
Methods and approaches for the comprehensive characterization
and quantification of cellular proteomes using mass spectrometry

Shama P. Mirza and Michael Olivier
National Center for Proteomics Research, Biotechnology and Bioengineering Center, Medical
College of Wisconsin, Milwaukee, Wisconsin

Abstract
Proteomics has been proposed as one of the key technologies in the postgenomic era. So far, however,
the comprehensive analysis of cellular proteomes has been a challenge because of the dynamic nature
and complexity of the multitude of proteins in cells and tissues. Various approaches have been
established for the analyses of proteins in a cell at a given state, and mass spectrometry (MS) has
proven to be an efficient and versatile tool. MS-based proteomics approaches have significantly
improved beyond the initial identification of proteins to comprehensive characterization and
quantification of proteomes and their posttranslational modifications (PTMs). Despite these
advances, there is still ongoing development of new technologies to profile and analyze cellular
proteomes more completely and efficiently. In this review, we focus on MS-based techniques,
describe basic approaches for MS-based profiling of cellular proteomes and analysis methods to
identify proteins in complex mixtures, and discuss the different approaches for quantitative proteome
analysis. Finally, we briefly discuss novel developments for the analysis of PTMs. Altered levels of
PTM, sometimes in the absence of protein expression changes, are often linked to cellular responses
and disease states, and the comprehensive analysis of cellular proteome would not be complete
without the identification and quantification of the extent of PTMs of proteins.
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Proteomics is the global analysis of gene expression at the protein level. It has emerged as a
postgenomic technology with the promise to unravel the cellular mechanisms of diseases and
may lead to the development of reliable markers for disease diagnosis and therapy. Despite its
promise, proteomic analyses remain challenging because of various limitations of existing
technology. All commonly used approaches to isolate and characterize proteomes are still
cumbersome.

Over the past several years, mass spectrometry (MS) has emerged as the most efficient and
versatile tool of all the proteomics approaches available so far (1,24,26). With the emergence
of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI)
techniques, analyzing large molecules such as proteins by mass spectral analysis has become
possible (31,54,112). Although significant progress has been made, current instrumentation
technology does not allow the comprehensive and complete characterization of cellular
proteomes and their posttranslational modifications (PTMs), and there is still a long way to go
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to reach this goal. Finishing the Human Genome Project was facilitated by the static nature of
the genome, which does not change significantly over time within a normal cell. Conversely,
the proteome, though encoded by the cellular genome, is not static and changes continuously
through various cellular mechanisms. It is believed that the 25,000 genes in the human genome
encode up to one million different proteins through various splice forms and posttranslational
processing and modifications. Analyzing the genome is simpler because the DNA consists of
just 4 building blocks, while proteins are composed of 20 different naturally occurring amino
acids. To add to the complexity of the proteome, there is a large dynamic range of
concentrations that changes over time from cell to cell and state to state.

Ideally, a comprehensive proteomic analysis needs efficient separation of the complex sample
and subsequent identification, quantification, and complete characterization of proteins in a
single experiment. Thus each comprehensive proteomic characterization involves a series of
analytical techniques. Below, we describe and discuss commonly used approaches and
technologies that help in the identification and characterization of proteins with MS.

Comprehensive Proteomic Characterization
A typical standard mass spectral analysis of a complex protein sample involves an initial
fragmentation step, a separation methodology to fractionate the complex mixture, and a
subsequent mass spectral analysis of the resulting fractions. Commonly, proteins in a complex
mixture are fragmented with proteolytic enzymes such as trypsin. Upon treatment, a typical
sample from a whole cell lysate contains thousands to millions of peptides. These complex
mixtures need to be fractionated before further analysis. Initial proteomic separation techniques
were based on gel electrophoresis, either one-dimensional (1-DE) or two-dimensional
electrophoresis (2-DE), in which proteins or peptides are separated based on their charge and
molecular weight (19,53,69,78). The separated proteins are usually visualized with different
dyes. The 1-DE or 2-DE gel bands are excised and in-gel digested, and the resulting peptides
are analyzed by either MALDI-MS or ESI-MS. Other methods to fractionate the peptide
mixture include liquid chromatography and capillary electrophoresis (CE) (51,86,97,129).
While a successful protein and peptide separation and fractionation is essential to a mass
spectral analysis, this review focuses on the analytical aspects and the challenges of MS for
proteomics. Other reviews discuss the commonly used approaches and challenges of
fractionation (see Ref. 69a).

MS is a powerful approach to obtain protein sequence data from unknown samples and to
correlate the experimental data with sequence information in public databases (“bottom-up
proteomics”; Fig. 1). Such protein or peptide sequence information can be obtained from
tandem mass spectral analysis. In a typical tandem MS analysis, the first step consists of the
detection of the initial peptide ion. Subsequently, the peptide ions are fragmented by collision-
induced dissociation (CID) to break the polypeptide backbone at the amide bond, thereby
creating a ladder of fragment ions that reflect the peptides' amino acid sequence (11,20,118).
The resulting spectra are then compared with publicly available protein sequence information.
The observed masses of the proteolytic fragments are compared with theoretical in silico
sequences to identify the peptide sequence and thereby the protein (14,29,36,44,65,77). With
the advancements in the separation techniques, up to 2,000 proteins can now be identified in
a standard experiment.

Alternative approaches to this bottom-up approach, in which the original protein is predicted
from sequence information of proteolytic peptides, have utilized “top-down” approaches in
which the intact protein is directly dissected and amino acid sequence information is obtained
by dissociation (Fig. 1). In this approach, the intact proteins are separated by gel electrophoresis
or offline liquid chromatography before MS analysis. The major obstacle in this approach is
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the determination of product ion masses from multiply charged species of intact proteins.
Because of the formation of multiply charged protein precursor ions, it is difficult to interpret
top-down fragmentation spectra. This limitation can be evaded by reducing the charge states
on the product ions through the introduction of gas-phase anions to strip protons from the
product ions through ion-ion proton transfer reaction (106).

Another approach of choice for top-down proteomics is the use of the Fourier transform-ion
cyclotron resonance (FT-ICR) mass spectrometer or orbitrap mass spectrometer with high mass
accuracy (<2 ppm). The product ion charge state can be determined from the isotope spacing
in the multiply charged species that facilitates the identification (27,66,85). The dissociation
techniques in top-down proteomics are favored toward electron-capture dissociation (ECD) as
implemented on FT-ICR-MS or electron-transfer dissociation (ETD) used in orbitrap
instruments.

Although the top-down proteomics approach has some limitations because of the formation of
very complex spectra, use of expensive instrumentation, and difficulties with proteins of high
molecular mass (<50 kDa), it is advantageous over classical bottom-up approaches since it
provides access to the complete protein sequence, locates PTMs due to gentle fragmentation
methods, and avoids long protein digestion methods.

Comprehensive Protein Quantification
In addition to the identification of proteins, it is essential to quantify proteins in complex
biological samples to better understand their role in an organism and in physiological systems
(9,21,63,68,82,100,127). Both relative and absolute quantification methods have been
established that use mass spectral techniques for the protein identification. Traditionally,
protein quantification is carried out with gel-based approaches. In contrast, stable isotope
labeling and label-free methods have been established that involve mass spectral analyses and
result in quantification at the peptide level. Below, we discuss the different approaches in more
detail and highlight the differences between the individual approaches.

Gel-based quantification approaches
Gel-based isolation of proteins was used extensively in molecular biology and biochemistry
even before the development of modern MS-based protein identification. Even now it is used
as a quantitative proteomic technology that can resolve hundreds to thousands of proteins in a
single gel. To overcome the limitations of gel-to-gel reproducibility, differential gel
electrophoresis (DIGE) has been established (83,117,122). In a DIGE experiment, up to three
different samples can be analyzed on a single gel, each labeled with a different fluorescent
cyanine dye (Cy2, Cy3, and Cy5). Although the method is successful in quantifying proteins
and identifying PTMs on proteins that result in lateral shift in spots on the gel, the approach
has several limitations. Like any gel-based method, DIGE has limitations in resolving
hydrophobic proteins, interference from high-abundance proteins, and poor resolution of spots.
Furthermore, not all individual proteins that are differentially expressed can be subsequently
identified with MS. Finally, multiple protein isoforms can often be found in different spots on
the gel, complicating the comprehensive analysis.

Stable isotope labeling
With stable isotope labeling, both absolute and relative methods of quantification have been
developed, each having its own merits and shortcomings. Most of the absolute methods of
quantification are small-scale analyses targeted to specific proteins. In contrast, relative
quantification methods are focused on large-scale global proteomic analyses. Any stable
isotope labeling method involves labeling of proteins/peptides with one or more stable isotopes
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and pooling the sample with an unlabeled control sample. The mixed sample is then subjected
to a mass spectral analysis. The signal intensities of the labeled and unlabeled peptides are used
to measure the relative abundance, while further fragmentation of the peptide provides the
sequence information necessary for identification of the quantified protein.

As illustrated in Fig. 2, stable isotope labeling can be classified into metabolic labeling,
chemical mass tagging, and enzymatic labeling.

Metabolic isotope labeling requires in vivo incorporation of isotope-labeled essential amino
acids during cell growth. The technology was first developed by Matthias Mann and his
laboratory (1,81,82) and termed stable isotope labeling by amino acids in cell culture (SILAC).
Cells are cultured in a medium supplemented with a labeled amino acid (lysine or arginine
containing 13C or 15N). After several passages, cells are pooled with control cells grown in a
medium of naturally occurring amino acids. The pooled samples are digested and analyzed by
tandem MS. Although the technique is promising, it is limited to studies that involve cell culture
so that cells can incorporate the exogenous amino acid into proteins. This normally precludes
the use of this methodology for the analysis of tissue samples. However, a recent metabolic
labeling study showed that entire model organisms (such as rats) can be labeled by using labeled
chow. McClatchy et al. (71) demonstrated this quantification strategy by using 15N-labeled rat
brain as an internal standard for large-scale analysis of the mammalian brain. The method is
termed stable isotope labeling in mammals (SILAM) (71).

Mass tagging via chemical labeling is another approach using isotopes for quantification. In
this method, proteins or peptides are tagged with a stable isotope-containing molecule. Tagged
peptides can be efficiently isolated and enriched with affinity groups attached to the tagging
moiety that can bind to specific amino acid residues. One such technology is the isotope-coded
affinity tag (ICAT) methodology developed by the Aebersold group (104). An affinity group
is chemically linked to cysteinyl residues on the protein. The ICAT reagent consists of a
sulfhydryl-reactive iodoacetate group, a biotin affinity group, and a linker carrying light or
heavy isotopes (101,115,123). After derivatization, both light and heavy tagged protein
samples are pooled, digested, and enriched on an avidin affinity column to capture peptides
containing tagged cysteine residues that can be analyzed by subsequent tandem mass spectral
analysis. The method has both advantages and limitations due to the specificity of the affinity
tag to specific amino acid residues. On one hand, the complexity of the sample will be reduced
because of the enrichment of only tagged peptides. However, as a result, only a fraction of
peptides will be analyzed by MS, and no quantitative or sequence information is obtained for
proteins or peptides that do not contain cysteinyl residues. While additional affinity tags have
been developed in recent years that allow specific binding to other amino acid residues (34,
45,61), the enrichment step is an essential part of the ICAT protocol and untagged proteins or
peptides will not be analyzed and identified.

Recently, isobaric tags for relative and absolute quantification (iTRAQ) have been established
as a more comprehensive and efficient method for proteomic quantification (2,17,94,102,
128). The method was developed by Ross et al. (94). It involves tagging of the NH2-terminal
and side-chain lysine amino groups with stable isotopically labeled mass tags. The reagent
consists of an amine-specific reactive group, a mass balance group, and a reporter group. The
reporter and balance groups carry stable isotopes, with different combinations of isotopes in
the reporter group but uniform molecular weight in the combined molecule. Because of the
chemical composition, several different tags can be generated, allowing the simultaneous
labeling of multiple samples. Chemically, the only difference in these reagents is the
substitution of 12C, 14N, or 16O with their heavy isotopes 13C, 15N, or 18O, but since their
molecular weights remain unchanged, the chromatographic properties of the peptides remain
the same and the light and heavy peptides elute at the same time, enabling the quantification
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of different samples. After coelution, the peptides are further fragmented to release the iTRAQ
reagent that allows the distinction of the different samples in MS and provides the necessary
quantitative information. With the extensive success with four-plex reagents, eight-plex
reagents are now commercially available that permit the quantification of eight different
samples in a single run. The method can be used not only to perform relative quantification
but also for absolute quantification by using an internal standard peptide labeled with one of
the iTRAQ reagents. While the methodology has been used extensively, the iTRAQ system is
relatively expensive, and the reporter ion masses are below the low-mass cutoff of ion-trap
mass spectrometers, thus requiring more advanced mass spectrometers for the analysis.

Another nonisobaric triplex labeling strategy was introduced by Kellermann and Lottspeich
(98,99), named isotope-coded protein labeling technology (ICPL). In this approach, amino
groups of intact proteins were derivatized with three isotopically different nicotinoyl reagents
(12C6H4, 12C6D4, and 13C6H4). Since the method is based on labeling proteins even before
tryptic digestion followed by fractionation, it significantly reduces the complexity of the
sample but retains sequence coverage in the subsequent mass spectral analysis. This results in
improved protein identification that is indispensable for the detection of PTMs.

Stable isotope incorporation by enzymatic labeling is another commonly used method to
overcome the challenges of other methods discussed above. Enzyme-catalyzed labeling of
peptides provides a comprehensive and global quantitation of the cellular proteome. Enzymatic
incorporation of 18O atoms during proteolytic cleavage, most commonly by trypsin, results in
peptides with either one or two 18O atoms at the carboxy terminus (8,43,74,90,108). The labeled
sample is mixed with known amounts of an unlabeled peptide sample (for absolute
quantification) or a reference sample (for relative quantification) and analyzed by tandem MS.
In the 18O labeling strategy, the difference in molecular mass between light and heavy peptide
samples is either 2 Da (one 18O atom incorporated) or 4 Da (two 18O atoms incorporated). The
ratio of the intensities of the labeled and unlabeled peptides allows the quantification of the
peptide. Although there are limitations in the method due to the back exchange of 18O with
naturally occurring 16O, if sufficient care is taken (109), the method is advantageous over other
labeling technologies because of its simplicity and global proteomic quantification both in vivo
and in in vitro samples. Our laboratory (41,43) has developed protocols and analysis tools that
allow the efficient quantitative analysis of complex biological samples using 18O labeling.
Figure 3 illustrates the common work flow and the analytical software tool ZoomQuant.

Alternative mass spectral quantification approaches
Recently, label-free methods of quantification have been proposed (80,116,124). These
methods are based on a correlation between peptide mass spectral peak data and the abundance
of the protein in the sample. In one of the approaches, mass spectral peak intensities of peptide
ions are used to quantify the protein amount (12,16,117). Alternatively, another approach
involves spectral counting, where the number of mass spectra assigned to a protein is taken as
a measure of protein abundance (33,64). The label-free methods are advantageous, especially
in samples where isotope labeling is either not possible or too cumbersome, and they provide
quantitative information. However, the accuracy of the approach needs to be further evaluated,
especially for low-abundance proteins in complex samples.

Mass Spectral Analysis of Posttranslational Modifications
The complex and dynamic nature of the cellular proteome has been a major challenge. The
comprehensive assessment and analysis of the proteome is further complicated by various
PTMs that regulate cellular processes (18,56,59,72,93,114). Altered levels of PTMs,
sometimes in the absence of protein expression changes, are often linked to cellular responses
and disease states. Therefore, the comprehensive analysis of the cellular proteome would not
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be complete without the identification and quantification of the extent of PTMs of the
individual proteins. Proteins are known to undergo more than 300 PTMs that regulate their
cellular functions, of which phosphorylation is the most common and best characterized.
Several studies have described enrichment methods for these PTM proteins. However, even
after enrichment, PTM proteins are not very well ionized under MS conditions because of their
negative charge, complicating the MS detection of these proteins.

Classical approaches for phosphoproteomic analysis use polyacrylamide gel electrophoresis,
as discussed above. The phosphorylated species can be visualized by radiolabeling,
immunodetection, or phosphospecific staining (39,67,95,120). The success in using gel-based
methods is due to the isoelectric point (pI) shift of proteins with each phosphorylated site that
shifts the protein spot on the gel laterally (28,39,49,62,119,120,125). However, all difficulties
discussed above for gel-based quantification approaches apply to phosphoprotein
quantification as well, and limit the use of the approach.

Mass spectral approaches to the analysis of phosphoproteins have been complicated by the
technical difficulties of detecting phosphoproteins in the presence of nonphosphorylated
species. Thus the phosphoproteins are commonly enriched before analysis. Various approaches
have been established such as immunoprecipitation, chemical derivatization, affinity
purification, and most commonly immobilized metal affinity chromatography (IMAC)
methods (52,91,107). Below, we describe and discuss the individual approaches.

Immunoprecipitation
Immunoprecipitation of proteins from complex mixtures with antibodies against
phosphorylated amino acid residues is a common approach in phosphoproteomics (25,32,47,
48). Most analyses have successfully used pTyr antibodies (84,126), and recently attempts
have been made to precipitate proteins with pSer and pThr antibodies (35). The precipitated
proteins are further separated on 1-DE or 2-DE gels and analyzed by MS to map the
phosphorylation site. While the method does allow the identification of phosphorylated
proteins, and permits the characterization of the phosphorylated amino acid residue, the
methodology does not allow the quantification of phosphorylated proteins.

Chemical derivatization
Chemical derivatization methods convert the phosphorylated amino acid into more traceable
species. β-Elimination of pSer and pThr by alkali treatment is one of the most common
derivatization approaches used (73,92). β-Elimination of phosphoric acid from pSer or pThr
followed by the introduction of a biotin moiety aids in the selective enrichment of
phosphoproteins. The biotin-tagged phosphopeptides are selectively separated from
nonphosphorylated species by affinity chromatography (34,79). Another approach uses β-
elimination followed by reaction with cysteamine to convert pSer or pThr to lysine analogs,
which enables site-specific cleavage with trypsin at the phosphoamino acid site (55). However,
the method has limitations due to the loss of chromatographic performance and loss of
sensitivity during mass spectral analysis. Moreover, the method is only applicable to pSer and
pThr residues.

Immobilized metal affinity chromatography
IMAC has been used extensively and efficiently for the enrichment of phosphoproteins and
peptides (5,15,87). The approach exploits the high affinity of the phospho-moiety to positively
charged metal ions like Fe3+ (5), Ga3+ (88), Al3+ (4), and Zr4+ (30). The metal ions are
immobilized on a solid support (silica, Sepharose, or agarose) with metal-chelating agents such
as iminodiacetic acid (IDA) (6), nitrilotriacetic acid (NTA) (3), tris(carboxymethyl)
ethylendiamine (TED) (15), or poly (glycidylmethacrylate/divinylbenzene) (GMD) (6).
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Although the method has been used extensively, there are limitations to the approach. The
acidic groups on the peptides are nonspecifically bound to the metal ions and hence need to be
further esterified to block the acidic group, increasing the complexity of the experimental
procedure (42). Moreover, the method is biased toward multiply phosphorylated peptides
because of their high affinity to the metal ions. Finally, as with all described enrichment
approaches, the method does not provide quantitative information.

Affinity purification
Affinity purification with metal oxides is an alternative method of phosphoprotein enrichment.
Titanium oxide, aluminum oxide, and zirconium oxide have proven to be more chemically
stable materials than silica-based materials. Recently, TiO2 has been demonstrated (57,96,
121) as an alternative reagent to the IMAC method of enrichment. Lately, Kweon and
Hakansson (58) compared zirconium oxide to titanium oxide and concluded that each allows
the selective enrichment of phosphopeptides, zirconium being more selective for
monophosphorylated peptides while titanium had more affinity toward multiply
phosphorylated peptides. Thus mixing both the metal oxides could increase the efficiency in
the enrichment of both monophosphorylated and multiply phosphorylated species. Although
the method is proven to be efficient in recovering over 90% of phosphopeptides, it has yet to
be applied to complex protein mixtures.

An efficient MS-based method that not only identifies the PTM proteins but also measures the
degree to which the protein is modified would be very informative for understanding protein
function and signaling cascades in various cell functions. With the recently developed relative
quantification methods by MS, phosphoproteomic quantification has become possible (22,
37,113). Recent studies have used SILAC, ICAT, iTRAQ, or 18O methods for the
quantification of IMAC-enriched phosphopeptides followed by tandem mass spectral analysis
(34,89). Another approach is to dephosphorylate the peptides for the indirect identification and
quantification of phosphopeptides (13,103). The method is more advantageous over other
methods because it only requires the MS analysis of unphosphorylated peptides, circumventing
technical difficulties like signal suppression or biased enrichment procedures.

Despite the various enrichment methods for phosphopeptides, mass spectral analysis of these
peptides is often not very efficient. The loss of the phosphomoiety from the peptides is very
prominent during CID experiments. Thus a very intense peak with loss of 98 Da or to a minor
extent at 80 Da dominates over the rest of the fragmentation peaks, thereby providing only
limited data for peptide identification (10,46,50,76). To overcome the limitations with CID
analysis, new analytical methods like ECD (7,40,60,105,110) and ETD (23,38,70,75,111) have
been established to identify phosphopeptides. The methods are based on gentle fragmentation
of the peptides, preserving the labile amino acid modifications. In this technology, c and z ions
are generated, keeping the modification site intact on the fragmented ions. Besides, there is no
neutral loss of phosphoric acid from the peptide; even larger and multiply charged species are
identified efficiently.

Perspectives
Mass spectral analysis of complex protein mixtures has been improved significantly over the
past decade, and technological advances and improved methodologies now allow the
comprehensive quantitative analysis of complex biological samples by MS. However, the
methodologies are far from optimal, and only a small fraction of the entire proteome of a
biological sample is analyzed quantitatively with any of the approaches described above. While
further advances are needed to provide the data necessary for the complete dissection of
proteomic changes in disease, current technology already allows an initial glimpse of the
underlying pathophysiological changes on a cellular level. The information obtained from these
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initial proteomic analyses of carefully selected biological samples will significantly advance
our current understanding of the complex regulation of biological systems, even with this
rudimentary information. Analyses of temporal changes of cellular proteomes and the
regulation and dynamic alteration of PTMs of the proteome will provide novel information
beyond the genomic data currently being obtained. Once both approaches have been merged
efficiently, we will be able to dissect the complex underlying pathways that regulate disease
processes, and use this information for disease prevention and management.
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Fig. 1.
Schematic representation of the common top-down and bottom-up approaches for the
identification and characterization of proteins using mass spectrometry (MS). GE, gel
electrophoresis; HPLC, high performance liquid chromatography.
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Fig. 2.
Illustration of commonly used labeling strategies for quantitative proteomic analysis using MS
(adapted from Ref. 1). Proteins are depicted at top, the resulting labeled peptides from each
approach are shown in the middle, and a schematic of the resulting mass spectrum is shown at
bottom, with the resulting signal from the light peptides shown in gray and signal from the
heavy peptides in red. Peak areas can be compared for relative quantification of peptide
abundance.
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Fig. 3.
18O labeling strategy for quantitative proteomic analysis using mass spectrometry and
ZoomQuant software tool (the MS image is adapted from www.thermo.com). L/UL is the ratio
of labeled (18O) to unlabeled (16O) peptide measured by ZoomQuant.
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