on Virtual Reality Con-
tinuum and Its Applications in Industry (VRCAI ’04), pp. 88—
94, ACM Press, Singapore, June 2004.


http://www.bigworldtech.com/
http://www.bigworldtech.com/
http://www.worldofwarcraft.com/
http://www.worldofwarcraft.com/
http://www.multiverse.net/
https://jira.secondlife.com/browse/MISC-210
https://jira.secondlife.com/browse/MISC-210
http://www.castgate.net/
http://www.castgate.net/
http://www.there.com/
http://www.sun.com/solutions/documents/white-papers/me_sungameserver.pdf
http://www.sun.com/solutions/documents/white-papers/me_sungameserver.pdf
http://www.sun.com/solutions/documents/white-papers/me_sungameserver.pdf

Peter Quax et al.

(15]

(16]

(17]
(18]
[19]

Microsoft, SQL Server 2008 benchmarks, http://www.microsoft
.com/sqlserver/2008/en/us/benchmarks.aspx.

C. Joslin, T. Di Giacomo, and N. Magnenat-Thalmann,
“Collaborative virtual environments: from birth to standard-
ization,” IEEE Communications Magazine, vol. 42, no. 4, pp.
28-33, 2004.

Linden Labs, SecondLife, 2003, http://www.secondlife.com/.
LUA, The LUA programming language, http://www.lua.org/.
M. Matijasevic, “A review of networked multi-user vir-
tual environments,” Tech. Rep. TR97-8-1, The Center for
Advanced Computer Studies. Virtual Reality an Multime-
dia Laboratory. The University of Southwestern Louisiana,
Lafayette, La, USA, 1997.


http://www.microsoft.com/sqlserver/2008/en/us/benchmarks.aspx
http://www.microsoft.com/sqlserver/2008/en/us/benchmarks.aspx
http://www.secondlife.com/
http://www.lua.org/

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

o

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



