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ABSTRACT 

We describe the use and implementation of a polyshift function PSHIFT for circular 
shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids, 
such as finite difference codes in several dimensions, and multigrid codes, molecular 
dynamics computations, and in lattice gauge physics computations, such as quantum 
chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on 
the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor 
of 3-4 compared with CSHIFT when the local data motion within a node is small. The 
PSHIFT routine is included in the Connection Machine Scientific Software Library 
(CMSSL). © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Efficient and minimal data motion is critical for 
high performance in most computer architectures. 
The polyshift function presented in this article ad­
dresses this issue. The impact of the data motion 
on performance depends on the memory architec­
ture of the svstem. ::\1emorv svstems han· been . . . 
slower than processors, ahnost as long as elec­
tronic computers have been built. Although the 
technological reasons for this fact have changed 
over time. it is expected to be the ca,;e also for the 
foreseeable future. :\!emory hierarchies (registers, 
cache, main rr1enwry, etc.) and parallel memories 
(banked and interleaved memories) han~ been 
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used extensively for a long time to achieve a de­
sired level of performance at an acceptable price. 
The efficiency of these architectures depends crit­
ically on locality of reference. 

::\las,;ively parallel supercomputer architectures 
achieve the required memory bandwidth by using 
thousands of processing units with local memo­
ries. \V-e refer to a processor. its local memory. and 
associated communications circuitrv as a node. A 
communications svstem interconnects the nodes. 
Preserving locality of reference assumes several 
new characteristics in distributed memorv archi­
tectures. Data placement among memory modules 
affects the lower bounds for latencv and band­
width. The routing disciplines determine how 
clo,;e to the bounds the actual data motion time is. 

The goal in allocating data to the memory units 
is to make most data references be references to 

local memory, yet achieve good load balance. 
\Vhenever references must be nonlocal. then the 
placement should be such that the communica­
tion time is minimized with a good (optimal! rout-
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ing strategy. Ideally, data is mapped to nodes such 
that nonlocal references always are references to 
adjacent nodes. The ability to accomplish this 
task depends both on the data reference pattern 
and the network topology (mesh, binary cube, 
tree, ring, etc.). The access time to data in nonlo­
cal memory depends both on the network topology 
and the routing mode (e.g., circuit switched, 
packet switched, or wormhole routing [ 1]). 

Many problems in the natural and mathemati­
cal sciences and in engineering can be solved by 
discretizing the governing equations onto a regular 
grid (lattice) in two, three, or several dimensions. 
One such example is quantum chromodynamics 
(QCD) calculations, which use a four-dimensional 
space-time regular lattice. The computational re­
quirements for QCD are enormous. The desired 
lattice sizes are of the order of 100 million grid 
points. For each such grid a range of parameter 
values must be covered. Each set of parameters, 
known as a configuration, requires 1014 to 101.; 
floating-point operations [2]. Clearly. a high effi­
ciency in utilizing the computational and com­
munication resources in highly desirable. An early 
implementation of a QCD code on the Connection 
~achine system C:\1-2 resulted in a performance 
of 0.9 Gflop/s in 32-bit precision for a 2,048 
node configuration. Code restructuring and other 
optimizations improved the performance by close 
to a factor of six to 5.2 Gflop/s. 

A large fraction of the performance enhance­
ment in the QCD application was due to code re­
structuring to allow for concurrent bidirectional 
communications in each of four dimensions si­
multaneously and to avoid extraneous local mem­
ory moves. The polyshift function described here 
is a generalization of the communications routines 
developed for the QCD application. The polyshift 
function is included in the Connection Machine 
Scientific Software Library (CMSSL) [3, 4] as the 
routine PSHIFT. 

The PSHIFT routine is critical for the perfor­
mance of many scientific programs based on finite 
difference techniques, multigrid techniques, as 
well as molecular dynamics applications. In this 
article, we describe this software, along with fea­
tures of the Connection Machine system CM-200 
that support it, and give performance numbers 
and analyses. The PSHIFT software technology is 
also used in a special compiler known as the sten­
cil and convolution compiler, now available in 
CMSSL for the C:\1-2 and CM-200. A prototype 
version of this compiler was described by Bromley 

et al. [ 5]. The stencil compiler will be described 
elsewhere. 

In Section 2, we describe the programming 
model of the C:\1-200 used by the compilers and 
the run-time system, as well as the hardware fea­
tures that are used for the implementation of 
PSHIFT. Section 3 describes the software archi­
tecture of the PSHIFT routine and Section 4 dis­
cusses its implementation in some more detail. 
Section 5 describes the interface of the PSHIFT 
library routine to Connection :via chine Fortran [ 6, 
7], a subset of Fortran 90 [8] with extensions. 
Calling sequences and supported functionality are 
reported. Section 6 presents some performance 
measurements and a performance model. We 
conclude with a section summarizing our experi­
ence from developing and using the PSHIFT li­
brary routine, and discussing possible future en­
hancements and generalizations. 

2 THE CONNECTION MACHINE MODEL 
CM-200 

2. 1 Data Allocation 

The CM-2 and CM-200 support a programming 
model with a global address space. (For the re­
mainder of this article, unless otherwise stated, 
descriptions of the C:\1-200 hardware and soft­
ware will also apply to the CM-2.) Data arrays 
declared in any of the supported languages are by 
default distributed evenly over all memory units. 
The default allocation of arrays to memory units is 
entirely based on array shape. This allocation is 
known as a canonical layout, and is determined 
by the geometry manager at run-time. For each 
array, the nodes are configured as an array of 
nodes with the same rank as the data array. Thus, 
for one-dimensional data arravs the nodes form a 
linear array; for a two-dimensional data array, the 
nodes form a two-dimensional array of nodes, etc. 

The geometry manager also decides which ele­
ments are mapped into the same node, and to 
which node each aggregate of data is mapped. On 
the Connection ~achine systems, a set of consec­
utive elements [9] along each axis are mapped 
into the same memory unit. If the number of ele­
ments along an axis is not evenly divisible by the 
number of nodes assigned to that axis, then some 
nodes may not be assigned any elements. Of the 
nodes that are assigned elements, all but one re­
ceive the same number of elements. Thus, for a 



one-dimensional data array of lW elements map­
ped toN nodes, 1%1 successive elements are as­
signed to the first l M I j% l j nodes. On nodes that 

receive fewer than r * l elements, memory is never­
theless allocated for this number of elements. For 
rank two or higher arrays, one or more axes may 
be padded in this manner. Nonvalid data ele­
ments are identified by setting bits of a garbage 
mask. This mask has one bit for each data ele­
ment. 

Other mappings of interest with respect to ei­
ther load balance (such as in LC decomposition 
[9-12]) or communications requirements (such 
as in FFT computations [13, 14] are cyclic map­
ping [9], and combinations of consecutive and cy­
clic mappings, such as block cyclic mappings [10, 
15-17]. The proposed languages Fortran D [18] 
and High Performance Fortran [19] support such 
data allocations. However, the current Connec­
tion Ylachine languages do not support cyclic 
mappings, or combinations thereof with the con­
secutive mapping. 

The consecutive allocation defines which ele­
ments are assigned to the same node, but does not 
specify how aggregates of elements are assigned to 
nodes. On the CM-200, the default assignment is 
such that a pair of successive indices along any 
axis are either mapped into the same memory 
unit, or into the memory units of adjacent nodes. 
This mapping, known as NEWS order, uses a bi­
nary-reflected Gray code [20, 21] for the encod­
ing of node addresses. The standard binary en­
coding is referred to as SEND order. In the default 
NEWS order, allocation blocks i and i + 1 are as­
signed to adjacent nodes, while in the SEND order 
allocation block i is assigned to node i. In a SEND 
ordered assignment, blocks N I 2 - 1 and N I 2 are 
assigned to nodes at a distance of log2 N apart. 
The LAYOUT compiler directive is available to in­
dividually choose which order is to be used for the 
axes of a given data array. 

The default strategy for assigning nodes to axes 
of multidimensional data arrays is to make the 
local length of each of the data array axes the 
same, if possible. For example, in two dimensions 
the geometry manager attempts to make the local 
data array approximately square, and in three di­
mensions it attempts to make the local array ap­
proximately a cube. This strategy minimizes the 
average number of remote references per local ref­
erence when the references along the different ar­
ray axes are equally frequent for all array ele­
ments. In other words, this minimizes the surface 
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area of a subgrid for a given volume. For example, 
a 32 X 32 array mapped onto a four-dimensional 
binary cube would result in subarrays on each 
node of size 8 X 8, i.e., each instance of an axis 
being assigned a two-dimensional subcube. How­
ever, because of certain low level details of the 
architecture, the geometry manager does not al­
ways succeed in creating subarrays with axes of 
equal lengths, even when that should be possible. 

The shape of the local arrays, but not their size, 
is controlled by assigning weights to the various 
axes using the LAYOUT compiler directive. The 
number of local array elements is not affected by 
the LAYOUT directives as long as the array size is 
such that the lengths of the axes of the selected 
processing array shape divide the corresponding 
data array axes. A high weight for an axis relative 
to the weight of other axes increases its local 
length at the expense of the length of the other 
axes. The SEND and NEWS order specifiers have no 
effect on the local array shape. They only affect 
the node to which subarrays are assigned. 

Further control of axes lavouts can be obtained 
by using the SERIAL specifier in the LAYOUT com­
piler directive. This specifier forces an axis to be 
entirely local to a memory unit, so that a distinct 
copy of the entire axis resides in every memory 
unit. Finally, the allocation of an array can also be 
controlled by the ALIGN compiler directive. With 
this directive one array is aligned with another ar­
ray in a specified way. The run-time system main­
tains information about array type, location, 
shape, and layout in an array descriptor for each 
arrav. 

2.2 Data Motion Primitives 

Fortran 90 and C.\1 Fortran provide the intrinsic 
functions CSHIFT and EOSHIFT for circular shift 
and end -off shift. These intrinsic functions shift 
an entire Fortran array in a given dimension by a 
given amount. CSHIFT is a circular shift, whereas 
EOSHIFT is an end-off shift, with incoming 
boundary data specified as literal data, or a scalar 
or array-valued variable. Because these functions 
are the array-syntax expressions of offset array 
indices, their use is very common in scientific pro­
gramming. 

The PSHIFT routine allows a user to specify, in 
a single statement, data motion equivalent to one 
or more calls to CSHIFT and EOSHIFT. The CM-2 
and CM-200 implementations of PSHIFT also of­
fer enhanced performance, compared with calls to 
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CSHIFT and EOSHIFT through an efficient imple­
mentation of multiple communication operations. 

In the CM-200 systems, an exchange of data 
between adjacent nodes requires the same time as 
a one-way communication between a pair of adja­
cent nodes. Moreover, communication along sev­
eral axes can be performed concurrently. This 
abilitv for concurrent communication between . ' 

nodes is exploited by PSHIFT to efficiently per-
form multiple shifts when compared to CSHIFT. 
The specific node hardware that supports the 
concurrent exchange of data is described next. 

2.3 Node Architecture 

The C\'I-200 can have up to 2,048 nodes, each of 
which is equipped with a 32- or 64-bit (internal) 
floating-point unit (FPC). 4 .\!Bytes of dynamic 
random access memory (DRA.\1) operated in page 
mode .. and a network interface. There is also a set 
of 32 bit-serial processors, and some associated 
hardware for translating data between the bit-se­
rial representation and the 32-bit wide represen­
tation required by the FPC. Sixty-four-bit opera­
tions are supported by the 64-hit FPC, but the 
data paths external to the FPC are 32 bits wide. 
This requires consecutive loads and stores of the 
two 32-bit halfwords associated with each 6-±-bit 
floating-point word. During memory loads, a 
DRA.\1 page fault adds one cycle. That is. striding 
out of a 4k (32-hit) word DRA.\1 page causes a 
single-cycle stall. Stores always require close to 
two cycles. The clock frequency is 10 .\1Hz (7 .\1Hz 
for the C.\1-2). 

The bit-serial processors are physically ar­
ranged on two ''CYI Chips,,. each of which is the 
terminus for 12 communications wires. One wire 
on each CM Chip is connected to the other C\'1 
Chip on the node. the others go to other nodes. 
Because of this doubling of the CM Chips and 
their associated communications wires. the ma­
chine is effectivelv interconnected as a binarv hv-. . . 
percube with up to 11 dimensions, depending on 
machine size. and with connections between adja­
cent nodes consisting of a pair of 1-hit wide chan­
nels. Figure 1 gives a block diagram of a node and 
Figure 2 shows how a three-dimensional cube of 
CM Chips can be thought of as a two-dimensional 
cube with a pair of channels between each pair of 
nodes. The C\'1-200 is described in detaill22]. 

The basic communications operation between 
a pair of adjacent nodes is an exchange. i.e .. a 
pair of nodes can exchange data in the time re­
quired for one of the nodes to send data to the 
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FIGL'RE 1 A C\'1-2/200 floatin§(-point processor 
node. 

other node. \'loreover, it is possible to concur­
rently exchange data on all channels of a node. In 
a 2.048-node system. up to 22 (2 X 11) data ele­
ments can be exchanged concurrently. The net­
work interface contains three register files of 
thirty-two 32-bit registers each .. known as "tran­
sposers·., A. B. and C. The transposers function 
also to convert data between the 1-hit \vide bit­
serial representation (employed by the bit-serial 
CYI processors). and the 32-bit wide representa­
tion required by the FPU. In this case. each tran­
sposer converts a block of 32 bit-serial words of 
32 bits. to a 32-bit parallel word, and vice versa. 
\Vhen functioning as part of the communications 
system, the transposers serve as the source and 
destination of the data exchanged between a pair 
of adjacent nodes. In a typical operation. transpo­
ser A is loaded with two 32-bit data elements for 
each adjacent node to which data shall be sent. 
After the exchange, transposer B contains the 
data received-two 32-bit data elements from 
each adjacent node. ''Slots'' 1 through 11 in the 
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FIGURE 2 Eight nodes can be thou§!'ht of a:-; a three­
dimensional hypercube. or a~ a double two-dimen­
sional hYpercube with connf'ctions internal to a node. 
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FIGURE 3 Transpos~r slots and hypPrcub~ dirnf'n­
sions. 

transposer regi,;ter file correspond to one set of 
eleven 1-bit channels, and slots 17 through :26 
correspond to the other set of eleven 1-bit chan­
nels. The correspondence between trans­
poser slots and cube dimensions is illustrated in 
Figure 3. 

2.4 Virtual Machine Model 

The Connection .\lachine svstems implement a 
virtual machine model in which one data element 
(e.g .. a G.\1 Fortran array element) is assigned to 

one virtual processor. Conceptually. the user data 
arrays are fully di,;tributed amongst the virtual 
processors. and all operation,; take place fully in 
parallel. However, to actually implement a data 
distribution that assigns one data element to one 
physical processor would result in highly ineffi-
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cient use of the hardware, and also the inability to 
run different sized problems on the same system 
configuration. The virtual machine model allows 
the distribution of a large number of data ele­
ments onto a smaller number of physical proces­
sors, so that multiple data elements are assigned 
to a single physical processor, alleviating these 
problems. (Details of this distribution were dis­
cussed above.) 

]\;ow consider a typical shift operation in C.\'1 
Fortran. The operation CSHIFT (A, 1, 1) implies 
that all references to A (I, : , : ) after the shift op­
eration reference element A ( (I+ 1) mod N, : , : ) 
prior to the shif'L where ,y is the length of the 
shifted axes. In the current implementation of 
CSHIFT all elements of A are moved precisely as 
stated in the call to the function CSHIFT. 
EOSHIFT is implemented analogously, and so is 
PSHIFT. But, because, in generaL there are many 
array elements assigned to each node, the virtual 
machine model results in a large number of mem­
orv moves local to a node. As the size of a subar­
ray increases, the time for local memory moves 
becomes comparable to, and eventually exceeds, 
the time for communication. Thus the perfor­
mance advantage of PSHIFT decreases with in­
creasing size of the local subarrays. 

HoweveL the local memory moves could be 
avoided by suitable manipulation of pointers, i.e" 
by appropriately modifying the address calcula­
tion in referencing array elements. The C.\'1-200 
compilers do not currently maintain a set of 
pointers. In the PSHIFT function. the data motion 
between node,; and the support of the virtual ma­
chine model are implemented as separate mod­
ules. Both modules are required for consistency 
with the memory model used by the G\1 Fortran 
compiler. 

3 PSHIFT SOFTWARE ARCHITECTURE 

The polyshift operation is supported by the three 
routines PSHIFT. PSHIFT_SETUP. and DEALLO­
CATE_PSHIFT_SETUP. The PSHIFT routine is 
further divided internallv into modules corre­
sponding to 

1. The data motion between nodes 
2. Local data motion to support the virtual 

machine model 
3. The boundary conditions 

We now describe the routines in more detail. 
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The purpose of the PSHIFT_SETUP function is 
to carry out operations that are the same for each 
call to the routine PSHIFT, which performs the 
shift operations, and thus can be performed once 
and for all. Largely, the PSHIFT_SETUP function 
performs address calculations and generates a 
custom routine to accomplish the requested set of 
shifts. On the CM-200, each array axis is assigned 
to a subcube of nodes. For a data array mapped to 
the nodes in NEWS order, traversing a given data 
array axis corresponds to traversing the binary 
subcube to which it is allocated. For a shift opera­
tion it is necessary to determine, for each node, 
the dimensions for incoming and outgoing data in 
the positive and negative axis direction. This in­
formation is held in communication tables on the 
CM. One table, of at most four 32-bit words. is 
required for each shift. The fact that different 
cube dimensions are used for an axis is clearlv 
seen in Figure 2. 

In order to perform the required calculations 
the PSHIFT_SETUP function must gather infor­
mation about the mapping of the array to the 
nodes and the array data type from the array de­
scriptor. Although the axis encoding (NEWS or 
SEND) the data type and the array rank are all 
known at compile-time, neither the actual array 
extents nor the machine size is known until run­
time. Using these final pieces of information, the 
geometry manager determines the actual layout of 
the arrays. It is only at this point that PSHIFT has 
enough information to perform the actual setup 
functionality required by the given arrays. All data 
arrays having the same shape, same data type, 
and same layout directives are mapped to the C:\-1-
200 nodes in the same way. Thus, one call to the 
setup routine suffices for a given set of shifts for all 
such arrays. 

The PSHIFT routine performs the actual data 
motion. The data movement is performed in three 
steps: 

1. Perform all of the on-node memorv-to­
memory moves (in support of the virtual 
machine model) 

2. Perform the required exchange of data be­
tween nodes 

3. If needed, move the boundary data for 
EOSHIFT to the appropriate nodes 

The first step performs any local memory 
moves that are needed. If the source and destina­
tion arrays are the same for any shift, then the 
source is first copied to a temporary array to avoid 

overwriting data needed in step 2. l'\o local mem­
ory moves are required when the shift distance is 
greater than the length of the local axis segment 
for an axis. If this is not the case. local memorv 
moves can only be avoided by code restructuring 
in which the boundary is extracted from the origi­
nal array. 

The second step performs the data motion re­
quired to exchange data between nodes. \Vhen 
data is needed from an adjacent node, a single 
exchange across the hypercube channels is 
needed. PSHIFT can handle any shift distance up 
to twice the subgrid extent along the shift axis and 
shifts of distanceS = L2k fork~ 1. where Lis the 
length of the subgrid along the shift axis. Shifts of 
length S = L2k are referred to as power-of-2 
shifts. For such shifts, all array elements are 
moved a distance of two nodes (require two ex­
changes). This fact is due to the properties of the 
binary-reflected Gray coding used in distributing 
the array elements. 

The third step moves boundary data for 
EOSHIFT into the appropriate nodes. This step is 
only required for end-off shifts with array or scalar 
variable boundaries. For end-off shifts, PSHIFT 
also allows either a constant 0 or a constant 1 to 
be specified for the boundary values. These 
boundaries can often be handled without requir­
ing this third step. This aspect of PSHIFT is dis­
cussed further in the next section. 

The subfunction DEALLOCATE_FSHIFT_ 
SETUP deallocates the data structures allocated in 
the PSHIFT_SETUP routine. The onlv CM mem­
ory allocated by PSHIFT_SETUP is for the com­
munication tables, because these tables are differ­
ent for each processor node. Temporary arrays, if 
needed by PSHIFT, are allocated and deallocated 
on each call to PSHIFT. 

4 PSHIFT IMPLEMENTATION 

In this section we describe the implementation de­
tails of the PSHIFT routines. The desired level of 
control over data motion required that much of 
the code for the CM-200 be expressed in Connec­
tion Machine Instruction set (CMIS). The remain­
der of the polyshift code was written in C. Lying 
somewhere between assembly language and mi­
crocode, CMIS allows low-level control of the fea­
tures of a Connection ~achine system without a 
need for the programmer to be concerned with the 
lowest level details, such as setting up pipelines in 
the node. The CMIS functionality includes mem-



ory-to-memory transfers, memory-FPC pipelines, 
and special instructions for concurrent communi­
cation on multiple channels of a node. 

The PSHIFT_SETUP routine accepts a set of 
arguments that specify a prototypical array and a 
set of shifts to be performed on arrays of the same 
size and layout as the prototype. This information 
is used to generate a custom (internal macro pro­
cedure [IMP] consisting of CMIS and I:YIP instruc­
tions) that will perform the shifts requested. Com­
munication tables are computed for each node. 
These tables are used by the I:yfP to load and un­
load the correct transposer slots for each ex­
change of data across the hypercube connections. 
The IMP is written to a file, assembled, and then 
loaded into the static random access memorv 
(SRAM) of the sequencer(s) for the C:yf-200 con­
figuration being used. The PSHIFT_SETUP func­
tion returns an integer ID, which is used as an 
argument to the PSHIFT routine to identify the 
previously geneated IMP. The same ID can be 
used for all calls to PSHIFT for the same set of 
shifts on any arrays with the same layout and data 
type as the prototype array passed to PSHIFT 
_SETUP. Different calls to the PSHIFT_SETUP 
function and different IDs are needed for different 
array layouts and/ or a different set of shifts. 

The IMPs generated by PSHIFT_SETUP per­
form the following steps: 
Repeat until all exchanges are completed 

1. Load trans poser A, indirectly with com­
munication tables, from the source arrays 

2. Exchange data with adjacent nodes 
3. Cnload transposer B, indirectly with com­

munication tables, to the destination arrays 

The IMPs generated by the PSHIFT_SETUP 
function perform all of the communications re­
quired by the shifts, except for assigning the array, 
scalar, and in some cases, constant 1.0 and 0.0 
values to the boundaries. These boundary values 
are assigned with calls to Connection Machine 
run-time library routines after the IMP has com­
pleted. Boundaries assigned the constant 0.0 are 
handled in the IMPS by loading Os into transposer 
A slot 0 and modifying the communication tables 
to read from transposer B slot 16 for nodes that 
require the boundary elements. Each boundary 
node in effect sends the appropriate constant to 
itself. This communications path is an artifact of 
the original CM-2 bit-serial architecture and was 
used to communicate between the pair of CM-2 
Chips found on each node (see Fig. 1 ). The same 
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technique is used if all end-off shifts specity a 
constant boundary value of 1. 0 (loading a 1. 0 in­
stead of a 0.0 into transposer A slot 0). In the case 
that some end-off shifts specify a constant 1 
boundary and some specify a constant 0.0, then 
the constant 0. 0 boundaries are handled in the 
IMP and the constant 1.0 is broadcast to those 
boundary elements requiring the value, after the 
IMP has completed. 

Due to limited space in SRAM, and for perfor­
mance reasons, there are actually two setup rou­
tines. The PSHIFT_SETUP routine generates IMPs 
in which all loops are completely unrolled. The 
PSHIFT_SETUP _LOOPED routine generates IMPs 
in which the loops are unrolled only slightly, e.g .. 
four data exchanges are performed in each itera­
tion cf a loop. The PSHIFT_SETUP routine gener­
ates faster routines due to the high overhead of 
loop control statements in IMPs (especially on the 
CM-2) at the expense of larger IMPs and higher 
setup times. In fact, the PSHIFT_SETUP routine 
can fail in some cases if it produces an I:YIP that is 
too large to fit into the available SRAM. In these 
cases the PSHIFT_SETUP _LOOPED routine must 
be used. The calling convention is the same for 
PSHIFT_SETUP and PSHIFT_SETUP_LOOPED. 
Other restrictions and performance consider­
ations are discussed in more detail in the next two 
sections. 

For shifts that cannot be handled by PSHIFT, 
PSHIFT_SETUP sets an internal flag, causing the 
shift to be performed through calls to the Connec­
tion Machine run-time library. If none of the re­
quested shifts can be handled by IMPs then the 
performance of PSHIFT will be approximately the 
same as for the equivalent set of calls to the intrin­
sic routines CSHIFT and EOSHIFT. For a shift 
along any axis a, with sub grid axis extent L, and a 
shift distance S, a shift will be handled by an IMP 
if the following restrictions are met: 

1. Axis a is not padded. 
2. Axis a is distributed in NEWS order. 
3. lSI :S 2L or S = L(2k) fork 2:: 1. 

Also, no more than two shifts are allowed per axis. 

5 PSHIFT CM FORTRAN INTERFACE 

PSHIFT is accessed from CM Fortran using the 
cals described in Figure 4. The shift-type argu­
ments are predefined constants defined in the 
CMSSL header file "cmssl-cmf.h". They mav 



90 GEORGE, BRICK!\'ER, Al'\D JOH~SSO!\' 

include '/usr/include/cm/cmssl-cmf.h' 

integer setup_id 

setup_id = PSHIFT_SETUP (n, cm_array, ier, 
&: shift_type_l, dim_l, dist_l, 
&: shift_type_2, dim_2, dist_2, 

&: shift_type_n, dim_n, dist_n) 

CALL PSHIFT (n, setup_id, ier, 
&: 

&: 

shift_type_l, dst_array_l, src_array_l, dim_l, dist_l[, bdry_l], 
shift_type_2, dst_array_2, src_array_2, dim_2, dist_2[, bdry_2], 

&: shift_type_n, dst_array_n, src_array_n, dim_n, dist_n[, bdry_n]) 

CALL DEALLOCATE_PSHIFT_SETUP (setup_id) 

FIGURE 4 PSHlFT calling sequences. 

be one of CMSSL_CSHIFT, CMSSL_EOSHIFT_ 
SCALAR. CMSSL_EOSHIFT_ARRAY. CMSSL_ 
EOSHIFT_O, or CMSSL_EOSHIFT_L in any com­
bination. Boundarv values for end-off shifts mav . . 
be the constant values 0.0 or 1.0. a front-end sca­
lar variable, or a C.VI array (or rank one less than 
the source and destination arrays). 

To compare the w.;e of CSHIFT and PSHIFT, 
we present in Figure 5 code fragments represent­
ing the calculation of a five-poinL two-dimen­
sional stencil. l"otice that in using PSHIFT. tem­
porary storage must be managed by the user. 
whereas in the corresponding code using CSHIFT. 
the compiler manages temporary storage. In the 
example, the temporary arrays are named N. E. W. 
and S. The advantage ofPSHIFT lies in the imple­
mentation of the required communication. The li­
brary routine PSHIFT performs the specified com­
munications concurrentlv. whereas the CM-200 
compilers do not instantiate multiple CSHIFT or 
EOSHIFT operations concurrently. Thus .. in our 

example. the C.\1 Fortran code requires four com­
munications instead of one. 

An optimized C.\1 Fortran compiler would not 
only perform the required communication con­
currently. but also avoid unnecessary local data 
motion. and optimize the register usage in the 
floating-point unit. A prototype compiler of this 
nature has been implemented for stencils applied 
to two-dimensional arrays. This compiler is 
known as a stencil or convolution compiler [51. A 
generalization of this prototype compiler has now 
been completed for the C~·I-200 and is part of 
CMSSL :3.1 for the C.\1-2 and C.\1-200. A C.Vl-5 
version is now under development. The C:\1-2/ 
200 version of the stencil compiler uses a module 
of the PSHIFT function for data motion between 
nodes. 

For the QCD computations mentioned earlier 
PSHIFT replaces eight communications per­
formed sequentially by one concurrent communi­
cation exchanging data along all four axes at 
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C •••• Stencil with CSHIFTs: 

c .... Do the communications and computations in one statement 
dst = 

&: eN * CSHIFT {src, 1, -1) + 
&: cE * CSHIFT {src, 2, 1) + 
&: cW * CSHIFT {src, 2, -1) + 
&: cs * CSHIFT {src, 1, 1) + 
&: cO * src 

C .••• Stencil with PSHIFTs: 

c •••• Define local news arrays 
real*S, array {NX, NY) :: N, E, S, W 

emf$ layout N {:news, :news), E {:news, :news) 
emf$ layout W {:news, :news), S {:news, :news) 

c .... Do multiple communications 
call pshift {4, id, ier, 

&: CMSSL_CSHIFT, N, src, 1, -1, 
&: CMSSL_CSHIFT, E, src, 2, 1, 
&: CMSSL_CSHIFT, w, src, 2, -1, 
&: CMSSL_CSHIFT, S, src, 1, 1) 

c .... Do the computation 
dst = cN*N + cE*E + cW*W + cS*S + cO*src 

FIGURE .5 Comparison of CSIIIFT and PSHIFT usage. 
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REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) XP_SRC, XP_DST 
REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) XM_SRC, XM_DST 

REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) YP _SRC, YP_DST 

REAL, ARJlAY ( 3, 2,NX,NY ,NZ, N'r) YM_SRC, YM_DST 

REAL, ARJlAY (3, 2,NX,NY ,NZ,N'r) ZP_SRC, ZP_DST 

REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) :: ZM_SRC, ZM_DST 

REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) :: TP _SRC, TP_DST 
REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) .. TM_SRC, TM_DST 

CMF$ LAYOtrr XP_SRC (:SERIAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMF$ LA.YOOT XP_DST (:SERIAL, :SERLAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMF$ LAYOO"l" XM_SRC ( :SBR:IAL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMF$ LAYOUT XM_DST ( :SZRJ:AL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMF$ LA.YOU'l" YP_SRC ( :SER:IAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMF$ LAYOUT YP_DST ( :SER'IAL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CliP$ LAYOUT YM_SRC { :SER::tAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS} 

CMF$ LAYOUT YM_DST ( :SERXAL, :SERI.AL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMF$ LAYOUT ZP_SRC ( :SER:rAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMF$ LAYOOT ZP_DST ( :SI!:RIAL, :SI!:RXAL, :NI!:WS, :NI!:WS, :NI!:WS, :NI!:WS) 

CMP$ LA.YOU'l' TP_SRC { :SBR:IAL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMP$ LAYOU"l' TP_DST (:SERIAL, :SBR:IAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMP$ LAYOUT TM_SRC ( :SERJ:AL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CMF$ LAYOUT TM_DST ( :SER:IAL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS) 

CALL PSB:IFT (8, m, :IER, .. CMSSL_CSB:IFT, XP_DST, XP _SRC, 3, +1, .. CMSSL_CSB:IFT, XM_DST, XM_SRC, 3, -1, .. CMSSL_CSB:IFT, YP_DST, yp _SRC, '· +1, .. CMSSL_CSR:Il"T, YM_DST, YM_SRC, '· -1, .. CMSSL_CSB:Il"T, ZP_DST, ZP_SRC, 5, +1, .. CMSSL_CSB:IFT, ZM_DST, ZM_SRC, 5, -1, .. CMSSL_CSR:IFT, TP_DST, TP_SRC, 6, +1, .. CMSSL_CSR:Il"T I TM_DST, TM_SRC, 6, -1) 

FIGURE 6 Four-dimensional communications from 
QCD using PSHIFT. 

once. The use of PSHIFT in a fragment of a QCD 
application is shown in Figure 6. 

A final example is the calculation of a 27 -point, 
three-dimensional stencil, given as a complete 
subroutine in Figure 7. This example also illus­
trates the reuse of intermediate communications 
results in a complicated communications pattern, 
as indicated by the appearance of several PSHIFT 
destination arguments as both later PSHIFT 
source arguments, and as operands in the arith­
metic expression. 

6 PERFORMANCE 

6.1 Timings 

In this section we present performance data for 
the PSHIFT routines. The goal of PSHIFT is to 
provide improved performance over the intrinsic 

functions CSHIFT and EOSHIFT. The PSHIFT 
routine supports the virtual machine model, like 
CSHIFT and EOSHIFT. For small subarravs of 
high rank the speedup is expected to be relatively 
high, whereas for large subarrays of low rank the 
on-node memory moves will dominate, and 
PSHIFT is not expected to offer much improve-

subroutine stencil_27 (mx, my, mz, a, x, y) 

include '/usr/include/cm/cmssl-cmf.h' 

c .... Parameters 

emf$ 
emf$ 
emf$ 

integer mx, my, mz 
real, array (27, O:mx, Onay, O:mz) :: a 
real, array O:mx, O:my, O:mz) :: x, y 
layout a (:serial, :news, :news, :news) 
layout x 
layout y 

(:news, :news, :news) 
(:news, :news, :news) 

c .... Local scalars 
integer idl_27, id2_27, ier 
logical first_call_27 
data first_call 27 /.true./ 
save idl_27, id2_27, first_call_27 

c •.•• Local arrays 

real, array(O:mx, O:my, O:mz) :: 

* XS - 0 - 0 _1, XS - 0 - 0 _m1, 

* XS - 0 - 1 _0, XS_O_ 1 _1, 

* xs_o_ 1 _ml, xs_O_m1 _0, 

* XS - 0 _m1 _1, xs_O_m1 _m1, 

* xs_1_0_0, xs_1_ 0 _1, 

* xs - 1 - 0 _ml, XS - 1 - 1 _0, 

* xs 1 - 1 _1, XS - 1 - 1 _ml, -

* xs_1_m1_0, XS_1_m1 _1, 

* XS_1_m1_m1, XS _m1 - 0 _0, 

* xs_m1_0_1, xs_m1_ 0 _m1, 

* xs_m1 _ 1 _ 0, xs _m1 - 1 _1, 

* xs_m1_ 1_m1, xs_m1_m1_0, 

* xs_m1_m1_1, xs_m1_m1 _m1 

c .••. If this is the first call, do the setups 

if (first_ca11_27) then 

first_call_27 • .false. 
id1_27 • pshift_setup (6, x, ier, 

* CMSSL_CSHIFT, 1, +1, 

* CMSSL_CSHIFT, 1, -1, 

* CMSSL_CSHIFT, 2, +1, 

* CMSSL_CSHIFT, 2, -1, 

* CMSSL_CSBIFT, 3, +1, 

* CMSSL_CSHIFT, 3, -1) 
id2 - 27 • pshift_setup (2, x, ier, 

* CMSSL_CSHIFT, 3, +1, 

* CMSSL_CSBIFT, 3, -1) 

end if 

FIGURE 7 27 -point, three-dimensional stencil using 
PSHIFT. 
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C •••. Always do the shifts and the calculation 

call pshift (6, id1_27, ier, 
* CMSSL_CSHIFT, xs __ 1 __ 0 __ 0, X, 1, +1, 
* CMSSL_CSHIFT, xs_m1 __ 0 __ 0, X, 1, -1, 
* CMSSL_CSHIFT, xs __ 0 __ 1 __ 0, X, 2, +1, 
* CMSSL_CSHIFT, xs __ O_m1 __ 0, X, 2, -1, 
* CMSSL_CSHIFT, xs __ 0 __ 0 __ 1, X, 3, +1, 
* CMSSL_CSHIFT, xs __ O __ O_m1, X, 3, -1) 
call pshift (6, id1_27, ier, 

* CMSSL_CSHIFT, xs __ 1 __ 0 __ 1, xs __ 0 __ 0 __ 1, 1, +1, 
* CMSSL_CSHIFT, xs_m1 __ 0 __ 1, xs __ 0 __ 0 __ 1, 1, -1, 
* CMSSL_CSHIFT, xs __ 1 __ 1 __ 0, xs __ 1 __ 0 __ 0, 2, +1, 
* CMSSL_CSHIFT, xs __ 1_m1 __ 0, xs __ 1 __ 0 __ 0, 2, -1, 
* CMSSL_CSHIFT, xs __ 0 __ 1 __ 1, xs __ 0 __ 1 __ 0, 3, +1, 
* CMSSL_CSHIFT, xs __ 0 __ 1_m1, xs __ 0 __ 1 __ 0, 3, -1) 
call pshift (6, id1_27, ier, 

* CMSSL_CSHIFT, xs __ 1 __ 0_m1, xs __ O __ O_ml, 1, +1, 
* CMSSL_CSHIFT, xs_m1 __ 0_m1, xs __ O __ O_m1, 1, -1, 
* CMSSL_CSHIFT, xs_m1 __ 1 __ 0, xs_m1 __ 0 __ 0, 2, +1, 
* CMSSL_CSHIFT, xs_m1_m1 __ 0, xs_m1 __ 0 __ 0, 2, -1, 
* CMSSL_CSHIFT, xs __ O_m1 __ 1, xs __ O_m1 __ 0, 3, +1, 
* CMSSL_CSHIFT, xs __ O_m1_m1, xs __ O_m1 __ 0, 3, -1) 

call pshift (6, id1_27, ier, 
* CMSSL_CSHIFT, xs __ 1_m1 __ 1, xs __ O_m1 __ 1, 1, +1, 
* CMSSL_CSHIFT, xs_m1_m1 __ 1, xs __ O_m1 __ 1, 1, -1, 
* CMSSL_CSHIFT, xs_m1 __ 1_m1, xs_m1 __ 0_m1, 2, +1, 

* 
* 
* 

* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

CMSSL_CSHIFT, xs_m1_m1_m1, xs_m1 __ 0_m1, 2, 
CMSSL_CSHIFT, xs __ 1 __ 1 __ 1, xs __ 1 __ 1 __ 0, 3, 
CMSSL_CSHIFT, xs __ 1 __ 1_m1, xs __ 1 __ 1 __ 0, 3, 

call pshift (2, id2_27, ier, 
CMSSL_CSHIFT, xs_m1 __ 1 __ 1, xs_m1 __ 1 __ 0, 3, 
CMSSL_CSHIFT, xs __ 1_m1_m1, xs __ 1_m1 __ 0, 3, 

y (:, :,:) • 

-1, 
+1, 

-1) 

+1, 
-1) 

a ( 1,:,:,:) * xs_m1_m1_m1 +a 
a ( 3,:,:,:) * xs __ 1_m1_m1 +a 
a ( 5,:,:,:) * xs __ O __ O_m1 +a 

2,:,:,:) * xs __ O_m1_m1 + 
4,:,:,:) * xs m1 __ 0_m1 + 
6,:,:,:) * xs __ 1 __ 0_m1 + 

a ( 7,:,:,:) * xs_m1 __ 1_m1 +a 8,:,:,:) * xs __ 0 __ 1_m1 + 
a ( 9,:,:,:) * xs __ 1 __ 1_m1 +a (10,:,:,:) * xs m1 m1 __ 0 + 
a (11,:,:,:) * xs __ O_m1 __ 0 +a (12,:,:,:) * xs __ 1_m1 __ 0 + 
a (13, :, :, :) * xs m1 __ 0 __ 0 + a (14, :, :, :) * x + 
a (15,:,:,:) * xs __ 1 __ 0 __ 0 +a (16,:,:,:) * xs_m1 1 0 + 
a (17,:,:,:) * xs __ 0 __ 1 __ 0 +a (18,:,:,:) * xs __ 1 __ 1 __ 0 + 
a (19,:,:,:) * xs_m1_m1 __ 1 +a (20,:,:,:) * xs __ O_m1 1 + 
a (21,:,:,:) * xs __ 1_m1 __ 1 +a (22,:,:,:) * xs_m1 __ 0 __ 1 + 
a (23,:,:,:) * xs __ 0 __ 0 __ 1 +a (24,:,:,:) * xs __ 1 __ 0 __ 1 + 
a (25,:,:,:) * xs m1 __ 1 __ 1 +a (26,:,:,:) * xs __ 0 __ 1 __ 1 + 
a (27,:,:,:) * xs 1 1 1 

end 

FIGURE 7 Continued. 

ment over CSHIFT or EOSHIFT. Furthermore, the 
advantage of PSHIFT is the highest when the 
lengths of the axes of the local subarray are the 
same. For instance, if the local subarray is of 
shape 100 X 10, then only 10 element exchanges 
along the two axes are overlapped for a shift dis­
tance of one. Then, 90 elements must be ex­
changed without any concurrency. In the default 
layout targeted by the geometry manager, the local 

segments of the array axes are of as equal length 
as possible. Thus, in such a layout, a maximum 
overlap between communications along different 
axes is achieved. The timings reported in Tables 1 
through 4 were designed to verify the performance 
behavior relative to the intrinsic functions. 

All timings were performed using the version of 
PSHIFT that is include in C:\-ISSL 3.0. The tim­
ings were carried out at the Advanced Computing 
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Table 1. Timings on a Connection Machine System CM-200 for Calls to 
PSHIFT and CSHIFT with a Shift Distance of ± 1 on Rank One Subarrays of 
Type REAL*8 

CSHIFT PSHIFT CSHIFT PSHIFT 
Axes Elapsed Elapsed Elapsed C:VI-Time CM-Time CM-Timf' 

Length (msee) (msec) Speedup (msec) (msec) Spef'dup 

4 0.221 0.058 3.8 O.H7 0.041 3.6 
8 0.230 0.059 3.9 0.1::>1 0.0-i:=l ::3.4 

16 0.223 0.064 .3.:=l 0.159 0.051 3.1 
32 0.228 0.064 3.6 0.176 0.06-t 2.8 
64 0.226 0.099 2.3 0.208 0.099 2.1 

128 0.333 0.234 1.4 0.305 0.210 1..5 
256 0.744 0.610 1.2 0.571 0.4Ei6 1 .::3 
512 1.289 1.029 1.3 1.0;58 0.904 1.2 

1024 1.909 1.792 1.1 1.902 1.791 1.1 
2048 3.566 3.460 1.0 3 .. 566 .3.4.S8 1.0 
4096 6.794 6.689 1.0 6.794 6.689 1.0 
8192 13.451 13.:346 1.0 13.451 13.346 1.0 

16384 26.767 26.662 1.0 26.767 26.662 1.0 

Table 2. Timings on a Connection Machine System CM-200 for Calls to 
PSHIFT and CSHIFT with a Shift Distance of ±1 Along Both Axetoi of Hank Two 
Subarrays of Type REAL*8 

CSHIFT PSHIFT CSHIFT PSHIFT 
Axes Elapsed Elap~cd Elapsed C\1-Tinw C\1-Tirne C\1-Tinw 

Length (rnsec) (rnsec) Speedup (msf:'c': :~rnsec :, Spf'edup 

2X2 O.Ei11 0.124 4.1 0.-tH 0.107 ::3.9 
4X4 0.517 0.173 ::3.0 0 .. 517 0.166 3.1 
8X8 1.00S 0.470 2.1 1.005 O.-t69 2.1 

16X16 2.289 1.400 1.6 2.289 1 .::399 1.6 
:32X32 5.867 4.465 1.3 S.86 7 4."±62 1 .:~ 
64X64 24.248 19.699 1.2 2"±.20.S 19.6;55 1.2 

128X 128 86.965 67.190 1.3 86.7S7 67.06"± 1.:3 

Table 3. Timings on a Connection .\1achine System CM-200 for Calls to 
PSHIFT and CSHIFT with a Shift Distance of ± 1 Along All Three Axes of Rank 
Three Subarrays of Type REAL*8 

CSHIFT PSHIFT CSHIFT PSHIFT 
Axes Elapsed Elapst'd Elapsed C\1-Tirne C\1-Tinw C\1-Tirne 

Lf:'ngth (rnsf'c) ' . 1\illSE'C) Spet'dup (msec:1 ~lllSf>(' Spf'cdup 

2X2X2 0.722 0.205 3.5 0.722 0.205 ::3.:) 
"±X4X4 2.3S 7 0.911 2.6 2.:330 0.910 2.6 
8X8X8 9.948 4.9.5-t 2.0 9.92.3 4. 95-t 2.0 

16X16X16 49.044 30.389 1.6 49.0-t4 30.379 1.6 
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Table 4. Timings on a Connection Machine System CM-200 for Calls to 
PSHIFT and CSHIFT with a Shift Distance of ±1 Along All Four Axes of Rank 
Four Subarrays of Type REAL*8 

CSHIFT PSHIFT CSHIFT PSHIFT 
Axes Elapsed Elapsed Elapsed CM-Time C:Vl-Time CM-Time 

Length (msec) (msec) Speedup (msec) (msec) Speedup 

2X2X2X2 2.::>16 0.758 
4X4X4X4 11.872 4.659 
8X8X8X8 106.644 53.486 

Laboratorv of Los Alamos l'lational Laboratorv . . 
on a Connection ~lachine svstem CM-200 with a 
Sun-4 front-end. The system was operated using 
the Connection ~a chine System Software Version 
6.1 and Version 2.1 of the G\1 Fortran compiler. 
In order to get accurate timings. each call was re­
peated a number of times, and the time measured 
for all calls. The number of calls was chosen such 
that the total time was approximately the same for 
the different cases. Thus, for example 10,000 
calls were used for shifting a one-dimensional ar­
ray, whereas 100 calls were used for shifting four­
dimensional arrays along all four axes. The times 
given in Tables 1 through 4 are given in millisec­
onds per call. 

The time required for the PSHIFT_SETUP calls 
varied from approximately 0.1 to 4 or 5 seconds. 
There was no correlation of setup time to the array 
size or shifts specified. The large amount of disk 
110 required for writing, assembling, and loading 
the IMPs accounts for the majority of the setup 
time. 

Arravs of type REAL*8 were used for all tim­
ings. The shape of the subarrays was chosen to 
measure the maximum relative performance gain 
of PSHIFT over the intrinsic functions. Thus .. in 
two dimensions square subarrays were used and 
in three dimensions cubic subarravs were used. 
This is the default layout on the Connection _\fa­
chine svstems. 

All the data in Tables 1 through 4 are for shift 
distances of 1 along all axes of the arrays. The 
elapsed time shown is the total time including time 
in which the front-end is busv while the CYI is idle. 
The C_\1-time is the time that the C_\1 was busv. 
The C_\1-time will always be less than or equal ~o 
the elapsed time. 

The speedup of PSHIFT over CSHIFT is sum­
marized in Figure 8. The speedups are computed 
using the elapsed times. As expected. the speedup 
decreases with the size of the local subarravs. For 

3 .. 3 
2 .. 5 
2.0 

1.576 0.504 3.1 
11.192 4.659 2.4 

106.478 53.4.51 2.0 

large subarrays, the execution time is dominated 
by on-node memory moves to support the virtual 
machine model, and the performance of PSHIFT 
and CSHIFT is practically the same. For small 
subarrays the time for a shift is dominated by 
exchanging data with neighboring nodes. In the 
one-dimensional case the expected speedup of 
PSHIFT over CSHIFT for a shift in both directions 
of the axis is two. However, the speedup is actu­
ally higher due to different implementation tech­
niques. This fact is most notable for the front-end 
time. For four-dimensional subarravs the ex­
pected speedup of PSHIFT over CSHIFT for shifts 
in both directions of all four axis is eight. But. in 
this case the measured speedup is significantly 
less. Part of the reason is that although the actual 
exchange of data between a node and its neigh­
boring nodes is fully concurrent. all memory oper­
ations in a node are serial. A more careful analvsis 
of the expected performance is given next. 

Speed-up of PSHIFT/CSHIFT 

"' ii 
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• 1-D PSHIFT 
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FIGURE 8 The speedup of PSHIFT compared to 
CSHIFT for some arrays and shift distances of ± 1. 
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6.2 Performance Model 

From the architecture of PSHIFT we can derive 
the following model for the time to execute a single 
call to PSHIFT for a k-dimensional subarrav of 
shape Lo X £1 X · Lk-1 = V: 

(1) 

where Li is the length of subgrid axis i, k is the 
dimension (rank) of the sub grid, Nsf is the number 
of slices (one slice is 32 bits) per element for the 
given data type, Si is the shift distance for axis i, To 
is a startup time, independent of k and Li, Tmm is 
the time for the memory-to-memory transfer of a 
single slice of data, Tmt is the time to transfer a 
slice of data from memory to a transposer, T1m is 
the time to transfer a slice of data from a trans po­
ser to memory, Texis the time to do one exchange. 
The ceiling function occurs in the last term be­
cause the exchange operation swaps two slices at 
a time; if the number of slices to be sent over the 
wires is not even, the number of exchanges re­
quired is the next multiple of two. 

For a shift distance of one and Li = L, 0 :S i < k, 
combining terms yields 

Ttatal = a + b£!k- 1· + eLk. (2) 

The £!k- 1: term is the one associated with the ac­
tual between-processor communications: the Lk 
term is associated with on-processor memory-to­
memory traffic. Thus depending on the relative 
values of the coefficients b and c, the PSHIFT exe­
cution time can become dominated bv either term 
for a given subgrid extent and array rank. 

We can obtain approximate values for the time 
of an exchange and the time for a memory transfer 
from the rank one array data. In this case, there is 
only one exchange per call to PSHIFT regardless 
of the subgrid length. Thus, any dependence of 
the timing on subgrid length comes entirely from 
the memory-to-memory portion of the code. For 
the smallest subgrid (length 4), the PSHIFT C.\-1-

time is totally dominated by the single exchange, 
because one array element is sent in each direc­
tion, and only six array elements are moved within 
the processor's memory. (W'e are anticipating here 
that an exchange takes much longer than a mem­
ory transfer.) Similarly, for the largest rank one 
subgrid, the time is dominated by the memory 
transfer time. The timings indicate the CM-time 
for a single call to PSHIFT with a rank one array 
and a subgrid length four requires 41 microsec­
onds. 

To obtain the time per memory transfer, we 
take the timing in Table 1 for a subgrid length of 
16,384, subtract the 41 microseconds corre­
sponding to the subgrid length four shift, and di­
vide the remainder by twice 16,380 (the total 
number of memory-to-memory transfers not ac­
counted for by the sub grid length four times). 
From this we obtain a time of .81 microseconds 
per slice moved. As noted above, the time per ex­
change is much greater than the time for a mem­
ory-to-memory transfer. However, as the subgrid 
size increases, the execution time will eventually 
be dominated by on-processor memory-to-mem­
ory time. 

Figure 9 gives the time to execute PSHIFT as a 
function of the rank one subgrid length. An inter­
esting feature is the kink in the curve occurring at 
a sub grid length of 64. This can be understood in 
terms of the Connection Machine memorv archi­
tecture, wherein memory locations are addressed 
in pages. Changing the address of consecutive 
memory accesses by more than one page will re­
quire an extra step of resetting the page address; 
hence the effective time of memory-to-memory 
transfers depends on whether the source and tar­
get locations are in the same page or not. The 
slope of the curve increases for this case. 

Figures 1 0 and 11 give the results of fitting the 
above model to the rank two and rank three data. 
As can be observed, the fit is quite good for the 
rank two data. For the rank three data, we have 
only four data points (so a cubic function of L can 
be fit exactly too the data points). 

7 CONCLUSIONS AND DISCUSSION 

PSHIFT gives the best performance gain over the 
C.YI Fortran intrinsics for 

1. Subarrays with axes of equal lengths 
2. Bidirectional shifts 
3. Arrays of high dimensionality 
4. Small subarravs 
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The first three rules simply result from the ob­
servation that parallelism is lost when they are vio­
lated. The fourth comes about because, as the 
subarray size increases, the execution times of 
both CSHIFT and PSHIFT become dominated bv 
the on-node memory-to-memory movement of the 
data. There is no remedy for this situation as long 
as the virtual machine model is fully supported. 
However, it would be possible for a compiler to 
analyze the context of the communications pat­
tern to determine what is the ultimate destiny of 
the shifted data. In the cases where this analvsis 
succeeds, it would be possible to generate code so 
that unshifted data is used within a node, thereby 
eliminating the unnecessary local memory moves. 
Such a technology is not currently present in the 
CM Fortran compiler. Compiler features such as 
these are a research topic at this time, and are 
being considered by Rice and Syracuse Cniversi­
ties in developing a compiler for Fortran D [18], 
as well as at Thinking Machines Corporation. 

Another approach towards reducing or elimi­
nating the on-node memory-to-memory moves, is 
to identify classes of calculations that use patterns 
of shifts and consume the output locally, and pro-

vide library routines or a special-purpose compiler 
to generate optimized code for these classes. Both 
these approaches have been taken by Thinking 
Machines Corporation. The Stencil Library is an 
example of the former approach, and the Stencil 
Compiler [5] is an example of the second ap­
proach. 
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