
POLYSHIFf Communications Software for
the Connection Machine System CM-200

WILLIAM GEORGE1•2 , RALPH G. BRICKNER1, AND S. LENNART JOHNSSON3A
1Los Alamos National Laboratory, Los Alamos, NM 87545
2Department of Computer Science, Clemson University, Clemson, SC 29634
3Thinking Machines Corporation, Cambridge, MA 02142
4Division of Applied Sciences, Harvard University, Cambridge, MA 02138

ABSTRACT

We describe the use and implementation of a polyshift function PSHIFT for circular
shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids,
such as finite difference codes in several dimensions, and multigrid codes, molecular
dynamics computations, and in lattice gauge physics computations, such as quantum
chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on
the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor
of 3-4 compared with CSHIFT when the local data motion within a node is small. The
PSHIFT routine is included in the Connection Machine Scientific Software Library
(CMSSL). © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

Efficient and minimal data motion is critical for
high performance in most computer architectures.
The polyshift function presented in this article ad­
dresses this issue. The impact of the data motion
on performance depends on the memory architec­
ture of the svstem. ::\1emorv svstems han· been . . .
slower than processors, ahnost as long as elec­
tronic computers have been built. Although the
technological reasons for this fact have changed
over time. it is expected to be the ca,;e also for the
foreseeable future. :\!emory hierarchies (registers,
cache, main rr1enwry, etc.) and parallel memories
(banked and interleaved memories) han~ been

Heceived Fcbruarv 1992
Accepted .larlllan: 1994

© 1994 by John Wiley & Sons. Inc.
Scientific Programming. \ol. :3, pp. 8:3-99 (1994;
CCC 1 0.58-9244/94/010083-1""7

used extensively for a long time to achieve a de­
sired level of performance at an acceptable price.
The efficiency of these architectures depends crit­
ically on locality of reference.

::\las,;ively parallel supercomputer architectures
achieve the required memory bandwidth by using
thousands of processing units with local memo­
ries. \V-e refer to a processor. its local memory. and
associated communications circuitrv as a node. A
communications svstem interconnects the nodes.
Preserving locality of reference assumes several
new characteristics in distributed memorv archi­
tectures. Data placement among memory modules
affects the lower bounds for latencv and band­
width. The routing disciplines determine how
clo,;e to the bounds the actual data motion time is.

The goal in allocating data to the memory units
is to make most data references be references to

local memory, yet achieve good load balance.
\Vhenever references must be nonlocal. then the
placement should be such that the communica­
tion time is minimized with a good (optimal! rout-

83

84 GEORGE, BRICKNER, A;\ID JOHNSSON

ing strategy. Ideally, data is mapped to nodes such
that nonlocal references always are references to
adjacent nodes. The ability to accomplish this
task depends both on the data reference pattern
and the network topology (mesh, binary cube,
tree, ring, etc.). The access time to data in nonlo­
cal memory depends both on the network topology
and the routing mode (e.g., circuit switched,
packet switched, or wormhole routing [1]).

Many problems in the natural and mathemati­
cal sciences and in engineering can be solved by
discretizing the governing equations onto a regular
grid (lattice) in two, three, or several dimensions.
One such example is quantum chromodynamics
(QCD) calculations, which use a four-dimensional
space-time regular lattice. The computational re­
quirements for QCD are enormous. The desired
lattice sizes are of the order of 100 million grid
points. For each such grid a range of parameter
values must be covered. Each set of parameters,
known as a configuration, requires 1014 to 101.;
floating-point operations [2]. Clearly. a high effi­
ciency in utilizing the computational and com­
munication resources in highly desirable. An early
implementation of a QCD code on the Connection
~achine system C:\1-2 resulted in a performance
of 0.9 Gflop/s in 32-bit precision for a 2,048
node configuration. Code restructuring and other
optimizations improved the performance by close
to a factor of six to 5.2 Gflop/s.

A large fraction of the performance enhance­
ment in the QCD application was due to code re­
structuring to allow for concurrent bidirectional
communications in each of four dimensions si­
multaneously and to avoid extraneous local mem­
ory moves. The polyshift function described here
is a generalization of the communications routines
developed for the QCD application. The polyshift
function is included in the Connection Machine
Scientific Software Library (CMSSL) [3, 4] as the
routine PSHIFT.

The PSHIFT routine is critical for the perfor­
mance of many scientific programs based on finite
difference techniques, multigrid techniques, as
well as molecular dynamics applications. In this
article, we describe this software, along with fea­
tures of the Connection Machine system CM-200
that support it, and give performance numbers
and analyses. The PSHIFT software technology is
also used in a special compiler known as the sten­
cil and convolution compiler, now available in
CMSSL for the C:\1-2 and CM-200. A prototype
version of this compiler was described by Bromley

et al. [5]. The stencil compiler will be described
elsewhere.

In Section 2, we describe the programming
model of the C:\1-200 used by the compilers and
the run-time system, as well as the hardware fea­
tures that are used for the implementation of
PSHIFT. Section 3 describes the software archi­
tecture of the PSHIFT routine and Section 4 dis­
cusses its implementation in some more detail.
Section 5 describes the interface of the PSHIFT
library routine to Connection :via chine Fortran [6,
7], a subset of Fortran 90 [8] with extensions.
Calling sequences and supported functionality are
reported. Section 6 presents some performance
measurements and a performance model. We
conclude with a section summarizing our experi­
ence from developing and using the PSHIFT li­
brary routine, and discussing possible future en­
hancements and generalizations.

2 THE CONNECTION MACHINE MODEL
CM-200

2. 1 Data Allocation

The CM-2 and CM-200 support a programming
model with a global address space. (For the re­
mainder of this article, unless otherwise stated,
descriptions of the C:\1-200 hardware and soft­
ware will also apply to the CM-2.) Data arrays
declared in any of the supported languages are by
default distributed evenly over all memory units.
The default allocation of arrays to memory units is
entirely based on array shape. This allocation is
known as a canonical layout, and is determined
by the geometry manager at run-time. For each
array, the nodes are configured as an array of
nodes with the same rank as the data array. Thus,
for one-dimensional data arravs the nodes form a
linear array; for a two-dimensional data array, the
nodes form a two-dimensional array of nodes, etc.

The geometry manager also decides which ele­
ments are mapped into the same node, and to
which node each aggregate of data is mapped. On
the Connection ~achine systems, a set of consec­
utive elements [9] along each axis are mapped
into the same memory unit. If the number of ele­
ments along an axis is not evenly divisible by the
number of nodes assigned to that axis, then some
nodes may not be assigned any elements. Of the
nodes that are assigned elements, all but one re­
ceive the same number of elements. Thus, for a

one-dimensional data array of lW elements map­
ped toN nodes, 1%1 successive elements are as­
signed to the first l M I j% l j nodes. On nodes that

receive fewer than r * l elements, memory is never­
theless allocated for this number of elements. For
rank two or higher arrays, one or more axes may
be padded in this manner. Nonvalid data ele­
ments are identified by setting bits of a garbage
mask. This mask has one bit for each data ele­
ment.

Other mappings of interest with respect to ei­
ther load balance (such as in LC decomposition
[9-12]) or communications requirements (such
as in FFT computations [13, 14] are cyclic map­
ping [9], and combinations of consecutive and cy­
clic mappings, such as block cyclic mappings [10,
15-17]. The proposed languages Fortran D [18]
and High Performance Fortran [19] support such
data allocations. However, the current Connec­
tion Ylachine languages do not support cyclic
mappings, or combinations thereof with the con­
secutive mapping.

The consecutive allocation defines which ele­
ments are assigned to the same node, but does not
specify how aggregates of elements are assigned to
nodes. On the CM-200, the default assignment is
such that a pair of successive indices along any
axis are either mapped into the same memory
unit, or into the memory units of adjacent nodes.
This mapping, known as NEWS order, uses a bi­
nary-reflected Gray code [20, 21] for the encod­
ing of node addresses. The standard binary en­
coding is referred to as SEND order. In the default
NEWS order, allocation blocks i and i + 1 are as­
signed to adjacent nodes, while in the SEND order
allocation block i is assigned to node i. In a SEND
ordered assignment, blocks N I 2 - 1 and N I 2 are
assigned to nodes at a distance of log2 N apart.
The LAYOUT compiler directive is available to in­
dividually choose which order is to be used for the
axes of a given data array.

The default strategy for assigning nodes to axes
of multidimensional data arrays is to make the
local length of each of the data array axes the
same, if possible. For example, in two dimensions
the geometry manager attempts to make the local
data array approximately square, and in three di­
mensions it attempts to make the local array ap­
proximately a cube. This strategy minimizes the
average number of remote references per local ref­
erence when the references along the different ar­
ray axes are equally frequent for all array ele­
ments. In other words, this minimizes the surface

POL YSHIFT COMMUNICATIONS SOFTWARE 85

area of a subgrid for a given volume. For example,
a 32 X 32 array mapped onto a four-dimensional
binary cube would result in subarrays on each
node of size 8 X 8, i.e., each instance of an axis
being assigned a two-dimensional subcube. How­
ever, because of certain low level details of the
architecture, the geometry manager does not al­
ways succeed in creating subarrays with axes of
equal lengths, even when that should be possible.

The shape of the local arrays, but not their size,
is controlled by assigning weights to the various
axes using the LAYOUT compiler directive. The
number of local array elements is not affected by
the LAYOUT directives as long as the array size is
such that the lengths of the axes of the selected
processing array shape divide the corresponding
data array axes. A high weight for an axis relative
to the weight of other axes increases its local
length at the expense of the length of the other
axes. The SEND and NEWS order specifiers have no
effect on the local array shape. They only affect
the node to which subarrays are assigned.

Further control of axes lavouts can be obtained
by using the SERIAL specifier in the LAYOUT com­
piler directive. This specifier forces an axis to be
entirely local to a memory unit, so that a distinct
copy of the entire axis resides in every memory
unit. Finally, the allocation of an array can also be
controlled by the ALIGN compiler directive. With
this directive one array is aligned with another ar­
ray in a specified way. The run-time system main­
tains information about array type, location,
shape, and layout in an array descriptor for each
arrav.

2.2 Data Motion Primitives

Fortran 90 and C.\1 Fortran provide the intrinsic
functions CSHIFT and EOSHIFT for circular shift
and end -off shift. These intrinsic functions shift
an entire Fortran array in a given dimension by a
given amount. CSHIFT is a circular shift, whereas
EOSHIFT is an end-off shift, with incoming
boundary data specified as literal data, or a scalar
or array-valued variable. Because these functions
are the array-syntax expressions of offset array
indices, their use is very common in scientific pro­
gramming.

The PSHIFT routine allows a user to specify, in
a single statement, data motion equivalent to one
or more calls to CSHIFT and EOSHIFT. The CM-2
and CM-200 implementations of PSHIFT also of­
fer enhanced performance, compared with calls to

86 GEORGE. BRICK:\'EK A:\'D JOII.\"SSO:\

CSHIFT and EOSHIFT through an efficient imple­
mentation of multiple communication operations.

In the CM-200 systems, an exchange of data
between adjacent nodes requires the same time as
a one-way communication between a pair of adja­
cent nodes. Moreover, communication along sev­
eral axes can be performed concurrently. This
abilitv for concurrent communication between . '

nodes is exploited by PSHIFT to efficiently per-
form multiple shifts when compared to CSHIFT.
The specific node hardware that supports the
concurrent exchange of data is described next.

2.3 Node Architecture

The C\'I-200 can have up to 2,048 nodes, each of
which is equipped with a 32- or 64-bit (internal)
floating-point unit (FPC). 4 .\!Bytes of dynamic
random access memory (DRA.\1) operated in page
mode .. and a network interface. There is also a set
of 32 bit-serial processors, and some associated
hardware for translating data between the bit-se­
rial representation and the 32-bit wide represen­
tation required by the FPC. Sixty-four-bit opera­
tions are supported by the 64-hit FPC, but the
data paths external to the FPC are 32 bits wide.
This requires consecutive loads and stores of the
two 32-bit halfwords associated with each 6-±-bit
floating-point word. During memory loads, a
DRA.\1 page fault adds one cycle. That is. striding
out of a 4k (32-hit) word DRA.\1 page causes a
single-cycle stall. Stores always require close to
two cycles. The clock frequency is 10 .\1Hz (7 .\1Hz
for the C.\1-2).

The bit-serial processors are physically ar­
ranged on two ''CYI Chips,,. each of which is the
terminus for 12 communications wires. One wire
on each CM Chip is connected to the other C\'1
Chip on the node. the others go to other nodes.
Because of this doubling of the CM Chips and
their associated communications wires. the ma­
chine is effectivelv interconnected as a binarv hv-. . .
percube with up to 11 dimensions, depending on
machine size. and with connections between adja­
cent nodes consisting of a pair of 1-hit wide chan­
nels. Figure 1 gives a block diagram of a node and
Figure 2 shows how a three-dimensional cube of
CM Chips can be thought of as a two-dimensional
cube with a pair of channels between each pair of
nodes. The C\'1-200 is described in detaill22].

The basic communications operation between
a pair of adjacent nodes is an exchange. i.e .. a
pair of nodes can exchange data in the time re­
quired for one of the nodes to send data to the

CM-2Chip

fffi
R 1'--r=: lo---

Memory 0 ,__
f=: 4 MBytes u ,__

T
,__

f=: 4 MBit DRAM chips E
,__
,__

f=: Single ported R ,__
,__ 1-

Communication
lines (I bit)

32-bit !\temory bus

R
,__ :::::

HH
1'---

0 1'--::::: u 1'--
\Veitek ""Sprint" r-r- T 1'--::::: - lo---

WTL3164 Chip E 1'--::::: R 1'--
1'--~

CM-2Chip

FIGL'RE 1 A C\'1-2/200 floatin§(-point processor
node.

other node. \'loreover, it is possible to concur­
rently exchange data on all channels of a node. In
a 2.048-node system. up to 22 (2 X 11) data ele­
ments can be exchanged concurrently. The net­
work interface contains three register files of
thirty-two 32-bit registers each .. known as "tran­
sposers·., A. B. and C. The transposers function
also to convert data between the 1-hit \vide bit­
serial representation (employed by the bit-serial
CYI processors). and the 32-bit wide representa­
tion required by the FPU. In this case. each tran­
sposer converts a block of 32 bit-serial words of
32 bits. to a 32-bit parallel word, and vice versa.
\Vhen functioning as part of the communications
system, the transposers serve as the source and
destination of the data exchanged between a pair
of adjacent nodes. In a typical operation. transpo­
ser A is loaded with two 32-bit data elements for
each adjacent node to which data shall be sent.
After the exchange, transposer B contains the
data received-two 32-bit data elements from
each adjacent node. ''Slots'' 1 through 11 in the

101 Ill
10 II

/ /
!00 110

001 011

/ v 00

000 010

FIGURE 2 Eight nodes can be thou§!'ht of a:-; a three­
dimensional hypercube. or a~ a double two-dimen­
sional hYpercube with connf'ctions internal to a node.

Slot

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Dimension

0
1
2
j

4
5
6
7
8
9

10

0
1
2
3
4
5
e
7
8
9

10

FIGURE 3 Transpos~r slots and hypPrcub~ dirnf'n­
sions.

transposer regi,;ter file correspond to one set of
eleven 1-bit channels, and slots 17 through :26
correspond to the other set of eleven 1-bit chan­
nels. The correspondence between trans­
poser slots and cube dimensions is illustrated in
Figure 3.

2.4 Virtual Machine Model

The Connection .\lachine svstems implement a
virtual machine model in which one data element
(e.g .. a G.\1 Fortran array element) is assigned to

one virtual processor. Conceptually. the user data
arrays are fully di,;tributed amongst the virtual
processors. and all operation,; take place fully in
parallel. However, to actually implement a data
distribution that assigns one data element to one
physical processor would result in highly ineffi-

POL YSHIFT CO.VI.VlUNICA TIO:'-JS SOFTWARE 87

cient use of the hardware, and also the inability to
run different sized problems on the same system
configuration. The virtual machine model allows
the distribution of a large number of data ele­
ments onto a smaller number of physical proces­
sors, so that multiple data elements are assigned
to a single physical processor, alleviating these
problems. (Details of this distribution were dis­
cussed above.)

]\;ow consider a typical shift operation in C.\'1
Fortran. The operation CSHIFT (A, 1, 1) implies
that all references to A (I, : , :) after the shift op­
eration reference element A ((I+ 1) mod N, : , :)
prior to the shif'L where ,y is the length of the
shifted axes. In the current implementation of
CSHIFT all elements of A are moved precisely as
stated in the call to the function CSHIFT.
EOSHIFT is implemented analogously, and so is
PSHIFT. But, because, in generaL there are many
array elements assigned to each node, the virtual
machine model results in a large number of mem­
orv moves local to a node. As the size of a subar­
ray increases, the time for local memory moves
becomes comparable to, and eventually exceeds,
the time for communication. Thus the perfor­
mance advantage of PSHIFT decreases with in­
creasing size of the local subarrays.

HoweveL the local memory moves could be
avoided by suitable manipulation of pointers, i.e"
by appropriately modifying the address calcula­
tion in referencing array elements. The C.\'1-200
compilers do not currently maintain a set of
pointers. In the PSHIFT function. the data motion
between node,; and the support of the virtual ma­
chine model are implemented as separate mod­
ules. Both modules are required for consistency
with the memory model used by the G\1 Fortran
compiler.

3 PSHIFT SOFTWARE ARCHITECTURE

The polyshift operation is supported by the three
routines PSHIFT. PSHIFT_SETUP. and DEALLO­
CATE_PSHIFT_SETUP. The PSHIFT routine is
further divided internallv into modules corre­
sponding to

1. The data motion between nodes
2. Local data motion to support the virtual

machine model
3. The boundary conditions

We now describe the routines in more detail.

88 GEORGE, BRICKNER, AND JOHNSSO~

The purpose of the PSHIFT_SETUP function is
to carry out operations that are the same for each
call to the routine PSHIFT, which performs the
shift operations, and thus can be performed once
and for all. Largely, the PSHIFT_SETUP function
performs address calculations and generates a
custom routine to accomplish the requested set of
shifts. On the CM-200, each array axis is assigned
to a subcube of nodes. For a data array mapped to
the nodes in NEWS order, traversing a given data
array axis corresponds to traversing the binary
subcube to which it is allocated. For a shift opera­
tion it is necessary to determine, for each node,
the dimensions for incoming and outgoing data in
the positive and negative axis direction. This in­
formation is held in communication tables on the
CM. One table, of at most four 32-bit words. is
required for each shift. The fact that different
cube dimensions are used for an axis is clearlv
seen in Figure 2.

In order to perform the required calculations
the PSHIFT_SETUP function must gather infor­
mation about the mapping of the array to the
nodes and the array data type from the array de­
scriptor. Although the axis encoding (NEWS or
SEND) the data type and the array rank are all
known at compile-time, neither the actual array
extents nor the machine size is known until run­
time. Using these final pieces of information, the
geometry manager determines the actual layout of
the arrays. It is only at this point that PSHIFT has
enough information to perform the actual setup
functionality required by the given arrays. All data
arrays having the same shape, same data type,
and same layout directives are mapped to the C:\-1-
200 nodes in the same way. Thus, one call to the
setup routine suffices for a given set of shifts for all
such arrays.

The PSHIFT routine performs the actual data
motion. The data movement is performed in three
steps:

1. Perform all of the on-node memorv-to­
memory moves (in support of the virtual
machine model)

2. Perform the required exchange of data be­
tween nodes

3. If needed, move the boundary data for
EOSHIFT to the appropriate nodes

The first step performs any local memory
moves that are needed. If the source and destina­
tion arrays are the same for any shift, then the
source is first copied to a temporary array to avoid

overwriting data needed in step 2. l'\o local mem­
ory moves are required when the shift distance is
greater than the length of the local axis segment
for an axis. If this is not the case. local memorv
moves can only be avoided by code restructuring
in which the boundary is extracted from the origi­
nal array.

The second step performs the data motion re­
quired to exchange data between nodes. \Vhen
data is needed from an adjacent node, a single
exchange across the hypercube channels is
needed. PSHIFT can handle any shift distance up
to twice the subgrid extent along the shift axis and
shifts of distanceS = L2k fork~ 1. where Lis the
length of the subgrid along the shift axis. Shifts of
length S = L2k are referred to as power-of-2
shifts. For such shifts, all array elements are
moved a distance of two nodes (require two ex­
changes). This fact is due to the properties of the
binary-reflected Gray coding used in distributing
the array elements.

The third step moves boundary data for
EOSHIFT into the appropriate nodes. This step is
only required for end-off shifts with array or scalar
variable boundaries. For end-off shifts, PSHIFT
also allows either a constant 0 or a constant 1 to
be specified for the boundary values. These
boundaries can often be handled without requir­
ing this third step. This aspect of PSHIFT is dis­
cussed further in the next section.

The subfunction DEALLOCATE_FSHIFT_
SETUP deallocates the data structures allocated in
the PSHIFT_SETUP routine. The onlv CM mem­
ory allocated by PSHIFT_SETUP is for the com­
munication tables, because these tables are differ­
ent for each processor node. Temporary arrays, if
needed by PSHIFT, are allocated and deallocated
on each call to PSHIFT.

4 PSHIFT IMPLEMENTATION

In this section we describe the implementation de­
tails of the PSHIFT routines. The desired level of
control over data motion required that much of
the code for the CM-200 be expressed in Connec­
tion Machine Instruction set (CMIS). The remain­
der of the polyshift code was written in C. Lying
somewhere between assembly language and mi­
crocode, CMIS allows low-level control of the fea­
tures of a Connection ~achine system without a
need for the programmer to be concerned with the
lowest level details, such as setting up pipelines in
the node. The CMIS functionality includes mem-

ory-to-memory transfers, memory-FPC pipelines,
and special instructions for concurrent communi­
cation on multiple channels of a node.

The PSHIFT_SETUP routine accepts a set of
arguments that specify a prototypical array and a
set of shifts to be performed on arrays of the same
size and layout as the prototype. This information
is used to generate a custom (internal macro pro­
cedure [IMP] consisting of CMIS and I:YIP instruc­
tions) that will perform the shifts requested. Com­
munication tables are computed for each node.
These tables are used by the I:yfP to load and un­
load the correct transposer slots for each ex­
change of data across the hypercube connections.
The IMP is written to a file, assembled, and then
loaded into the static random access memorv
(SRAM) of the sequencer(s) for the C:yf-200 con­
figuration being used. The PSHIFT_SETUP func­
tion returns an integer ID, which is used as an
argument to the PSHIFT routine to identify the
previously geneated IMP. The same ID can be
used for all calls to PSHIFT for the same set of
shifts on any arrays with the same layout and data
type as the prototype array passed to PSHIFT
_SETUP. Different calls to the PSHIFT_SETUP
function and different IDs are needed for different
array layouts and/ or a different set of shifts.

The IMPs generated by PSHIFT_SETUP per­
form the following steps:
Repeat until all exchanges are completed

1. Load trans poser A, indirectly with com­
munication tables, from the source arrays

2. Exchange data with adjacent nodes
3. Cnload transposer B, indirectly with com­

munication tables, to the destination arrays

The IMPs generated by the PSHIFT_SETUP
function perform all of the communications re­
quired by the shifts, except for assigning the array,
scalar, and in some cases, constant 1.0 and 0.0
values to the boundaries. These boundary values
are assigned with calls to Connection Machine
run-time library routines after the IMP has com­
pleted. Boundaries assigned the constant 0.0 are
handled in the IMPS by loading Os into transposer
A slot 0 and modifying the communication tables
to read from transposer B slot 16 for nodes that
require the boundary elements. Each boundary
node in effect sends the appropriate constant to
itself. This communications path is an artifact of
the original CM-2 bit-serial architecture and was
used to communicate between the pair of CM-2
Chips found on each node (see Fig. 1). The same

POL YSHIFT COMMUNICA TIOI\'S SOFTWARE 89

technique is used if all end-off shifts specity a
constant boundary value of 1. 0 (loading a 1. 0 in­
stead of a 0.0 into transposer A slot 0). In the case
that some end-off shifts specify a constant 1
boundary and some specify a constant 0.0, then
the constant 0. 0 boundaries are handled in the
IMP and the constant 1.0 is broadcast to those
boundary elements requiring the value, after the
IMP has completed.

Due to limited space in SRAM, and for perfor­
mance reasons, there are actually two setup rou­
tines. The PSHIFT_SETUP routine generates IMPs
in which all loops are completely unrolled. The
PSHIFT_SETUP _LOOPED routine generates IMPs
in which the loops are unrolled only slightly, e.g ..
four data exchanges are performed in each itera­
tion cf a loop. The PSHIFT_SETUP routine gener­
ates faster routines due to the high overhead of
loop control statements in IMPs (especially on the
CM-2) at the expense of larger IMPs and higher
setup times. In fact, the PSHIFT_SETUP routine
can fail in some cases if it produces an I:YIP that is
too large to fit into the available SRAM. In these
cases the PSHIFT_SETUP _LOOPED routine must
be used. The calling convention is the same for
PSHIFT_SETUP and PSHIFT_SETUP_LOOPED.
Other restrictions and performance consider­
ations are discussed in more detail in the next two
sections.

For shifts that cannot be handled by PSHIFT,
PSHIFT_SETUP sets an internal flag, causing the
shift to be performed through calls to the Connec­
tion Machine run-time library. If none of the re­
quested shifts can be handled by IMPs then the
performance of PSHIFT will be approximately the
same as for the equivalent set of calls to the intrin­
sic routines CSHIFT and EOSHIFT. For a shift
along any axis a, with sub grid axis extent L, and a
shift distance S, a shift will be handled by an IMP
if the following restrictions are met:

1. Axis a is not padded.
2. Axis a is distributed in NEWS order.
3. lSI :S 2L or S = L(2k) fork 2:: 1.

Also, no more than two shifts are allowed per axis.

5 PSHIFT CM FORTRAN INTERFACE

PSHIFT is accessed from CM Fortran using the
cals described in Figure 4. The shift-type argu­
ments are predefined constants defined in the
CMSSL header file "cmssl-cmf.h". They mav

90 GEORGE, BRICK!\'ER, Al'\D JOH~SSO!\'

include '/usr/include/cm/cmssl-cmf.h'

integer setup_id

setup_id = PSHIFT_SETUP (n, cm_array, ier,
&: shift_type_l, dim_l, dist_l,
&: shift_type_2, dim_2, dist_2,

&: shift_type_n, dim_n, dist_n)

CALL PSHIFT (n, setup_id, ier,
&:

&:

shift_type_l, dst_array_l, src_array_l, dim_l, dist_l[, bdry_l],
shift_type_2, dst_array_2, src_array_2, dim_2, dist_2[, bdry_2],

&: shift_type_n, dst_array_n, src_array_n, dim_n, dist_n[, bdry_n])

CALL DEALLOCATE_PSHIFT_SETUP (setup_id)

FIGURE 4 PSHlFT calling sequences.

be one of CMSSL_CSHIFT, CMSSL_EOSHIFT_
SCALAR. CMSSL_EOSHIFT_ARRAY. CMSSL_
EOSHIFT_O, or CMSSL_EOSHIFT_L in any com­
bination. Boundarv values for end-off shifts mav . .
be the constant values 0.0 or 1.0. a front-end sca­
lar variable, or a C.VI array (or rank one less than
the source and destination arrays).

To compare the w.;e of CSHIFT and PSHIFT,
we present in Figure 5 code fragments represent­
ing the calculation of a five-poinL two-dimen­
sional stencil. l"otice that in using PSHIFT. tem­
porary storage must be managed by the user.
whereas in the corresponding code using CSHIFT.
the compiler manages temporary storage. In the
example, the temporary arrays are named N. E. W.
and S. The advantage ofPSHIFT lies in the imple­
mentation of the required communication. The li­
brary routine PSHIFT performs the specified com­
munications concurrentlv. whereas the CM-200
compilers do not instantiate multiple CSHIFT or
EOSHIFT operations concurrently. Thus .. in our

example. the C.\1 Fortran code requires four com­
munications instead of one.

An optimized C.\1 Fortran compiler would not
only perform the required communication con­
currently. but also avoid unnecessary local data
motion. and optimize the register usage in the
floating-point unit. A prototype compiler of this
nature has been implemented for stencils applied
to two-dimensional arrays. This compiler is
known as a stencil or convolution compiler [51. A
generalization of this prototype compiler has now
been completed for the C~·I-200 and is part of
CMSSL :3.1 for the C.\1-2 and C.\1-200. A C.Vl-5
version is now under development. The C:\1-2/
200 version of the stencil compiler uses a module
of the PSHIFT function for data motion between
nodes.

For the QCD computations mentioned earlier
PSHIFT replaces eight communications per­
formed sequentially by one concurrent communi­
cation exchanging data along all four axes at

POL YSHIFT COMMC~ICA TIONS SOFTWARE 91

C •••• Stencil with CSHIFTs:

c Do the communications and computations in one statement
dst =

&: eN * CSHIFT {src, 1, -1) +
&: cE * CSHIFT {src, 2, 1) +
&: cW * CSHIFT {src, 2, -1) +
&: cs * CSHIFT {src, 1, 1) +
&: cO * src

C .••• Stencil with PSHIFTs:

c •••• Define local news arrays
real*S, array {NX, NY) :: N, E, S, W

emf$ layout N {:news, :news), E {:news, :news)
emf$ layout W {:news, :news), S {:news, :news)

c Do multiple communications
call pshift {4, id, ier,

&: CMSSL_CSHIFT, N, src, 1, -1,
&: CMSSL_CSHIFT, E, src, 2, 1,
&: CMSSL_CSHIFT, w, src, 2, -1,
&: CMSSL_CSHIFT, S, src, 1, 1)

c Do the computation
dst = cN*N + cE*E + cW*W + cS*S + cO*src

FIGURE .5 Comparison of CSIIIFT and PSHIFT usage.

92 GEORGE, BRICKNER, AND JOHNSSON

REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) XP_SRC, XP_DST
REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) XM_SRC, XM_DST

REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) YP _SRC, YP_DST

REAL, ARJlAY (3, 2,NX,NY ,NZ, N'r) YM_SRC, YM_DST

REAL, ARJlAY (3, 2,NX,NY ,NZ,N'r) ZP_SRC, ZP_DST

REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) :: ZM_SRC, ZM_DST

REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) :: TP _SRC, TP_DST
REAL, ARJlAY (3, 2,NX,NY,NZ,N'r) .. TM_SRC, TM_DST

CMF$ LAYOtrr XP_SRC (:SERIAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMF$ LA.YOOT XP_DST (:SERIAL, :SERLAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMF$ LAYOO"l" XM_SRC (:SBR:IAL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMF$ LAYOUT XM_DST (:SZRJ:AL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMF$ LA.YOU'l" YP_SRC (:SER:IAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMF$ LAYOUT YP_DST (:SER'IAL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS)

CliP$ LAYOUT YM_SRC { :SER::tAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS}

CMF$ LAYOUT YM_DST (:SERXAL, :SERI.AL, :NEWS, :NEWS, :NEWS, :NEWS)

CMF$ LAYOUT ZP_SRC (:SER:rAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMF$ LAYOOT ZP_DST (:SI!:RIAL, :SI!:RXAL, :NI!:WS, :NI!:WS, :NI!:WS, :NI!:WS)

CMP$ LA.YOU'l' TP_SRC { :SBR:IAL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMP$ LAYOU"l' TP_DST (:SERIAL, :SBR:IAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMP$ LAYOUT TM_SRC (:SERJ:AL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS)

CMF$ LAYOUT TM_DST (:SER:IAL, :SER:IAL, :NEWS, :NEWS, :NEWS, :NEWS)

CALL PSB:IFT (8, m, :IER, .. CMSSL_CSB:IFT, XP_DST, XP _SRC, 3, +1, .. CMSSL_CSB:IFT, XM_DST, XM_SRC, 3, -1, .. CMSSL_CSB:IFT, YP_DST, yp _SRC, '· +1, .. CMSSL_CSR:Il"T, YM_DST, YM_SRC, '· -1, .. CMSSL_CSB:Il"T, ZP_DST, ZP_SRC, 5, +1, .. CMSSL_CSB:IFT, ZM_DST, ZM_SRC, 5, -1, .. CMSSL_CSR:IFT, TP_DST, TP_SRC, 6, +1, .. CMSSL_CSR:Il"T I TM_DST, TM_SRC, 6, -1)

FIGURE 6 Four-dimensional communications from
QCD using PSHIFT.

once. The use of PSHIFT in a fragment of a QCD
application is shown in Figure 6.

A final example is the calculation of a 27 -point,
three-dimensional stencil, given as a complete
subroutine in Figure 7. This example also illus­
trates the reuse of intermediate communications
results in a complicated communications pattern,
as indicated by the appearance of several PSHIFT
destination arguments as both later PSHIFT
source arguments, and as operands in the arith­
metic expression.

6 PERFORMANCE

6.1 Timings

In this section we present performance data for
the PSHIFT routines. The goal of PSHIFT is to
provide improved performance over the intrinsic

functions CSHIFT and EOSHIFT. The PSHIFT
routine supports the virtual machine model, like
CSHIFT and EOSHIFT. For small subarravs of
high rank the speedup is expected to be relatively
high, whereas for large subarrays of low rank the
on-node memory moves will dominate, and
PSHIFT is not expected to offer much improve-

subroutine stencil_27 (mx, my, mz, a, x, y)

include '/usr/include/cm/cmssl-cmf.h'

c Parameters

emf$
emf$
emf$

integer mx, my, mz
real, array (27, O:mx, Onay, O:mz) :: a
real, array O:mx, O:my, O:mz) :: x, y
layout a (:serial, :news, :news, :news)
layout x
layout y

(:news, :news, :news)
(:news, :news, :news)

c Local scalars
integer idl_27, id2_27, ier
logical first_call_27
data first_call 27 /.true./
save idl_27, id2_27, first_call_27

c •.•• Local arrays

real, array(O:mx, O:my, O:mz) ::

* XS - 0 - 0 _1, XS - 0 - 0 _m1,

* XS - 0 - 1 _0, XS_O_ 1 _1,

* xs_o_ 1 _ml, xs_O_m1 _0,

* XS - 0 _m1 _1, xs_O_m1 _m1,

* xs_1_0_0, xs_1_ 0 _1,

* xs - 1 - 0 _ml, XS - 1 - 1 _0,

* xs 1 - 1 _1, XS - 1 - 1 _ml, -

* xs_1_m1_0, XS_1_m1 _1,

* XS_1_m1_m1, XS _m1 - 0 _0,

* xs_m1_0_1, xs_m1_ 0 _m1,

* xs_m1 _ 1 _ 0, xs _m1 - 1 _1,

* xs_m1_ 1_m1, xs_m1_m1_0,

* xs_m1_m1_1, xs_m1_m1 _m1

c .••. If this is the first call, do the setups

if (first_ca11_27) then

first_call_27 • .false.
id1_27 • pshift_setup (6, x, ier,

* CMSSL_CSHIFT, 1, +1,

* CMSSL_CSHIFT, 1, -1,

* CMSSL_CSHIFT, 2, +1,

* CMSSL_CSHIFT, 2, -1,

* CMSSL_CSBIFT, 3, +1,

* CMSSL_CSHIFT, 3, -1)
id2 - 27 • pshift_setup (2, x, ier,

* CMSSL_CSHIFT, 3, +1,

* CMSSL_CSBIFT, 3, -1)

end if

FIGURE 7 27 -point, three-dimensional stencil using
PSHIFT.

POL YSHlFT COMMUNICA TIO:"'S SOFTWARE 93

C •••. Always do the shifts and the calculation

call pshift (6, id1_27, ier,
* CMSSL_CSHIFT, xs __ 1 __ 0 __ 0, X, 1, +1,
* CMSSL_CSHIFT, xs_m1 __ 0 __ 0, X, 1, -1,
* CMSSL_CSHIFT, xs __ 0 __ 1 __ 0, X, 2, +1,
* CMSSL_CSHIFT, xs __ O_m1 __ 0, X, 2, -1,
* CMSSL_CSHIFT, xs __ 0 __ 0 __ 1, X, 3, +1,
* CMSSL_CSHIFT, xs __ O __ O_m1, X, 3, -1)
call pshift (6, id1_27, ier,

* CMSSL_CSHIFT, xs __ 1 __ 0 __ 1, xs __ 0 __ 0 __ 1, 1, +1,
* CMSSL_CSHIFT, xs_m1 __ 0 __ 1, xs __ 0 __ 0 __ 1, 1, -1,
* CMSSL_CSHIFT, xs __ 1 __ 1 __ 0, xs __ 1 __ 0 __ 0, 2, +1,
* CMSSL_CSHIFT, xs __ 1_m1 __ 0, xs __ 1 __ 0 __ 0, 2, -1,
* CMSSL_CSHIFT, xs __ 0 __ 1 __ 1, xs __ 0 __ 1 __ 0, 3, +1,
* CMSSL_CSHIFT, xs __ 0 __ 1_m1, xs __ 0 __ 1 __ 0, 3, -1)
call pshift (6, id1_27, ier,

* CMSSL_CSHIFT, xs __ 1 __ 0_m1, xs __ O __ O_ml, 1, +1,
* CMSSL_CSHIFT, xs_m1 __ 0_m1, xs __ O __ O_m1, 1, -1,
* CMSSL_CSHIFT, xs_m1 __ 1 __ 0, xs_m1 __ 0 __ 0, 2, +1,
* CMSSL_CSHIFT, xs_m1_m1 __ 0, xs_m1 __ 0 __ 0, 2, -1,
* CMSSL_CSHIFT, xs __ O_m1 __ 1, xs __ O_m1 __ 0, 3, +1,
* CMSSL_CSHIFT, xs __ O_m1_m1, xs __ O_m1 __ 0, 3, -1)

call pshift (6, id1_27, ier,
* CMSSL_CSHIFT, xs __ 1_m1 __ 1, xs __ O_m1 __ 1, 1, +1,
* CMSSL_CSHIFT, xs_m1_m1 __ 1, xs __ O_m1 __ 1, 1, -1,
* CMSSL_CSHIFT, xs_m1 __ 1_m1, xs_m1 __ 0_m1, 2, +1,

*
*
*

*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

CMSSL_CSHIFT, xs_m1_m1_m1, xs_m1 __ 0_m1, 2,
CMSSL_CSHIFT, xs __ 1 __ 1 __ 1, xs __ 1 __ 1 __ 0, 3,
CMSSL_CSHIFT, xs __ 1 __ 1_m1, xs __ 1 __ 1 __ 0, 3,

call pshift (2, id2_27, ier,
CMSSL_CSHIFT, xs_m1 __ 1 __ 1, xs_m1 __ 1 __ 0, 3,
CMSSL_CSHIFT, xs __ 1_m1_m1, xs __ 1_m1 __ 0, 3,

y (:, :,:) •

-1,
+1,

-1)

+1,
-1)

a (1,:,:,:) * xs_m1_m1_m1 +a
a (3,:,:,:) * xs __ 1_m1_m1 +a
a (5,:,:,:) * xs __ O __ O_m1 +a

2,:,:,:) * xs __ O_m1_m1 +
4,:,:,:) * xs m1 __ 0_m1 +
6,:,:,:) * xs __ 1 __ 0_m1 +

a (7,:,:,:) * xs_m1 __ 1_m1 +a 8,:,:,:) * xs __ 0 __ 1_m1 +
a (9,:,:,:) * xs __ 1 __ 1_m1 +a (10,:,:,:) * xs m1 m1 __ 0 +
a (11,:,:,:) * xs __ O_m1 __ 0 +a (12,:,:,:) * xs __ 1_m1 __ 0 +
a (13, :, :, :) * xs m1 __ 0 __ 0 + a (14, :, :, :) * x +
a (15,:,:,:) * xs __ 1 __ 0 __ 0 +a (16,:,:,:) * xs_m1 1 0 +
a (17,:,:,:) * xs __ 0 __ 1 __ 0 +a (18,:,:,:) * xs __ 1 __ 1 __ 0 +
a (19,:,:,:) * xs_m1_m1 __ 1 +a (20,:,:,:) * xs __ O_m1 1 +
a (21,:,:,:) * xs __ 1_m1 __ 1 +a (22,:,:,:) * xs_m1 __ 0 __ 1 +
a (23,:,:,:) * xs __ 0 __ 0 __ 1 +a (24,:,:,:) * xs __ 1 __ 0 __ 1 +
a (25,:,:,:) * xs m1 __ 1 __ 1 +a (26,:,:,:) * xs __ 0 __ 1 __ 1 +
a (27,:,:,:) * xs 1 1 1

end

FIGURE 7 Continued.

ment over CSHIFT or EOSHIFT. Furthermore, the
advantage of PSHIFT is the highest when the
lengths of the axes of the local subarray are the
same. For instance, if the local subarray is of
shape 100 X 10, then only 10 element exchanges
along the two axes are overlapped for a shift dis­
tance of one. Then, 90 elements must be ex­
changed without any concurrency. In the default
layout targeted by the geometry manager, the local

segments of the array axes are of as equal length
as possible. Thus, in such a layout, a maximum
overlap between communications along different
axes is achieved. The timings reported in Tables 1
through 4 were designed to verify the performance
behavior relative to the intrinsic functions.

All timings were performed using the version of
PSHIFT that is include in C:\-ISSL 3.0. The tim­
ings were carried out at the Advanced Computing

94 GEORGE, BRICKI\EK Al\D JOHI\SSO:".'

Table 1. Timings on a Connection Machine System CM-200 for Calls to
PSHIFT and CSHIFT with a Shift Distance of ± 1 on Rank One Subarrays of
Type REAL*8

CSHIFT PSHIFT CSHIFT PSHIFT
Axes Elapsed Elapsed Elapsed C:VI-Time CM-Time CM-Timf'

Length (msee) (msec) Speedup (msec) (msec) Spef'dup

4 0.221 0.058 3.8 O.H7 0.041 3.6
8 0.230 0.059 3.9 0.1::>1 0.0-i:=l ::3.4

16 0.223 0.064 .3.:=l 0.159 0.051 3.1
32 0.228 0.064 3.6 0.176 0.06-t 2.8
64 0.226 0.099 2.3 0.208 0.099 2.1

128 0.333 0.234 1.4 0.305 0.210 1..5
256 0.744 0.610 1.2 0.571 0.4Ei6 1 .::3
512 1.289 1.029 1.3 1.0;58 0.904 1.2

1024 1.909 1.792 1.1 1.902 1.791 1.1
2048 3.566 3.460 1.0 3 .. 566 .3.4.S8 1.0
4096 6.794 6.689 1.0 6.794 6.689 1.0
8192 13.451 13.:346 1.0 13.451 13.346 1.0

16384 26.767 26.662 1.0 26.767 26.662 1.0

Table 2. Timings on a Connection Machine System CM-200 for Calls to
PSHIFT and CSHIFT with a Shift Distance of ±1 Along Both Axetoi of Hank Two
Subarrays of Type REAL*8

CSHIFT PSHIFT CSHIFT PSHIFT
Axes Elapsed Elap~cd Elapsed C\1-Tinw C\1-Tirne C\1-Tinw

Length (rnsec) (rnsec) Speedup (msf:'c': :~rnsec :, Spf'edup

2X2 O.Ei11 0.124 4.1 0.-tH 0.107 ::3.9
4X4 0.517 0.173 ::3.0 0 .. 517 0.166 3.1
8X8 1.00S 0.470 2.1 1.005 O.-t69 2.1

16X16 2.289 1.400 1.6 2.289 1 .::399 1.6
:32X32 5.867 4.465 1.3 S.86 7 4."±62 1 .:~
64X64 24.248 19.699 1.2 2"±.20.S 19.6;55 1.2

128X 128 86.965 67.190 1.3 86.7S7 67.06"± 1.:3

Table 3. Timings on a Connection .\1achine System CM-200 for Calls to
PSHIFT and CSHIFT with a Shift Distance of ± 1 Along All Three Axes of Rank
Three Subarrays of Type REAL*8

CSHIFT PSHIFT CSHIFT PSHIFT
Axes Elapsed Elapst'd Elapsed C\1-Tirne C\1-Tinw C\1-Tirne

Lf:'ngth (rnsf'c) ' . 1\illSE'C) Spet'dup (msec:1 ~lllSf>(' Spf'cdup

2X2X2 0.722 0.205 3.5 0.722 0.205 ::3.:)
"±X4X4 2.3S 7 0.911 2.6 2.:330 0.910 2.6
8X8X8 9.948 4.9.5-t 2.0 9.92.3 4. 95-t 2.0

16X16X16 49.044 30.389 1.6 49.0-t4 30.379 1.6

POL YSHIFT COMMC:'IIICA TIONS SOFTWARE 95

Table 4. Timings on a Connection Machine System CM-200 for Calls to
PSHIFT and CSHIFT with a Shift Distance of ±1 Along All Four Axes of Rank
Four Subarrays of Type REAL*8

CSHIFT PSHIFT CSHIFT PSHIFT
Axes Elapsed Elapsed Elapsed CM-Time C:Vl-Time CM-Time

Length (msec) (msec) Speedup (msec) (msec) Speedup

2X2X2X2 2.::>16 0.758
4X4X4X4 11.872 4.659
8X8X8X8 106.644 53.486

Laboratorv of Los Alamos l'lational Laboratorv . .
on a Connection ~lachine svstem CM-200 with a
Sun-4 front-end. The system was operated using
the Connection ~a chine System Software Version
6.1 and Version 2.1 of the G\1 Fortran compiler.
In order to get accurate timings. each call was re­
peated a number of times, and the time measured
for all calls. The number of calls was chosen such
that the total time was approximately the same for
the different cases. Thus, for example 10,000
calls were used for shifting a one-dimensional ar­
ray, whereas 100 calls were used for shifting four­
dimensional arrays along all four axes. The times
given in Tables 1 through 4 are given in millisec­
onds per call.

The time required for the PSHIFT_SETUP calls
varied from approximately 0.1 to 4 or 5 seconds.
There was no correlation of setup time to the array
size or shifts specified. The large amount of disk
110 required for writing, assembling, and loading
the IMPs accounts for the majority of the setup
time.

Arravs of type REAL*8 were used for all tim­
ings. The shape of the subarrays was chosen to
measure the maximum relative performance gain
of PSHIFT over the intrinsic functions. Thus .. in
two dimensions square subarrays were used and
in three dimensions cubic subarravs were used.
This is the default layout on the Connection _\fa­
chine svstems.

All the data in Tables 1 through 4 are for shift
distances of 1 along all axes of the arrays. The
elapsed time shown is the total time including time
in which the front-end is busv while the CYI is idle.
The C_\1-time is the time that the C_\1 was busv.
The C_\1-time will always be less than or equal ~o
the elapsed time.

The speedup of PSHIFT over CSHIFT is sum­
marized in Figure 8. The speedups are computed
using the elapsed times. As expected. the speedup
decreases with the size of the local subarravs. For

3 .. 3
2 .. 5
2.0

1.576 0.504 3.1
11.192 4.659 2.4

106.478 53.4.51 2.0

large subarrays, the execution time is dominated
by on-node memory moves to support the virtual
machine model, and the performance of PSHIFT
and CSHIFT is practically the same. For small
subarrays the time for a shift is dominated by
exchanging data with neighboring nodes. In the
one-dimensional case the expected speedup of
PSHIFT over CSHIFT for a shift in both directions
of the axis is two. However, the speedup is actu­
ally higher due to different implementation tech­
niques. This fact is most notable for the front-end
time. For four-dimensional subarravs the ex­
pected speedup of PSHIFT over CSHIFT for shifts
in both directions of all four axis is eight. But. in
this case the measured speedup is significantly
less. Part of the reason is that although the actual
exchange of data between a node and its neigh­
boring nodes is fully concurrent. all memory oper­
ations in a node are serial. A more careful analvsis
of the expected performance is given next.

Speed-up of PSHIFT/CSHIFT

"' ii
0

0 1 2 3 4 5 6

• 0 .

• 1-D PSHIFT

o 2-D PSHIFT

9 3-D PSHIFT

9 4-D PSHIFT

0 . . 0

8 9 10 11 12 13 14

6 7

4

3

log2 subarrav
axis length ~
1-D array

2-D array

3-fl array

1~D array

FIGURE 8 The speedup of PSHIFT compared to
CSHIFT for some arrays and shift distances of ± 1.

96 GEORGE, BRICK~ER, AND JOHNSSOI\'

6.2 Performance Model

From the architecture of PSHIFT we can derive
the following model for the time to execute a single
call to PSHIFT for a k-dimensional subarrav of
shape Lo X £1 X · Lk-1 = V:

(1)

where Li is the length of subgrid axis i, k is the
dimension (rank) of the sub grid, Nsf is the number
of slices (one slice is 32 bits) per element for the
given data type, Si is the shift distance for axis i, To
is a startup time, independent of k and Li, Tmm is
the time for the memory-to-memory transfer of a
single slice of data, Tmt is the time to transfer a
slice of data from memory to a transposer, T1m is
the time to transfer a slice of data from a trans po­
ser to memory, Texis the time to do one exchange.
The ceiling function occurs in the last term be­
cause the exchange operation swaps two slices at
a time; if the number of slices to be sent over the
wires is not even, the number of exchanges re­
quired is the next multiple of two.

For a shift distance of one and Li = L, 0 :S i < k,
combining terms yields

Ttatal = a + b£!k- 1· + eLk. (2)

The £!k- 1: term is the one associated with the ac­
tual between-processor communications: the Lk
term is associated with on-processor memory-to­
memory traffic. Thus depending on the relative
values of the coefficients b and c, the PSHIFT exe­
cution time can become dominated bv either term
for a given subgrid extent and array rank.

We can obtain approximate values for the time
of an exchange and the time for a memory transfer
from the rank one array data. In this case, there is
only one exchange per call to PSHIFT regardless
of the subgrid length. Thus, any dependence of
the timing on subgrid length comes entirely from
the memory-to-memory portion of the code. For
the smallest subgrid (length 4), the PSHIFT C.\-1-

time is totally dominated by the single exchange,
because one array element is sent in each direc­
tion, and only six array elements are moved within
the processor's memory. (W'e are anticipating here
that an exchange takes much longer than a mem­
ory transfer.) Similarly, for the largest rank one
subgrid, the time is dominated by the memory
transfer time. The timings indicate the CM-time
for a single call to PSHIFT with a rank one array
and a subgrid length four requires 41 microsec­
onds.

To obtain the time per memory transfer, we
take the timing in Table 1 for a subgrid length of
16,384, subtract the 41 microseconds corre­
sponding to the subgrid length four shift, and di­
vide the remainder by twice 16,380 (the total
number of memory-to-memory transfers not ac­
counted for by the sub grid length four times).
From this we obtain a time of .81 microseconds
per slice moved. As noted above, the time per ex­
change is much greater than the time for a mem­
ory-to-memory transfer. However, as the subgrid
size increases, the execution time will eventually
be dominated by on-processor memory-to-mem­
ory time.

Figure 9 gives the time to execute PSHIFT as a
function of the rank one subgrid length. An inter­
esting feature is the kink in the curve occurring at
a sub grid length of 64. This can be understood in
terms of the Connection Machine memorv archi­
tecture, wherein memory locations are addressed
in pages. Changing the address of consecutive
memory accesses by more than one page will re­
quire an extra step of resetting the page address;
hence the effective time of memory-to-memory
transfers depends on whether the source and tar­
get locations are in the same page or not. The
slope of the curve increases for this case.

Figures 1 0 and 11 give the results of fitting the
above model to the rank two and rank three data.
As can be observed, the fit is quite good for the
rank two data. For the rank three data, we have
only four data points (so a cubic function of L can
be fit exactly too the data points).

7 CONCLUSIONS AND DISCUSSION

PSHIFT gives the best performance gain over the
C.YI Fortran intrinsics for

1. Subarrays with axes of equal lengths
2. Bidirectional shifts
3. Arrays of high dimensionality
4. Small subarravs

POL YSHIFT COMMUNICATIONS SOFTWARE 97

0.22

0.2

0.18

0.16

~ 0.14
~
0
E
j:: 0.12

0.1

0.08

0.06

0.04
4 8 16 32 64 128

Subgrid Length L

FIGURE 9 Timings for PSHIFT with shift distance ±1 on rank one REAL-8 arrays.

70

60

50
2

a+ bL+cL

40

~
~ 30 0
E
j::

20

10

0

-10
0 4 8 16 32 64 128

Subgrid Length L

FIGURE 10 Timings for PSHIFT with shift distance ± 1 on rank two REAL-8 arrays.

98 GEORGE, BRICKI'\ER, Al'\D JOHNSSOI'\

35 r-----~r------,--------------~----------------------------~

30

25

!
20

..,
e

E= 15

10

5

0
0 2

2 3
a+ bL+ cL+ dL

4 8
Subgrid Length L

16

FIGURE 11 Timings for PSHIFT with shift distance ± 1 on rank three REAL-8 arrays.

The first three rules simply result from the ob­
servation that parallelism is lost when they are vio­
lated. The fourth comes about because, as the
subarray size increases, the execution times of
both CSHIFT and PSHIFT become dominated bv
the on-node memory-to-memory movement of the
data. There is no remedy for this situation as long
as the virtual machine model is fully supported.
However, it would be possible for a compiler to
analyze the context of the communications pat­
tern to determine what is the ultimate destiny of
the shifted data. In the cases where this analvsis
succeeds, it would be possible to generate code so
that unshifted data is used within a node, thereby
eliminating the unnecessary local memory moves.
Such a technology is not currently present in the
CM Fortran compiler. Compiler features such as
these are a research topic at this time, and are
being considered by Rice and Syracuse Cniversi­
ties in developing a compiler for Fortran D [18],
as well as at Thinking Machines Corporation.

Another approach towards reducing or elimi­
nating the on-node memory-to-memory moves, is
to identify classes of calculations that use patterns
of shifts and consume the output locally, and pro-

vide library routines or a special-purpose compiler
to generate optimized code for these classes. Both
these approaches have been taken by Thinking
Machines Corporation. The Stencil Library is an
example of the former approach, and the Stencil
Compiler [5] is an example of the second ap­
proach.

ACKNOWLEDGMENTS

The work reported herein was partially supported
under DOE contract W -7405-El\"G-36. We thank
the Advanced Computing Laboratory of Los Ala­
mos National Laboratorv for access to the CM-
200 located there. Valuable assistance and advice
were given by a number of people during the
course of this work, notably Steve HelleL .\1.ark
Bromley, .\1.ike McKenna, Bob Lordi, Kapil K.
.\1.athur, Woody Lichtenstein, Doug MacDonald.
and Robert L. Krawitz of Thinking :Ylachines Cor­
poration. We thank John .\1.cGhee of Los Alamos
1\"ational Laboratory for providing the 27 -point
stencil example.

REFERENCES

[1] W.J. Dally and C.L. Seitz, "Deadlock free mes­
sage routing in multiprocessor interconnection
networks." IEEE Trans. Comput .. vol. C-36. pp.
347-553, 1987.

[2] R. Gupta, Computational requirements for QCD,
1990, private communication.

[3] Thinking Machines Corp., C'V!SSL for CM For­
tran, Version 3.0, 1992.

[41 Thinking Machines Corp .. CMSSL Release Notes,
Version 3.0, 1992.

[5] YI. Bromley, S. Heller, T. Mc~erny, and G.
Steele, Proceedings of ACJH SIGPLAN 1991 Con­
ference on Programming Language Design and
Implementation. ~ew York: ACYl Press, 1991.

[6] Thinking Machines Corp., CM Fortran Reference
Manual, Version 2.1, 1993.

[7] Thinking Machines Corp., CM Fortran Release
Notes, Version 2.1, 1993.

[8] M. Yletcalf and J. Reid, Fortran 90 Explained.
Oxford, England: Oxford Scientific Publications,
1991, pp. 1-315.

r9] S.L. Johnsson, "Communication efficient basic
linear algebra computations on hypercube archi­
tectures.'']. Parallel Distrib. Comput., vol. 4, pp.
133-172, 1987.

[10] S.L. Johnsson, '·Fast banded systems solvers
for ensemble architectures," Technical Report
YALEU/DCS/RR-379, Department of Computer
Science, Yale University, \larch 1985.

[11] G. Li and T.F. Coleman, "A parallel triangular
solver for a distributed memory multiprocessor..,
SIAM]. Sci. Stat. Comput., vol. 9. pp. 485-302,
1988.

[12] G. Li and T.F. Coleman, "A new method for solv­
ing triangular systems on a distributed memory
message-passing multiprocessor, .. SIA:H]. Sci.
Stat. Comput., vol. 10, pp. 382-396, 1989.

POL YSHIFT COMMC."HCA TIONS SOFTWARE 99

[13] S.L. Johnsson, C.-T. Ho, M. Jacquemin, and A.
Ruttenberg, Advanced Algorithms and Architec­
tures for Signal Processing II. San Diego. CA.
Bellingham, WA: Society of Photo-Optical Instru­
mentation Engineers, 1987. vol. 826, pp. 223-
231.

[14] C. Tong and P.:\". Swarztrauber, "Ordered fast
fourier transforms on a massively parallel hyper­
cube multiprocessor.·']. Parallel Distrib. Com­
put., vol. 12, pp. 50-39. 1991.

[13 J S.L. Johnsson. Algorithms, Architecture, and
the Future of Scientific Computation. Austin.
TX: University of Texas Press, 1985. pp. 195-
216.

[16 J W. Lichtenstein and S.L. Johnsson. "Block cyclic
dense linear algebra." SJAJl]. Sci. Comput., vol.
14, pp. 1257-1286. 1993.

r17] R.A. van de Geijn, ··Yfassively parallel LI:\"PACK
benchmark on the Intel Touchstone Delta and
iPSC/860 systems," Technical Report, The Lni­
versity of Texas at Austin, July 1991.

[181 G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel.
L. Kremer. C. Tseng, and M. \\·u. "Fortran D
language specification." Technical Report TR90-
141, Department of Computer Science, Rice Lni­
versity, December 1990.

[19] High Performance Fortran Forum, "High Perfor­
mance Fortran/Journal of Development." Scien­
tific Programming, vol. 2/.\/os. 1 & 2, Spring and
Summer '93 (entire volume).

[20] E.:"/. Gilbert, "Gray codes and paths on the n­
cube.'" Bell Systems Tech.]., vol. 37, pp. 815-
826, 1958.

[21] E.M. Reingold, J. Nievergelt, and N. Deo, Combi­
natorial Algorithms. Englewood Cliffs, 'H: Pren­
tice-Hall, 1977, pp. 172-179.

[22] Thinking Machines Corp., CM-200 Technical
Summary, 1991.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

